g Lecture 1: R Basics

‘.h Outline

= Why R, and R Paradigm

= References, Tutorials and links
= R Overview

= R Interface

= R Workspace

= Help

= R Packages

= Input/Output

= Reusing Results

i Why R?

It's free!

It runs on a variety of platforms including
Windows, Unix and MacOS.

It provides an unparalleled platform for
programming new statistical methods in an
easy and straightforward manner.

It contains advanced statistical routines not yet
available in other packages.

It has state-of-the-art graphics capabilities.

R has a Steep
i Learning Curve

First, while there are many introductory tutorials
(covering data types, basic commands, the
interface), none alone are comprehensive. In
part, this is because much of the advanced
functionality of R comes from hundreds of user
contributed packages. Hunting for what you
want can be time consuming, and it can be
hard to get a clear overview of what
procedures are available.

i R has a Learning Curve

The second reason is more transient. As users
of statistical packages, we tend to run one
controlled procedure for each type of analysis.
Think of PROC GLM in SAS. We can carefully
set up the run with all the parameters and
options that we need. When we run the
procedure, the resulting output may be a
hundred pages long. We then sift through this
output pulling out what we need and
discarding the rest.

i R paradigm is different

Rather than setting up a complete analysis at
once, the process is highly interactive. You run
a command (say fit a model), take the results
and process it through another command (say
a set of diagnostic plots), take those results
and process it through another command (say
cross-validation), etc. The cycle may include
transforming the data, and looping back
through the whole process again. You stop
when you feel that you have fully analyzed the
data.

i How to download?

= Google it using R or CRAN
(Comprehensive R Archive Network)
= http://www.r-project.org

i Tutorials

Each of the following tutorials are in PDF format.

« P. Kuhnert & B. Venables, An Introduction to R:
Software for Statistical Modeling & Computing

= J.H. Maindonald, Using R for Data Analysis and Graphics
= B. Muenchen, R for SAS and SPSS Users
« W.]J. Owen, The R Guide

» D. Rossiter, Introduction to the R Project for Statistical
Computing for Use at the ITC

= W.N. Venebles & D. M. Smith, An Introduction to R

http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip
http://cran.r-project.org/doc/contrib/usingR.pdf
http://rforsasandspssusers.googlepages.com/RforSASSPSSusers.pdf
http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
http://cran.r-project.org/doc/contrib/Rossiter-RIntro-ITC.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf

Web links

= Paul Geissler's excellent R tutorial

= Dave Robert's Excellent Labs on Ecological
Analysis

= EXcellent Tutorials by David Rossitier

» Excellent tutorial an nearly every aspect of
R MOST of these notes follow this
web page format

» Introduction to R by Vincent Zoonekynd

= R Cookbook
« Data Manipulation Reference

http://casoilresource.lawr.ucdavis.edu/drupal/node/www.fort.usgs.gov/BRDScience/LearnR.htm
http://ecology.msu.montana.edu/labdsv/R/labs/
http://www.itc.nl/personal/rossiter/pubs/list.html#pubs_m_R
http://www.statmethods.net/index.html
http://zoonek2.free.fr/UNIX/48_R/all.html
http://www.r-cookbook.com/node/40
http://wiki.r-project.org/rwiki/doku.php?id=guides:overview-data-manip

Web links

= R time series tutorial
» R Concepts and Data Types
» Interpreting Output From Im()

s The R Wiki

= An Introduction to R

« Import / Export Manual
= R Reference Cards

10

http://casoilresource.lawr.ucdavis.edu/drupal/node/100
http://www.stat.wisc.edu/~deepayan/SIBS2005/slides/language-overview-4.pdf
http://www.rni.helsinki.fi/~pek/s-tools/lm-more.r
http://wiki.r-project.org/rwiki/doku.php
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/contrib/Short-refcard.pdf

Web links

KickStart

Hints on plotting data in R

Regression and ANOVA

Appendices to Fox Book on Regression

JGR a Java-based GUI for R
[Mac|Windows|Linux]

= A Handbook of Statistical Analyses Using

R(Brian S. Everitt and Torsten Hothorn)

11

http://cran.r-project.org/doc/contrib/Lemon-kickstart/index.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.lsa.umich.edu/~faraway/book/
http://cran.r-project.org/doc/contrib/Fox-Companion/
http://stats.math.uni-augsburg.de/JGR/
http://cran.r-project.org/src/contrib/Descriptions/HSAUR.html

R Overview

R is @ comprehensive

statistical and graphical

programming language and is a dialect of the

S language:

1988 - S2: RA Becker, JM Chambers, A Wilks
1992 - S3: JM Chambers, TJ] Hastie
1998 - S4: JM Chambers

R: initially written by
Gentleman at Dep.
Auckland, New Zea

R0oss Thaka and Robert
of Statistics of U of

and during 1990s.

Since 1997: international “"R-core” team of 15

people with access

to common CVS archive.

12

R Overview

You can enter commands one at a time at the
command prompt (>) or run a set of
commands from a source file.

There is a wide variety of data types, including
vectors (numerical, character, logical),
matrices, data frames, and lists.

To quit R, use
>q()

13

R Overview

Most functionality is provided through built-in
and user-created functions and all data objects
are kept in memory during an interactive
session.

Basic functions are available by default. Other
functions are contained in packages that can
be attached to a current session as needed

14

i R Overview

A key skill to using R effectively is learning how
to use the built-in help system. Other sections
describe the working environment, inputting
programs and outputting results, installing new
functionality through packages and etc.

A fundamental design feature of R is that the
output from most functions can be used as
input to other functions. This is described in
reusing results.

15

R Interface

Start the R system, the main window
(RGui) with a sub window (R Console)
will appear

In the Console' window the cursor is
waiting for you to type in some R
commands.

16

‘L Your First R Session

i~ RGui TE&
Fle Edt Msc Packag=s Windoas Help

] el @] 5] [@] (&

i~. R Console

Copyraignt (C) 2006 The R Foundation for Statiztical Computing
ISBN 3-300051-07-0

R ia free goftware and comeg with RBSOLUTELY NO WARRIANIY.
You are welcome o rediztribute it under cercain condicions,
Type ‘licemse(}"' or 'licence|{)' for distribution detaila,

Naturel language support but running in an English locale

R 12 a collaborative project with many contributors.
Type ‘contributors|)' for more information and
‘citation|)' on how to cite R or R packages in publications.

Type ‘demo()' focr some demcs, 'help()' for cn-iine help, or
'help.scart()*' for an HIKL browser interface to help.
Type 'q()' to quit R.

Loading required package: ctcltk
Loading Icl/Ik interface ... done
Loading roequired package: avMiac
Loading raquired package: R2HTML
[Previouely saved workgpace ragrored]

Figure 1.1: The R system on Windows

i R Introduction

= Results of calculations can be stored in objects using
the assignment operators:

= An arrow (<-) formed by a smaller than character and a
hyphen without a space!

= The equal character (=).

18

R Introduction

= These objects can then be used in other calculations.
To print the object just enter the name of the object.
There are some restrictions when giving an object a
name:

= Object names cannot contain strange' symbols like !, +, -,
#

= Adot (.) and an underscore () are allowed, also a hame
starting with a dot.

