NATURAL LANGUAGE PROCESSING

B Tech III Year II Sem

Course Code	Category	Hours/ Week			Credits	Maximum Marks				
23AM603	Professional Course	L	Т	P	3	CIE	SEE	TOTAL		
		3	0	0		40	60	100		
Contact	Tutorial	P	Practical Classes:				Total Classes:60			
Classes: 45	Classes: 15		Nil			Total Classes:00				

Pre-requisites:

1. Data structures and compiler design.

Course Objectives:

1. Introduction to some of the problems and solutions of NLP and their relation to linguistics and statistics.

Course Outcomes:

- 1. Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- 2. Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems
- 3. Manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- 4. Design, implement, and analyze NLP algorithms; and design different language modeling Techniques.

UNIT-I

Finding the Structure of Words: Words and Their Components, Issues and Challenges, Morphological Models

Finding the Structure of Documents: Introduction, Methods, Complexity of the Approaches, Performances of the Approaches, Features.

UNIT-II

Syntax I: Parsing Natural Language, Treebanks: A Data-Driven Approach to Syntax, Representation of Syntactic Structure, Parsing Algorithms.

UNIT - III

Syntax II: Models for Ambiguity Resolution in Parsing, Multilingual Issues
Semantic Parsing I: Introduction, Semantic Interpretation, System Paradigms, Word Sense.

UNIT-IV

Semantic Parsing II: Predicate-Argument Structure, Meaning Representation Systems.

UNIT-V

Language Modeling: Introduction, N-Gram Models, Language Model Evaluation, Bayesian parameter estimation, Language Model Adaptation, Language Models- class based, variable length, Bayesian topic based, Multilingual and Cross Lingual Language Modeling.

TEXT BOOK:

1. Multilingual natural Language Processing Applications: From Theory to Practice - Daniel M. Sikel and Imed Zitouni, Pearson Publication.

REFERENCE BOOKS:

- 1. Speech and Natural Language Processing Daniel Jurafsky & James H Martin, Pearson Publications.
- 2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary.

NATURAL LANGUAGE PROCESSING LAB

B Tech III Year II Sem

Course Code	Category	Hours/ Week			Credits	Maximum Marks		
23AM604	Professional Course	L 0	T 0	P 3	1.5	CIE 40	SEE 60	TOTAL 100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Clas			Classes:	Total Classes:32		

Prerequisites:

1. Data structures, finite automata and probability theory.

Course Objectives:

1. To Develop and explore the problems and solutions of NLP.

Course Outcomes: Students will be able to:

- 1. Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- 2. Knowledge on NLTK Library implementation
- 3. Work on strings and trees, and estimate parameters using supervised and unsupervised training methods.

Exercises:

- 1. Write a Python Program to perform following tasks on text.
 - Tokenization
 - Stop word Removal
- 2. Write a Python program to implement Porter stemmer algorithm for stemming
- 3. Write Python Program for a) Word Analysis
- b) Word Generation
- 4. Create a Sample list for at least 5 words with ambiguous sense and Write a Python program to implement WSD
- 5. Install NLTK tool kit and perform stemming
- 6. Create Sample list of at least 10 words POS tagging and find the POS for any given word
- 7. Write a Python program to
 - Perform Morphological Analysis using NLTK library
 - Generate n-grams using NLTK N-Grams library
 - Implement N-Grams Smoothing
- 8. Using NLTK package to convert audio file to text and text file to audio files.

TEXT BOOKS:

- 2. Multilingual natural Language Processing Applications: From Theory to Practice Daniel M. Sikel and Imed Zitouni, Pearson Publication.
- 3. Oreilly Practical natural Language Processing, A Comprehensive Guide to Building Real World NLP Systems.
- 4. Daniel Jurafsky, James H. Martin-Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, Pearson Publication, 2014.

REFERENCES:

1. Steven Bird, Ewan Klein and Edward Loper, -Natural Language Processing with Python, First Edition, O'Reilly Media, 2009.