

NARSIMHA REDDY ENGINEERING COLLEGE UGC AUTONOMOUS INSTITUTION

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade Approved by **AICTE** Permanently affiliated to **JNTUH**

Unit Wise Question Bank

Unit I

S No.	Questions			
	Short Answer Questions			
1	Define elasticity and plasticity?			
2	State Hooke's law with equation?			
3	Define the terms Factor of Safety and Poisson's ratio?			
4	What is the difference between Resilience and Proof Resilience?			
5	What are the practical applications of impact loads?			
6	Define Poisson's ratio, modulus of elasticity, bulk modulus, modulus of rigidity.			
7	What do you mean by St. Venant's Principle?			
	Long Answer Questions			
8	A load 'P' is suspended from two rods as shown in figure 1. The rod AC is of steel having			
	a circular c/s 30 mm in diameter, and an allowable stress of 160 MN/m ² ; The rod BC is of			
	Aluminium having diameter 40 mm and allowable stress of 60 MN/m ² . What is the			
	maximum load P which can be suspended from these rods?			
	A B			
9	Define and derive the relation between the various elastic constants?			
10	A weight of 30 kN is supported by two brass rods and a steel rod each 10 mm in diameter			
	and symmetrically placed as shown in Figure.1. When unloaded, each rod is 1 m long.			
	Assuming E for steel and brass as 205 kN/mm^2 and 102 kN/mm^2 respectively, find the			
	load carried by each rod. Also determine elongation of each rod.			
	Brass I m W=30 kN			

11	A steel tube of 30 mm external diameter and 20 mm internal diameter encloses a copper				
	rod of 15 mm diameter to which it is rigidly joined at each end. If at a temperature of 10^{0} C				
	there is no longitudinal stress, calculate the stresses in the rod and tube when the				
	temperature is raised by 200° C.Take E for steel and copper as 2.1 x 10^{5} N/mm ² and 1 x 10^{5}				
	N/mm ² . Coefficient of thermal expansion for steel and copper are given as $11 \times 10^{-6} / {}^{0}C$				
	and $18 \ge 10^{-6} / {}^{0}$ C.				
12	Explain different types of stresses and strains. Derive an expression for strain energy				
	stored in a body when the load is applied with an impact.				
13	A load of 100 N falls through a height of 2 cm on to a collar rigidly attached to the lower				
	end of a vertical bar 1.5 m long and o <mark>f 1.5 c</mark> m ² cross-sectional area. The upper end of the				
	vertical bar is fixed.				
	determine				
	(i) maximum instantaneous stress induced in the vertical bar				
	(ii) maximum instantaneous elongation, and				
	(iii) strain energy stored in the vertical rod.				
14	A reinforced concrete column 500mm ×500mm has four Reinforcement bars of Steel each				
	18 mm in diameter one in each corner. Find the stresses in concrete and steel bars when				
	the column is subjected to a load of 2MN. Take E for steel is 2.1×10^5 N/mm ² and for				
	concrete as $1.4 \times 10^5 $ N/mm ² .				
15	A bar 3m long and 5cm diameter, hangs vertically and has a collar securely attached to the				
	lower end. Find the maximum stress induced when, i) A weight of 250Kg falls 12.8 cm on				
	to the collar. ii) A weight of 2500Kg falls 1.28 cm on to the collar. Take $E=2 \times 10^6$ Kg/cm ² .				

Unit II

S No.	Questions			
	Short Answer Questions			
1	Define bending moment and shear force.			
2	What do you mean by point of contra flexure?			
3	Explain the different types of loads with diagram.			
4	What is the use of SFD and BMD?			
	Long Answer Questions			
5	A simply supported beam of length 6 m carries a uniformly increasing load of 600 N/m at			
	one end to 1500 N/m run at the other end. Draw SFD and BMD for the beam. And also			
	calculate the position and magnitude of maximum bending moment.			

your roots to success...

Unit III

S No.	Questions			
	Short Answer Questions			
1	Define section modulus			
2	What are the assumptions made in sim <mark>ple</mark> bending theory?			
3	Write the bending equation, defining all the terms in the equation.			
4	Draw the bending stress and shear stress profiles for a hollow rectangular beam section.			
5	Define neutral axis.			
6	Define bending and shear stress.			
7	What is meant by the strength of section?			
8	What is the theory of simple bending?			
	Long Answer Questions			
9	A beam of I –section has top flange 125 mm x 16 mm, bottom flange 150 mm x 20 mm and			
	web of thickness 12 mm. The total depth of the beam is 250 mm and simply supported over			
	a span of 5 m. The beam is subjected to uniformly distributed load of 50 kN/m over i			
	entire span in addition to a concentrated load 60 kN at its mid-span. Draw the bending stress			
	distribution across the depth of the beam cross-section at a section located 3 m from the left			
	support.			
10	Prove the relation: $\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$			
11	a) A rectangular timber beam 5m long has to carry a uniformly distributed load of 17.5 kN			
	per meter run over its entire length and a concentrated load of 5 kN at the mid span. If the			
	permissible bending stress is 10 N/mm ² , find the section taking depth as twice the width.			
	b) A rectangular beam 150mm wide and 300mm deep is subjected to a maximum shear			
	force of 50kN. Determine the maximum shear stress.			
12	A cantilever of length 1.5 m fails when a load of 2000 N is applied at the free end. Find			
	the stress at failure if the C.S of the beam is 40 x 60 mm. Also calculate what amount of			
	udl the cantilever can carry for the same maximum bending stress?			
13	A cast iron beam is of I section as shown in the figure. The beam is simply supported on a			
yo	span of 6 m. If the tensile stress is not to exceed 40 N/mm ² , find the safe uniformly load which the beam can carry.			