= Object names can contain a number but cannot start with a

number.

= R s case sensitive, X and x are two different objects, as
well as temp and temP.

19

n example

iA

> # An example

> X <-¢(1:10)

> X[(x>8) | (x<5)]

> #vyields 1234910
> # How it works

> X <-¢(1:10)

> X
>12345678910
>X>8
>FFFFFFFFTT
>X<5
>TTTTFFFFFF
>X>8|x<5
>TTTTFFFFTT
> x[c(T,T,T,T,F,F,FFT,T)]
>1234910

20

R Introduction

= To list the objects that you have in your current R
session use the function Is or the function objects.

> |s()
[1] IIXII llyll
= S0 to run the function Is we need to enter the name

followed by an oRening (and a closing). Entering only
Is will just print the object, you will see the underlying R
code of the the function Is. Most functions in R accept
certain arguments. For example, one of the arguments
of the function Is is pattern. To list all objects starting
with the letter x:

>Xx2=9

>y2 =10

> |s(pattern="x")

[1] IIXII "X2"

21

i R Introduction

= If you assign a value to an object that already exists
then the contents of the object will be overwritten with
the new value (without a warning!). Use the function rm
to remove one or more objects from your session.

> rm(X, x2)

« Lets create two small vectors with data and a
scatterplot.

z2 <-¢(1,2,3,4,5,6)

z3 <-¢(6,8,3,5,7,1)
plot(z2,z3)

title("My first scatterplot")

22

‘L R Warning !

R IS a case sensitive
language.

FOO, Foo, and foo are
three different objects

23

R Introduction

> X = sin(9)/75

>y = log(x) + x"2

> X

[1] 0.005494913

>y

[1] -5.203902

> m <- matrix(c(1,2,4,1), ncol=2)
>m

> [,1] [,2]

1,]14

2,]21

> solve(m)

1] [,2]

[1,] -0.1428571 0.5714286
2,1 0.2857143 -0.1428571

24

i R Workspace

Objects that you create during an R
session are hold in memory, the

collection
currently

of objects that you
have is called the

workspace. This workspace is not

saved on

disk unless you tell R to do

so. This means that your objects are
lost when you close R and not save

the objec

'S, or worse when R or your

system crashes on you during a

session.

25

i R Workspace

When you close the RGui or the R
console window, the system will ask
if you want to save the workspace
image. If you select to save the
workspace image then all the objects
in your current R session are saved in
a file .RData. This is a binary file
located in the working directory of R,
which is by default the installation
directory of R.

26

i R Workspace

= During your R session you can also
explicitly save the workspace image. Go to
the File' menu and then select " Save
Workspace...', or use the save.image
function.

save to the current working directory

save.image()

just checking what the current working directory is
getwd()

save to a specific file and location

save.image("C: \\Program Files\\R\\R-
2.5.0\\bin\\.RData")

27

i R Workspace

If you have saved a workspace image and
you start R the next time, it will restore
the workspace. So all your previously
saved objects are available again. You can

also explicitly

else. Go the
workspace...'.

oad a saved workspace, that

could be the workspace image of someone

File' menu and select " Load

28

i R Workspace

Commands are entered interactively at the R
user prompt. Up and down arrow keys
scroll through your command history.

You will probably want to keep different
projects in different physical directories.

29

i R Workspace

R gets confused if you use a path in your
code like
c: |mydocuments|myfile. txt

This is because R sees "\" as an escape
character. Instead, use

c: | |my documents||myfile.txt
or

c./mydocuments/myfile. txt

30

i R Workspace

getwd() # print the current working directory

Is() # list the objects in the current workspace
setwd(mydirectory) # change to mydirectory
setwd("c:/docs/mydir")

31

i R Workspace

#view and set options for the session
help(options) # learn about available options
options() # view current option settings
options(digits=3) # number of digits to print
on output

work with your previous commands
history() # display last 25 commands
history(max.show=Inf) # display all previous commands

32

i R Workspace

save your command history
savehistory(file= "myﬁ/e' ') # default is ".Rhistory"

recall your command history
loadhistory(file="my/fil€") # default is ".Rhistory"

33

iRHdp

Once R is installed, there is a comprehenswe
built-in help system. At the program's
command prompt you can use any of the
following:

help.start() # general help
help(/o0) # help about function foo
?foo # same thing
apropos("foo") # list all function containing string foo
example(foo) # show an example of function foo

34

R Help

+

search for foo in help manuals and archived mailing lists

RSiteSearch("700")

get vignettes on using installed packages
vignette() # show available vingettes
vignette("foo") # show specific vignette

35

i R Datasets

R comes with a number of sample datasets
that you can experiment with. Type

> data()

to see the available datasets. The results
will depend on which packages you have
loaded. Type

help(datasetname)
for details on a sample dataset.

36

http://www.statmethods.net/interface/packages.html

i R Packages

= One of the strengths of R is that the system can
easily be extended. The system allows you to
write new functions and package those functions
in a so called R package' (or R library'). The R

exam
ively
have
for ot

package may also contain other R objects, for

nle data sets or documentation. There is a
R user community and many R packages
been written and made available on CRAN

ner users. Just a few examples, there are

packages for portfolio optimization, drawing
maps, exporting objects to html, time series
analysis, spatial statistics and the list goes on and

on.

37

i R Packages

= When you download R, already a number (around

30) of packages are downloaded as well. To use a
function in an R package, that package has to be
attached to the system. When you start R not all
of the downloaded packages are attached, only
seven packages are attached to the system by
default. You can use the function search to see a
list of packages that are currently attached to the
system, this list is also called the search path.

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:datasets" "package:utils"

[7] "package:methods" "Autoloads” "package:base"

38

i R Packages

To attach another package to the system you can use the
menu or the library function. Via the menu:

Select the " Packages' menu and select " Load package..., a list of
available packages on your system will be displayed. Select
one and click "OK', the package is now attached to your
current R session. Via the library function:

> library(MASS)

> shoes

$A

[1]13.28.210.914.310.76.69.510.88.8 13.3
$B
[1]14.08.811.214.211.86.49.811.39.313.6

39

i R Packages

= The function library can also be used to list all the available
libraries on Kour system with a short description. Run the

function without any arguments
> library()
Packages in library 'C:/PROGRA~1/R/R-25~1.0/library':
base The R Base Package
Boot Bootstrap R (S-Plus) Functions (Canty)
class Functions for Classification
cluster Cluster Analysis Extended Rousseeuw et al.
codetools Code Analysis Tools for R
datasets The R Datasets Package
DBI R Database Interface
foreign Read Data Stored by Minitab, S, SAS,

SPSS, Stata, Systat, dBase, ...
graphics The R Graphics Package

40

i R Packages

install = function() {
install.packages(c("moments","graphics”,"Rcmdr”,"hexbin"),
repos="http://lib.stat.cmu.edu/R/CRAN")

}
install()

41

i R Conflicting objects

= [t is not recommended to do, but R allows the user to give
an object a name that already exists. If you are not sure if
a name already exists, just enter the name in the R console
and see if R can find it. R will look for the object in all the
libraries (packages) that are currently attached to the R
system. R will not warn you when you use an existing
name.

