AM3209PE: COMPUTER VISION

AM3209PE: COMPUTER VISION (PROFESSIONAL ELECTIVE –III)

Course Code	Category	Hours/Weak		Credits	Max Marks			
AM3209PE	Core	L	Т	P	C	CIE	SEE	Total
		3	0	0	3	25	75	100
Contact Classes:45	Tutorial classes:15	Practical classes: Nill				Total Classes:60		

Course Objectives

- To study the development of algorithms and techniques to analyze and interpret the visible worldaround us.
- Be familiar with both the theoretical and practical aspects of computing with images.
- To understand the basic concepts of Computer Vision.
- Understand the geometric relationships between 2D images and the 3D world.

Course Outcomes

- Understand the fundamental problems of computer vision.
- Implement various techniques and algorithms used in computer vision.
- Analyze and evaluate critically the building and integration of computer vision algorithms.
- Demonstrate awareness of the current key research issues in computer vision.

UNIT - I

Overview, computer imaging systems, lenses, Image formation and sensing, Image analysis, pre-processing and binary image analysis.

UNIT – II

Edge detection, Edge detection performance, Hough transform, corner detection.

UNIT - III

Segmentation, Morphological filtering, Fourier transform.

UNIT - IV

Feature extraction, shape, histogram, color, spectral, texture, using CVIP tools, Feature analysis, feature vectors, distance/similarity measures, data pre-processing.

UNIT – V

Dimensionality Reduction: PCA, LDA, ICA, and Non-parametric methods.

Books and References

- 1. Computer Vision: Algorithms and Applications by Richard Szeliski.
- 2. Deep Learning, by Goodfellow, Bengio, and Courville.
- 3. Dictionary of Computer Vision and Image Processing, by Fisheretal.