> mean = 10
> mean
[1] 10
= The object mean already exists in the base package, but is
now masked by your object mean. To get a list of all

masked objects use the function conflicts.
>

[1] |Ibody<_|| Ilmeanll
42

i R Conflicting objects

The object mean already exists in the base package, but is
now masked by your object mean. To get a list of all
masked objects use the function conflicts.

> conflicts()
[1] "body<-" "mean"

You can safely remove the object mean with the function
rm() without risking deletion of the mean function.

Calling rm() removes only objects in your working
environment by default.

43

i Source Codes

you can have input come from a script file (a file
containing R commands) and direct output to a
variety of destinations.

Input

The source() function runs a script in the current
session. If the filename does not include a path,
the file is taken from the current working directory.

input a script
source("myfile")

44

Output

Output

The sink() function defines the direction of the
output.

direct output to a file
sink("myfile", append=FALSE, split=FALSE)

return output to the terminal
sink()

45

Output

e append option controls whether output
overwrites or adds to a file.

The split option determines if output is also sent to
the screen as well as the output file.
Here are some examples of the sink() function.

output directed to output.txt in c:\projects directory.

output overwrites existing file. no output to terminal.
sink("myfile.txt", append=TRUE, split=TRUE)

46

Graphs

To redirect graphic output use one of the following
functions. Use dev.off() to return output to the
terminal.

Function Output to
pdf(**'mygraph.pdf') pdf file
win.metafile(**mygraph.wmf*") windows metafile
png(**'mygraph.png"’) png file
Jpeg(*'mygraph.jpg™) jpeg file
bmp(**'mygraph.bomp™’) bmp file
postscript(**'mygraph.ps™) postscript file

47

i Redirecting Graphs

example - output graph to jpeg file
jpeg("c:/mygraphs/myplot.jpg")

plot(x)
dev.off()

48

i Reusing Results

One of the most useful design features of R is that
the output of analyses can easily be saved and
used as input to additional analyses.

Example 1
Im(mpg~wt, data=mtcars)

This will run a simple linear regression of miles per
gallon on car weight using the dataframe mtcars.
Results are sent to the screen. Nothing is saved.

49

Reusing Results

Example 2
fit <- Im(mpg~wt, data=mtcars)

This time, the same regression is performed but the
results are saved under the name fit. No output is

sent to the screen. However, you now can
manipulate the results.

str(fit) # view the contents/structure of "fit"

The assignment has actually created a list called "fit"
that contains a wide range of information
(including the predicted values, residuals,
coefficients, and more.

50

http://www.statmethods.net/input/datatypes.html

i Reusing Results

plot residuals by fitted values
plot(fit$residuals, fit$fitted.values)

To see what a function returns, look at the value
section of the online help for that function. Here
we would look at help(Iim).

The results can also be used by a wide range of
other functions.

produce diagnostic plots
plot(fit)

51

!L Lecture 2: Data Input

‘.h Outline

= Data Types

« Importing Data
= Keyboard Input
= Database Input
= Exporting Data

= Viewing Data

= Variable Labels
= Value Labels

= Missing Data

= Date Values

53

i Data Types

R has a wide variety of data types
including scalars, vectors
(numerical, character, logical),
matrices, dataframes, and lists.

54

i Vectors

a <-c(1,2,5.3,6,-2,4) # numeric vector
b <- c("one","two","three") # character vector

c <- ¢(TRUE, TRUE, TRUE,FALSE, TRUE,FALSE)
#logical vector

Refer to elements of a vector using subscripts.
a[c(2,4)] # 2nd and 4th elements of vector

55

Matrices

All columns in @ matrix must have the same mode(numeric,
character, etc.) and the same length.

The general format is

mymatrix <- matrix(vector, nrow=r, ncol=¢
byrow=FALSE,dimnames=list(char_vector_rownames
, char_vector_colnames))

byrow=TRUE indicates that the matrix should be filled by
rows. byrow=FALSE indicates that the matrix should
be filled by columns (the default). dimnames provides
optional labels for the columns and rows.

56

i Matrices

generates 5 x 4 numeric matrix
y<-matrix(1:20, nrow=>5,ncol=4)
another example
cells <- ¢(1,26,24,68)
rnames <- ¢("R1", "R2")
cnames <- ¢("C1", "C2")
mymatrix <- matrix(cells, nrow=2, ncol=2,
byrow=TRUE, dimnames=list(rnames, cnames))

#Identify rows, columns or elements using subscripts.

X[,4] # 4th column of matrix
X[3,] # 3rd row of matrix
X[2:4,1:3] # rows 2,3,4 of columns 1,2,3

57

i Arrays

Arrays are similar to matrices but can have more
than two dimensions. See help(array) for
details.

58

i Data frames

A data frame is more general than a matrix, in
that different columns can have different
modes (numeric, character, factor, etc.).

d <-c(1,2,3,4)

e <- c("red", "white", "red", NA)
f <- ¢(TRUE, TRUE, TRUE,FALSE)
mydata <- data.frame(d,e,f)

names(mydata) <- c("ID","Color","Passed")
#variable names

59

i Data frames

There are a variety of ways to identify the elements of a
dataframe .

myframe[3:5] # columns 3,4,5 of dataframe
myframe[c("ID","Age")] # columns ID and Age from dataframe
myframe$X1 # variable x1 in the dataframe

60

i Lists

An ordered collection of objects (components). A list
allows you to gather a variety of (possibly
unrelated) objects under one name.

example of a list with 4 components -
a string, a numeric vector, a matrix, and a scaler
w <- list(hame="Fred", mynumbers=a,
mymatrix=y, age=>5.3)

example of a list containing two lists
v <- c(list1,list2)

61

i Lists

Identify elements of a list using the [[]] convention.
mylist[[2]] # 2nd component of the list

62

Factors

Tell R that a variable is nominal by making it a factor. The
factor stores the nominal values as a vector of integers in the
range [1... k] (where k is the humber of unique values in the
nominal variable), and an internal vector of character strings
(the original values) mapped to these integers.

variable gender with 20 "male" entries and

30 "female" entries
gender <- c(rep("male",20), rep("female", 30))
gender <- factor(gender)

stores gender as 20 1s and 30 2s and associates
1=female, 2=male internally (alphabetically)

R now treats gender as a nominal variable
summary(gender)
63

‘_L Useful Functions

length(object) # number of elements or components
str(object) # structure of an object

class(object) # class or type of an object
names(object) # names

c(object,object,...) # combine objects into a vector
cbind(object, object, ...) # combine objects as columns
rbind(object, object, ...) # combine objects as rows
Is() # list current objects

rm(object) # delete an object

newobject <- edit(object) # edit copy and save a nhewobject
fix(object) # edit in place

64

i Importing Data

Importing data into R is fairly simple.
For Stata and Systat, use the foreign package.

For SPSS and SAS I would recommend the Hmisc
package for ease and functionality.

See the Quick-R section on packages, for
information on obtaining and installing the these
packages.

Example of importing data are provided below.

65

http://cran.r-project.org/web/packages/foreign/index.html
http://cran.r-project.org/web/packages/Hmisc/index.html
http://www.statmethods.net/interface/packages.html

From A Comma Delimited
Text File

first row contains variable names, comma is
separator

assign the variable /dto row names
note the / instead of \ on mswindows systems

mydata <- read.table("c:/mydata.csv",
header=TRUE, sep=",", row.names="id")

66

i From EXxcel

The best way to read an Excel file is to export it to a
comma delimited file and import it using the
method above.

On windows systems you can use the RODBC
package to access Excel files. The first row should
contain variable/column names.

first row contains variable names

we will read in workSheet mysheet
library(RODBC)
channel <- odbcConnectExcel("c:/myexel.xIs")
mydata <- sqglFetch(channel, "mysheet")
odbcClose(channel) 67

i From SAS

= # save SAS dataset in trasport format
libname out xport 'c:;/mydata.xpt’;
data out.mydata;
set sasuser.mydata;
run;

= library(foreign)
#bsl=read.xport("mydata.xpt")

68

i Keyboard Input

Usually you will obtain a dataframe by importing it
from SAS, SPSS, Excel, Stata, a database, or an
ASCII file. To create it interactively, you can do
something like the following.

create a dataframe from scratch
age <- c(25, 30, 56)
gender <- c("male"”, "female"”, "male")
weight <- ¢(160, 110, 220)
mydata <- data.frame(age,gender,weight)

69

http://www.statmethods.net/input/importingdata.html

i Keyboard Input

You can also use R's built in spreadsheet to enter the
data interactively, as in the following example.

enter data using editor
mydata <- data.frame(age=numeric(0),
gender=character(0), weight=numeric(0))
mydata <- edit(mydata)
note that without the assignment in the line
above,
the edits are not saved!

70

‘_h Exporting Data

There are numerous methods for exporting R objects
into other formats . For SPSS, SAS and Stata. you
will need to load the foreign packages. For Excel,
you will need the xlsReadWrite package.

71

http://cran.r-project.org/web/packages/foreign/index.html
http://cran.r-project.org/web/packages/xlsReadWrite/index.html

i Exporting Data

To A Tab Delimited Text File
write.table(mydata, "c:/mydata.txt", sep="\t")
To an Excel Spreadsheet

library(xIsReadWrite)
write.xls(mydata, "c:/mydata.xlIs")

To SAS

library(foreign)
write.foreign(mydata, "c:/mydata.txt",
"c:/mydata.sas”, package="SAS")

72

i Viewing Data

There are a number of functions for listing the
contents of an object or dataset.

list objects in the working environment

s()

list the variables in mydata
names(mydata)

list the structure of mydata
str(mydata)

list levels of factor v1 in mydata
levels(mydata$vl)

dimensions of an object
dim(object) 73

i Viewing Data
There are a number of functions for listing the

contents of an object or dataset.

class of an object (numeric, matrix, dataframe, etc)
class(object)

print mydata
mydata

print first 10 rows of mydata

nead(mydata, n=10)

print last 5 rows of mydata
tail(mydata, n=5)

74

‘_L Variable Labels

R's ability to handle variable labels is somewhat
unsatisfying.

If you use the Hmisc package, you can take
advantage of some labeling features.

library(Hmisc)
label(mydata$myvar) <- "Variable label for variable
myvar"
describe(mydata)

75

http://cran.r-project.org/web/packages/Hmisc/index.html

i Variable Labels

Unfortunately the label is only in effect for functions
provided by the Hmisc package, such as
describe(). Your other option is to use the variable
label as the variable name and then refer to the
variable by position index.

names(mydata)[3] <- "This is the label for variable 3"
mydata[3] # list the variable

76

i Value Labels

To understand value labels in R, you need to understand
the data structure factor.

You can use the factor function to create your own value
lables.

variable vl is coded 1, 2 or 3

we want to attach value labels 1=red, 2=blue,3=green
mydata$vl <- factor(mydata$vi,
levels = ¢(1,2,3),
labels = c("red", "blue", "green"))

variableyiscoded 1, 3 or 5

we want to attach value labels 1=Low, 3=Medium, 5=High77

http://www.statmethods.net/input/datatypes.html

i Value Labels

mydata$vl <- ordered(mydatasy,
levels = ¢(1,3, 5),
labels = c("Low", "Medium", "High"))

Use the factor() function for nominal data and the
ordered() function for ordinal data. R statistical
and graphic functions will then treat the data
appropriately.

Note: factor and ordered are used the same way, with

the same arguments. The former creates factors
and the later creates ordered factors.

78

i Missing Data

In R, missing values are represented by the symbol
NA (not available) . Impossible values (e.g.,
dividing by zero) are represented by the symbol
NaN (not a number). Unlike SAS, R uses the same
symbol for character and numeric data.

Testing for Missing Values

is.na(x) # returns TRUE of x is missing
y <-¢(1,2,3,NA)
is.na(y) # returns a vector (FF FT)

79

i Missing Data

Recoding Values to Missing

recode 99 to missing for variable v1

select rows where v1 is 99 and recode column v1
mydata[mydata$v1==99,"v1"] <- NA

Excluding Missing Values from Analyses
Arithmetic functions on missing values yield missing

values.
X <-c(1,2,NA,3)
mean(Xx) # returns NA

mean(x, na.rm=TRUE) # returns 2

80

i Missing Data
The function complete.cases() returns a logical

vector indicating which cases are complete.

list rows of data that have missing values
mydata[!complete.cases(mydata),]

The function na.omit() returns the object with
listwise deletion of missing values.

create new dataset without missing data
newdata <- na.omit(mydata)

81

i Missing Data

Advanced Handling of Missing Data

Most modeling functions in R offer options for dealing
with missing values. You can go beyond pairwise
of listwise deletion of missing values through
methods such as multiple imputation. Good
implementations that can be accessed through R
include Amelia II, Mice, and mitools.

82

http://gking.harvard.edu/amelia/
http://web.inter.nl.net/users/S.van.Buuren/mi/hmtl/mice.htm
http://cran.us.r-project.org/web/packages/mitools/index.html

i Date Values

Dates are represented as the number of days
since 1970-01-01, with negative values for
earlier dates.

use as.Date() to convert strings to dates
mydates <- as.Date(c("2007-06-22", "2004-02-13"))

number of days between 6/22/07 and 2/13/04
days <- mydates[1] - mydates[2]

Sys.Date() returns today's date.

Date() returns the current date and time.

83

‘_L Date Values

The following symbols can be used with the
format() function to print dates.

Symbol Meaning

%d day as a number (0-31)
%a abbreviated weekday
%A unabbreviated weekday
%m month (00-12)

%b abbreviated month
%B unabbreviated month
%y 2-digit year

%Y 4-digit year

Example
01-31

Mon
Monday

00-12

Jan
January

07
2007

84

‘_h Date Values

print today's date
today <- Sys.Date()

format(today, format="%B %d %Y")
"June 20 2007"

85

Lecture 3: Data

!'_ Manipulation

Outline

Creating New Variable
Operators

Built-in functions
Control Structures
User Defined Functions
Sorting Data

Merging Data
Aggregating Data
Reshaping Data
Sub-setting Data

Data Type Conversions

87

i Introduction

Once you have access to your data, you will
want to massage it into useful form. This
includes creating new variables (including
recoding and renaming existing variables),
sorting and_merging datasets, aggregating
data, reshaping data, and subsetting datasets
(including selecting observations that meet
criteria, randomly sampling observation, and
dropping or keeping variables).

88

http://www.statmethods.net/input/index.html
http://www.statmethods.net/management/variables.html
http://www.statmethods.net/management/sorting.html
http://www.statmethods.net/management/merging.html
http://www.statmethods.net/management/aggregate.html
http://www.statmethods.net/management/reshape.html
http://www.statmethods.net/management/subset.html

i Introduction

Each of these activities usually involve the use of
R's built-in operators (arithmetic and logical)
and functions (numeric, character, and
statistical). Additionally, you may need to use
control structures (if-then, for, while, switch)
in your programs and/or create your own
functions. Finally you may need to convert
variables or datasets from one type to another
(e.g. numeric to character or matrix to
dataframe).

89

http://www.statmethods.net/management/operators.html
http://www.statmethods.net/management/functions.html
http://www.statmethods.net/management/controlstructures.html
http://www.statmethods.net/management/userfunctions.html
http://www.statmethods.net/management/typeconversion.html

Creating new variables

= Use the assignment operator <- to create new
variables. A wide array of operators and functions are
available here.

= # Three examples for doing the same computations

mydata$sum <- mydata$xl + mydata$x2
mydata$mean <- (mydata$x1l + mydata$x2)/2

attach(mydata)

mydatagsum <- x1 + x2
mydata$mean <- (x1 + x2)/2
detach(mydata)

= Mmydata <- transform(mydata,
sum = x1 + X2,
mean = (x1 + x2)/2

)

90

http://www.statmethods.net/management/operators.html
http://www.statmethods.net/management/functions.html

‘.h Creating new variables

Recoding variables

= In order to recode data, you will probably use
one or more of R's control structures.

= # create 2 age categories
mydata$agecat <- ifelse(mydata$age > 70,
c("older"), c("younger"))
another example: create 3 age categories
attach(mydata)
mydata$agecat[age > 75] <- "Elder"
mydata$agecat[age > 45 & age <= 75] <-
"Middle Aged"
mydata$agecat[age <= 45] <- "Young"
detach(mydata)

91

http://www.statmethods.net/management/controlstructures.html

Creating new variables

Recoding variables

= In order to recode data, you will probably use one or
more of R's control structures.

= # create 2 age categories
mydata$agecat <- ifelse(mydata$age > 70,
c("older"), c("younger"))

another example: create 3 age categories
attach(mydata)

mydata$agecat[age > 75] <- "Elder"
mydata$agecat[age > 45 & age <= 75] <- "Middle
Aged"
mydata$agecat[age <= 45] <- "Young"
detach(mydata)

92

http://www.statmethods.net/management/controlstructures.html

Creating new variables

Renaming variables

= You can rename variables programmatically or
interactively.

= # rename interactively
fix(mydata) # results are saved on close

rename programmatically
library(reshape)
mydata <- rename(mydata, c(oldname="newname"))

you can re-enter all the variable names in order

changing the ones you need to change. The limitation
is that you need to enter all of them!

names(mydata) <- c("x1","age","y", "ses")

93

i Arithmetic Operators

Operator
+

*

/
X %% y
X %/% Yy

Description

addition

subtraction

multiplication

division

exponentiation

modulus (x mod y) 5%%2 is 1
Integer division 5%/%2 is 2

94

i Logical Operators

Operator

isTRUE(X)

Description

less than

less than or equal to
greater than

greater than or equal to
exactly equal to

not equal to

Not X

XORYy

XAND vy

test if x is TRUE

95

Control Structures

= R has the standard control structures you
would expect. expr can be multiple
(compound) statements by enclosing them in
braces { }. It is more efficient to use built-in
functions rather than control structures
whenever possible.

96

Control Structures

« if-else
=« if (cond) expr
if (cond) exprl else expr’?
« for
« for (varin seq) expr
« While
= While (cond) expr
= switch
= switch(expr, ...)
« ifelse
« ifelse(test, yes, no)

97

Control Structures

= # transpose of a matrix
a poor alternative to built-in t() function

mytrans <- function(x) {
if (lis.matrix(x)) {
warning("argument is not a matrix: returning NA")
return(NA_real_)
)
y <- matrix(1, nrow=ncol(x), ncol=nrow(x))
for (i in 1:nrow(x)) {
for (j in 1:ncol(x)) {
yO,il <- x[i,j]
)
)
return(y)

¥

98

Control Structures

= Htryit
z <- matrix(1:10, nrow=5, ncol=2)
tz <- mytrans(z)

99

i R built-in functions

Almost everything in R is done
through functions. Here I'm only
referring to numeric and character
functions that are commonly used in
creating or recoding variables.

Note that while the examples on this
page apply functions to individual
variables, many can be applied to
vectors and matrices as well.

100

i Numeric Functions

Function

abs(x)

sqrt(x)

ceiling(x)

floor(x)

trunc(x)

round(x, digits=n)
signif(x, digits=n)
cos(x), sin(x), tan(x)
log(x)

log10(x)

exp(x)

Description

absolute value

square root

ceiling(3.475) is 4
floor(3.475) is 3

trunc(5.99) is 5

round(3.475, digits=2) is 3.48
signif(3.475, digits=2) is 3.5
also acos(x), cosh(x), acosh(x), etc.
natural logarithm

common logarithm

e\X

101

Character Functions

Function

substr(x, start=n1, stop=n2)

grep(pattern, x ,
ignore.case=FALSE, fixed=FALSE)

sub(pattern, replacement, X,
ignore.case =FALSE, fixed=FALSE)

strsplit(x, split)

paste(..., sep=""")

toupper(x)

tolower(x)

Description

Extract or replace substrings in a character vector.
X <- "abcdef"

substr(x, 2, 4) is "bcd"

substr(X, 2, 4) <- "22222" is "a222ef"

Search for pattern in x. If fixed =FALSE then pattern is a regular expression. If
fixed=TRUE then pattern is a text string. Returns matching indices.
grep("A", c("b","A","c"), fixed=TRUE) returns 2

Find pattern in x and replace with replacement text. If fixed=FALSE then pattern is
a regular expression.

If fixed =T then pattern is a text string.

sub(*\\s",".","Hello There") returns "Hello.There"

Split the elements of character vector x at split.

strsplit(“"abc™, ") returns 3 element vector "a","b","c"

Concatenate strings after using sep string to seperate them.
paste("x",1:3,sep="") returns c("x1","x2" "x3")
paste(*'x",1:3,sep="M") returns c("xM1","xM2" "xM3")
paste(*"Today is", date())

Uppercase

Lowercase

http://regexlib.com/CheatSheet.aspx
http://www.ilovejackdaniels.com/regular_expressions_cheat_sheet.pdf

i Stat/Prob Functions

= The following table describes functions related
to probaility distributions. For random number
generators below, you can use set.seed(1234)
or some other integer to create reproducible
pseudo-random numbers.

103

Function Description

dnorm(x) normal density function (by default m=0 sd=1)
plot standard normal curve
X <- pretty(c(-3,3), 30)
y <- dnorm(x)
plot(x, y, type="l', xlab="Normal Deviate", ylab="Density", yaxs="i")

pnorm(q) cumulative normal probability for g
(area under the normal curve to the right of q)
pnorm(1.96) is 0.975

gnorm(p) normal quantile.
value at the p percentile of normal distribution
gnorm(.9) is 1.28 # 90th percentile

rnorm(n, m=0,sd=1) n random normal deviates with mean m
and standard deviation sd.
#50 random normal variates with mean=50, sd=10
X <- rnorm(50, m=50, sd=10)

dbinom(x, size, prob) binomial distribution where size is the sample size
pbinom(q, size, prob) and prob is the probability of a heads (pi)
gbinom(p, size, prob) # prob of 0 to 5 heads of fair coin out of 10 flips
rbinom(n, size, prob) dbinom(0:5, 10, .5)

prob of 5 or less heads of fair coin out of 10 flips
pbinom(5, 10, .5)

dpois(x, lamda) poisson distribution with m=std=lamda

ppois(g, lamda) #probability of 0,1, or 2 events with lamda=4

gpois(p, lamda) dpois(0:2, 4)

rpois(n, lamda) # probability of at least 3 events with lamda=4
1- ppois(2,4)

dunif(x, min=0, max=1) uniform distribution, follows the same pattern

punif(g, min=0, max=1) as the normal distribution above.

qgunif(p, min=0, max=1) #10 uniform random variates

runif(n, min=0, max=1) X <- runif(10) 104

Function Description

mean(x, trim=0, mean of object x

na.rm=FALSE) # trimmed mean, removing any missing values and
5 percent of highest and lowest scores
mx <- mean(x,trim=.05,na.rm=TRUE)

sd(x) standard deviation of object(x). also look at var(x) for variance and mad(x) for median absolute
deviation.

median(x) median

quantile(x, probs) quantiles where x is the numeric vector whose quantiles are desired and probs is a numeric vector with

probabilities in [0,1].
30th and 84th percentiles of x
y <- quantile(x, c(.3,.84))

range(x) range

sum(x) sum

diff(x, lag=1) lagged differences, with lag indicating which lag to use
min(x) minimum

max(x) maximum

scale(x, center=TRUE, column center or standardize a matrix.

scale=TRUE)

105

i Other Useful Functions

Function Description

seq(from, to, by) generate a sequence
indices <- seq(1,10,2)
#indicesisc(l, 3,5,7,9)

rep(x, ntimes) repeat X n times
y <-rep(1:3, 2)
#yisc(l,2,3,1,2,3)

cut(x, n) divide continuous variable in factor with n levels
y <- cut(x, 5)

106

orting

iS

= To sort a dataframe in R, use the order() function. By

default, sorting is ASCENDING. Prepend the sorting

variable by a minus sign to indicate DESCENDING order.
Here are some examples.

sorting examples using the mtcars dataset
data(mtcars)

sort by mpg

newdata = mtcars[order(mtcars$mpg),]

sort by mpg and cyl

newdata <- mtcars[order(mtcars$mpg, mtcars$cyl),]
#sort by mpg (ascending) and cyl (descending)
newdata <- mtcars[order(mtcars$mpg, -mtcarsscyl),]

107

erging

iM

To merge two dataframes (datasets) horizontally, use the
merge function. In most cases, you join two
dataframes by one or more common key variables (i.e.,
an inner join).

merge two dataframes by ID
total <- merge(dataframeA,dataframeB,by="ID")

merge two dataframes by ID and Country

total <-
merge(dataframeA,dataframeB,by=c("ID","Country"))

108

erging

iM

ADDING ROWS

To join two dataframes (datasets) vertically, use the rbind
function. The two dataframes must have the same
variables, but they do not have to be in the same order.

total <- rbind(dataframeA, dataframeB)

If dataframeA has variables that dataframeB does not, then either:

Delete the extra variables in dataframeA or

Create the additional variables in dataframeB and set them to NA
(missing)

before joining them with rbind.

109

http://www.statmethods.net/management/subset.html
http://www.statmethods.net/input/missingdata.html

i Aggregating

= Itis relatively easy to collapse data in R
using one or more BY variables and a
defined function.

= # aggregate dataframe mtcars by cyl and vs,
returning means
for numeric variables
attach(mtcars)
aggdata <-aggregate(mtcars, by=list(cyl),
FUN=mean, na.rm=TRUE)
print(aggdata)

= OR use apply

110

gregating

L

When using the aggregate() function,
the by variables must be in a list (even if
there is only one). The function can be
built-in or user provided.

See also:
summarize() in the Hmisc package
summaryBy() in the doBy package

111

http://cran.r-project.org/web/packages/Hmisc/index.html
http://www.statmethods.net/stats/descriptives.html
http://cran.r-project.org/web/packages/doBy/index.html

Data Type Conversion

= Type conversions in R work as you would
expect. For example, adding a character
string to a numeric vector converts all
the elements in the vector to character.

= Use is.foo to test for data type foo.
Returns TRUE or FALSE

Use as.foo to explicitly convert it.

= Is.numeric(), is.character(), is.vector(),
iIs.matrix(), is.data.frame()
as.numeric(), as.character(), as.vector(),
as.matrix(), as.data.frame)

112

UNIT-I

R Programming Language — Introduction

It was designed by Ross Ihaka and Robert Gentleman at the
University of Auckland, New Zealand, and is currently
developed by the R Development Core Team.

*R programming language is an implementation of the S
programming language

Why R Programming Language?

Free
Installation
Vast Hottest
Community Trend
Why
R?
Platform Ir?tegrate
With Other
Independent
Languages
Latest
Cutting Edge

Technology

Features of R Programming Language

Basic Statistics:

Static graphics:
Probability distributions:
Data analysis

\Vectors
Lists
Matrices
Arrays
Factors

Data Frames

R DATATYPES AND OBJECTS

\Vectors

« # Create a vector.

« apple <- c('red','green’,"yellow")
« print(apple)

» # Get the class of the vector.

» print(class(apple))

OUTPUT

 [1] "red" "green™ "yellow"

11
« [1] "character

LiIstsS

A list Is an R-object which can contain many different types of
elements inside it like vectors

Create a list.

listl <- list(c(2,5,3),21.3,sIn)
Print the list.

print(listl)

result

[1]]
11253
[2]]
1]21.3
[3]]

function (X) .Primitive("sin™)

Matrices

Create a matrix.

M =matrix(c(‘a','a’,'b’,'c','b’,'a"),nrow=2,ncol=3,byrow= TRUE)
print(M)

result

11 L2] [3

[1,] "a" "a" "b"

[2,] "c" "b" "a"

Arrays

While matrices are confined to two dimensions, arrays can be of
any number of dimensions.

Create an array.
a <- array(c(‘green','yellow"),dim=¢(3,3,2))
print(a)

result
11 [2]1 3]

1,] "green" "yellow" "green"
2,] "yellow" "green" "yellow"

3,] "green” "yellow" "green"

Factors

Factors are the r-objects which are created using a vector. It stores the vector along with
the distinct values of the elements in the vector as labels.

Create a vector.
apple_colors<- c(‘green’,'green’,'yellow','red','red’,'red’,'green")

Create a factor object.
factor_apple<- factor(apple_colors)

Print the factor.

print(factor_apple)

print(nlevels(factor_apple))

When we execute the above code, it produces the following result —
[1] green green yellow red redred green

Levels: green red yellow

[1] 3

Data Frames

Data frames are tabular data objects. Unlike a matrix in data frame each column can
contain different modes of data.

Create the data frame.

BMI <-data.frame(
gender =c('Male","Male","Female"),
height =¢(152,171.5,165),
weight =¢(81,93,78),

Age=c(42,38,26))

print(BMI)

When we execute the above code, 1t produces the following result —
gender height weight Age

1 Male 152.0 81 42

2 Male 1715 93 38

3 Female 165.0 78 26

READING AND WRITING DATAIN R

I'ead.table(), and read.csv(), for reading tabular data
readLines() for reading lines of a text file

source() for reading in R code files (inverse of dump)

dget() for reading in R code files (inverse of dput)

load() for reading in saved workspaces.

Writing Data to files

Following are few functions for writing (exporting) data to files.

write.table(), and write.csv() exports data to wider range of file format including
csv and tab-delimited.

writeLinest() write text lines to a text-mode connection.

dump() takes a vector of names of R objects and produces text representations of
the objects on a file (or connection). A dump file can usually be sourced into
another R session.

dput() writes an ASCII text representation of an R object to a file (or connection)
or uses one to recreate the object.

save() writes an external representation of R objects to the specified file.

Install R on windows

Step — 1" CGntn CRAN R nrniect \weheite

€-c

R Toe Compretemne R istee x

& ans-proEcton

+

The Comprehensive R Archive Network

{ownload and Install R

Precompiled binary deaributions of the base sysiem 20d comrbued packages, Windows and Mac sses most Scely want cse
of hess sersacns of R

o Dounioad R for Liux

o Douniood B for (Mach 08 X

* Dou Widow

= pan of meay Lmux distrbations, 700 should check with vour Limex package management svwtem @ addnion to te link
shove

Source Code for all Platfores
Windows mad Mac users most lskely wam % dowsload the precompiled bunaries listed = the spper box, zot the sowze code.
IThe scurces Rave 10 de compied before vou can e them If you éo poe know whar this meass, vou probably do sot wam %o do
!

o The latess release (019-07-05, Acticn of the Toea) R-3.6 Liaz gz, send what's new m the latest versice.

o Soerces of R alohs snd Serd relemies (daily snapslions. creaned only in tee persads bedoce a plamad release)

o Dady seapshots of curent panched and development versions are 3uaulable bare Please read shosst pew Satwres 20d buz
fixes bafore filing comespendeg feanere sequests o bug repors.

o Sowrce code of clder versmns of R 1 2vailable here
o Coatributed exrension packaass

Questions About R

o [fvou have questions sbout R like how to dounload and mtall the software, or nhiat the boense vetms are, plemse read cur
anamwers to fagaentl 38ked questons bedore you serd an el

https://cran.r-project.org/
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-cran-project.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-cran-project.png

Step — 2: Click on the Download R for Windows link .

Step — 3: Click on the base subdirectory link or install R for the first
time link.

Step — 4: Click Download R X.X.X for Windows (X.X.X stand for the latest version of R. eg:
3.6.1) and save the executable .exe file.

- 1 »

& ©

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/r-for-windows.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/r-for-windows.png

Step — 5: Run the .exe file and follow the installation instructions.

» 5.a. Select the desired language and then click Next.

Select Setup Language

instalation,

English

oK

Select the language to wse during the

Cancel

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-r-language-select.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-r-language-select.png

5.b. Read the license agreement and click Next.

i Setup - R for Windows 3.6.1 - X
Information)
Please read the following important information before continuing. R

When you are ready to continue with Setup, dick Mext.

| GMNU GEMERAL PUBLIC LICEMSE s
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin 5t, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GMNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
zeneral Public License applies to most of the Free Software W

LR P ST = SR B T T R ST~ ST e

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-r-terms-and-agreement.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-r-terms-and-agreement.png

5.c. Select the components you wish to install (it is recommended to install
all the components).

i Setup - R for Windows 3.6.1 - X
Select Components)
Which components should be installed? R

Select the companents you want to install; dear the components you do not want to
install. Clidk Mext when you are ready to continue.

IUser installation o
Core Files 86.0 MB
32-hit Files 43.6 MB
&4-hit Files 50.3 ME
Message translations 7.3 MB

Current selection requires at least 194, 3 ME of disk space.

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-r-components.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-r-components.png

5.d. Enter/browse the folder/path you wish to install R into and then
confirm by clicking Next

i5 Setup - R for Windows 3.6.1 - X

Select Start Menu Folder)
Where should Setup place the program's shortouts? R’

J Setup will create the program's shortcuts in the following Start Menu folder,
——

To continue, dick Mext. If you would like to select a different folder, didk Browse,

|ﬂ Browse...

[]Don't create a Start Menu folder

< Back Cancel

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/install-r-windows-folder-path.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/install-r-windows-folder-path.png

5.e. Select additional tasks like creating desktop shortcuts etc. then click Next

i5 Setup - R for Windows 3.6.1 - X

Select Additional Tasks)
Which additional tasks should be performed? R

Select the additional tasks you would like Setup to perform while installing R for
Windows 3.6. 1, then dick Mext,

Additional shortouts:

Create a desktop shortout

[] Create a Quick Launch shortout
Reqgistry entries:

Save version number in registry

Associate R with .RData files

< Back Cancel

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-r-additional-steps.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-r-additional-steps.png

5.f. Wait for the installation process to complete.

5 Setup - R for Windows 3.6.1 - X
Installing .
Please wait while Setup installs R for Windows 3.6, 1 an your computer, Q

Extracting files. ..
C:\Program Files\R\R-3.6. 1bin'xe\R.dl

Cancel

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-installation-progress.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-installation-progress.png

5.9. Click on Finish to complete the installation.

Completing the R for Windows
3.6.1 Setup Wizard

Setup has finished installing R. for Windaws 3.6.1 on your
computer, The application may be launched by selecting the
installed shortouts,

Click Finish to exit Setup.

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-installation-finish.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-windows-installation-finish.png

Install R Studio on Windows

© Cownioad RStedo - RSudio x o+

€ 29 C @ hips/irstudiocom/produsty/niudo/dowminad)

RStudio Desktop RStudio Desktop RStudio Server RStudio Server Pro

Open Source License Commercial License Open Source Liconse Commercial License

Free $995 Free $4,975 e

4 Named Users)

““

L muse | @ more Luarn more Evaluatiar L Ram mors

Integrated Toolsfor R v v v v
Priocity Support v v
Access via Web Browser v v
Enterprise Secunty v
Project Sharing v
Manage Multiple R Sessions

ge Multiple S5 W

&\Versigns

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-rstudio.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2019/11/installing-r-rstudio.png

Operator
+

*

/

Arithmetic Operators

Description
Addition
Subtraction

Multiplication
Division
Exponentiation

Logical Operators

Operator Description

< Less Than

> Greater Than

<= Less Than or Equal To

>= Greater Than or Equal To
== Exactly Equal To

= Not Equal To

la Not a

a&b aAND b

Types of Operators
We have the following types of operators in R programming —
« Arithmetic Operators
« Relational Operators
« Logical Operators
« Assignment Operators
« Miscellaneous Operators

Relational Operators

Following table shows the relational operators supported by R language. Each
element of the first vector is compared with the corresponding element of the
second vector. The result of comparison is a Boolean value(>,<,<=,>===,1=)

Logical Operators

Following table shows the logical operators supported by R language. It is
applicable only to vectors of type logical, numeric or complex. All numbers greater
than 1 are considered as logical value TRUE.

Each element of the first vector is compared with the corresponding element of
the second vector. The result of comparison is a Boolean value.(&,&&,||,],!)

UNIT-11
CONTROL STRUCTURES AND VECTORS

Control Structures

Control structures in R allow you to control the flow of execution of a series of R
expressions. Basically, control structures allow you to put some “logic” into your R
code, rather than just always executing the same R code every time.

if and else: testing a condition and acting on it

for: execute a loop a fixed number of times

while: execute a loop while a condition is true

repeat: execute an infinite loop (must break out of it to stop)
break: break the execution of a loop

next: skip an interation of a loop

IF AND ELSE

if(<condition>) {

do something

}else {

do something else

}

For loop
for(iin1:10) {
print(i)
¥
Nested for loop
X <-matrix(1:6, 2, 3)
for(iinseq_len(nrow(x))) {
for(j inseq_len(ncol(x))) {
print(x[i, jI)

}

}
While loop

count <-0

>while(count <10) {
+print(count)

+ count <- count +1

+}

repeat
X0 <-1
tol<-1e-8
repeat {
X1 <-computeEstimate()
If(abs(x1 - x0) <tol) { ## Close enough?
break
}else {

X0 <- x1

next, break

next is used to skip an iteration of a loop.
for(iin1:100) {

if(i<=20) {

Skip the first 20 iterations

next

h
Do something here

}

Vectors
A vector is simply a list of items that are of the same type

\ector operations
1)create

2)access

3)modify

4)delete

Vector of strings

fruits <- c("banana", "apple", "orange")

Print fruits
fruits

Vector with numerical decimals in a sequence
numbersl <- 1.5:6.5
numbersl

Vector with numerical decimals in a sequence where the last element is not used
numbers2 <- 1.5:6.3
numbers2

UNIT-111
LISTS

LIST OPERATIONS

1)CREATE

2)ACCESS ELEMENTS FROM GIVEN LIST

3)MODIFY

4)DELETE

R — Lists

A list in R is a generic object consisting of an ordered collection of objects. Lists are

one-dimensional, heterogeneous data structures. The list can be a list of vectors, a
list of matrices, a list of characters and a list of functions, and so on.

Creating a list by naming all its components
empld =c(1, 2, 3, 4)
empName = c("Debi", "Sandeep", "Subham", "Shiba")
numberOfEmp =4
empList = list(
"ID" = empld,
"Names" = empName,
"Total Staff" = numberOfEmp

)
print(empList)

list = c(list, listl)
list = the original list
listl = the new list

Example:

R

R program to edit

components of a list

Creating a list by naming all its components
empld =c(1, 2, 3, 4)
empName = c("Debi", "Sandeep", "Subham", "Shiba")
numberOfEmp =4
empList = list(
"ID" = empld,
"Names" = empName,
"Total Staff" = numberOfEmp

)

cat("Before concatenation of the new list\n")
print(empList)

Creating another list
empAge = c(34, 23, 18, 45)
empAgeList = list(

"Age" = empAge
)

Concatenation of list using concatenation operator
empList = c(empList, empAgeL.ist)

cat("After concatenation of the new list\n")
print(empList)

UNIT-IV
FACTORS

R factors
The factor is a data structure which is used for fields which take only predefined
finite number of values. These are the variable which takes a limited number of

different values.

How to create a Factor?

How to access components
of a Factor?

Changing the order of Levels

Generating Factor levels

Y

How to modify a Factor?

Factor in Drata Frame

Attributes of Factor

Attributes of a factor

" Attributes
- of Factor / ELEE

How to create a factor?

In R, it is quite simple to create a factor. A factor is created in two steps
In the first step, we create a vector.

Next step is to convert the vector Into a factor

Creating a vector as input.

data <-
c("Shubham","Nishka","Arpita","Nishka","Shubham","Sumit","Nishka","Shubham","Su
mit","Arpita","Sumit")

print(data)
print(is.factor(data))

Applying the factor function.
factor_data<- factor(data)

print(factor_data)
print(is.factor(factor_data))

FACTOR OPERATIONS

1)CREATE
2)ACCESS
3)MODIFY
4)DELETE

R Functions

A set of statements which are organized together to perform a specific task is
known as a function. R provides a series of in-built functions.

steps

Written to carry out a specified task.

May or may not have arguments

Contain a body in which our code is written.

May or may not return one or more output values

syntax

func_name <- function(arg_1, arg_2, ...) {
Function body

}

UNIT-V
OOP CONCEPTS

What is Object-Oriented Programming in R?

Object-Oriented Programming (OOP) is the most popular programming
language. With the help of oops concepts, we can construct the modular
pieces of code which are used to build blocks for large systems. R is a
functional language, and we can do programming in oops style. In R, oops
is a great tool to manage the complexity of larger programs

S4 CLASES
S3 CLASSES

TYPES OF OOP

Inheritance Objects

Encapsulation Object Oriented Classes
Programming

Abstraction Polymorphism

S3

In oops, the S3 is used to overload any function. So that we can call the functions
with different names and it depends on the type of input parameter or the number of
parameters.

Play Videox
S4

S4 is the most important characteristic of oops. However, this is a limitation, as it is
quite difficult to debug. There is an optional reference class for S4.

Inheritance in S3

Inheritance means extracting the features of one class into another class. In the
S3 class of R, inheritance is achieved by applying the class attribute in a vector.

EXAMPLE
class(Objet) <- c(child, parent)
SO,

create a list

fac <-
list(name="Shubham", age=22, GPA=3.5, country="India")

make it of the class InternationalFaculty which is derived from
the class Faculty

class(fac) <- c("InternationalFaculty","Faculty")
print it out
fac

ER Command Prompt - O X

C:\Users\ajeet\R>Rscript class.R
$name
[1] "Shubham"”

country
1] "India"

[1] ﬂiﬂterwatiuﬂalFaculty“ "Faculty”

C:\Users\ajeet\R>

Creating S4 objects using a generator function

The setClass() function returns a generator function. This generator function helps in
creating new objects. And it acts as a constructor.

A <-

setClass("faculty", slots=list(name="character", age="numeric", GPA="numeric"))

A

BN Rtermn (B4-hit) — a =

‘help.start()' for an HTML browser interface to help.
Type 'g()’ to guit R.

[Previously saved workspace restored]

> A <- setClass(
GPA="nu%

» A

class generator function for class "faculty” from package '.GlobalEnv'

“character”, age="numeric",

= o

function (

new("faculty™, ...)

3
#
-

Inheritance in S4 class

Step 1:

In the first step, we will create or define class with appropriate slots in the
following way:

setClass("faculty", slots=list(hame="character", age="numeric", GPA="numeri
c’))

Step 2:

After defining class, our next step is to define class method for the display()
generic function. This will be done in the following manner:

EXAMPLE:

setMethod("'show", "faculty", function(obj) {

cat(obj@name, "\n")

cat(obj@age, "years old\n")

cat("GPA:", obj@GPA, "\n")

¥