14	Prove that the maximum shear stress for a rectangular section is 1.5 times the average stress.
15	A 15 cm by 8 cm I section is subjected to a shearing force of 10 kN. Calculate the shear stress at the neutral axis and at the top of the web. Given I= $200 \times 10^4 \text{ mm}^4$, Area= 900 mm^2 , web thickness = 1.5 cm and flange thickness = 2.5 cm.
16	Prove that the maximum shear stress for a circular section is 1.33 times the average stress.

	Unit IV			
S No.	Questions			
	Short Answer Questions			
1	What is deflection of beam?			
2	What causes deflection of beam?			
3	How do you control beam deflection?			
4	What is meant by slope and elastic curve?			
5	Differentiate between actual and conjugate beam.			
	Long Answer Questions			
6	Derive the relation between slope, deflection and radius of curvature			
7	A simply supported beam of span 4 m carries a point load at its centre. The value of I for			
	the for the left half portion is $0.5 \times 10^8 \text{ mm}^4$ and for the right half portion is $3 \times 10^8 \text{ mm}^4$.			
	Find the slopes at the two supports. Take $E = 200$ GPa.			
8	Find the deflection at the free end of a cantilever of length 'L' subjected to UDL of			
	intensity 'w' per unit length over its entire span. Use Double integration method.			
9	A simply supported beam AB of span 4m carries a point load of 100kN at 4m from the left			
30	end. The value of I for the left-hand portion is 10^8 mm^4 and for the right-hand portion is 2			
	$x10^8$ mm ⁴ . Determine the deflection under the point load using conjugate beam. method.			
	Take $E = 210 \text{ GPa}$			

10	Determine slope and deflection of a cantilever loaded with a point at the free end using			
	Moment Area method.			
11	Determine: (i) slope at the left support, (ii) deflection under the load and (iii) maximum			
	deflection of a simply supported beam of length 6 m, which is carrying a point load of			
	5kN at a distance of 2 m from the left end. Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 1 \times 10^8 \text{ mm}^4$			
12	A beam of length 8 m is simply supported at its ends and carries two-point loads of 36 kN			
	and 46 kN at a distance of 1.5 m and 4 m from the left support. Find: (i) deflection under			
	each load. (ii) Maximum deflection and (iii) The point at which maximum deflection			
	occurs, given E = 2 x 10^5 N/mm ² and I = 85 x 10^6 mm ⁴ . Use Macaulay's method			
13	A cantilever of length 4 m carries a uniformly distributed load 3 KN/m over a length of 1.5			
	m from the free end and a point load of 2 KN at the free end. Find the slope and deflection			
	at the free end if E = 2.1 x 10^5 N/mm ² and I = 6.667 x 10^7 mm ⁴ .			
14	Find the slope and deflection at the free end of the cantilever shown in figure. Take $EI = 1$			
	x10 ¹⁰ kN-mm ²			
	3kN			
	3kN/m			
	3m + 1m + 1m +			
15	Determine the deflections at points C, D and E in the beam shown in the figure. Take			
	E=200kN/mm ² and I=60 x10 ⁶ mm ⁴			
	20KN 30KN 10KN/m			
	$(1m) \times 2m \longrightarrow 2m \longrightarrow$			

Unit V

C N			
5 INO.	Questions		
	Short Answer Questions		
1	Define maximum principal strain theory.		
2	A rectangular bar of cross-sectional area 10000 mm ² is subjected to a tensile load of P. The		
	permissible normal and shear stress on the oblique plane making an angle 30^0 with the		
\mathbf{VO}	direction of maximum principal stress is given as 10N/mm ² and 5N/mm ² . Determine the		
50	safe value of P.		
3	Define Guest's theory.		
4	What is the importance of Mohr's circle of stress?		

5	Write the formula for normal and tangential stress when a member is subjected to a simple			
	shear stress.			
6	Define principal plane and principal stress.			
7	Define Haigh – Beltrami's theory			
8	Write the formula for major and minor principal stress when a member is subjected to a			
	simple shear stress.			
	Long Answer Questions			
9	Derive an expression for the normal stress on an oblique plane, when the body is subjected			
	to direct stresses in two mutually perpendicular directions accompanied by a shear stress.			
10	In a metallic body, the principal stresses are 50MN/m ² (tensile), 120MN/m ² (compressive			
	tensile) and the third being zero. The elastic limit stress in tension as well in compression			
	is 90MN/m ² respectively. Find the factor of safety if the criterion for failure is maximum			
	principal stress theory and maximum shear stress theory. Take $\mu = 0.25$			
11	The principal tensile stresses at a point across two perpendicular planes are 100MN/m ²			
	and 80MN/m ² . Determine the normal, tangential stresses and resultant stresses and its			
	obliquity on a plane at 25^0 with the major principal plane.			
12	An element in a stressed material has tensile stresses of 300MN/m ² and 150MN/m ² on t			
	mutually perpendicular planes and shear stresses of 60MN/m ² on these planes. Determ			
	graphically (Mohr's circle of stresses) the value of normal, tangential, resultant and			
	principal stresses.			
13	In a metallic body, the principal stresses are 40MN/m ² (tensile), 100MN/m ² (compressive			
	tensile) and the third being zero. The elastic limit stress in tension as well in compression is			
	80MN/m ² respectively. Find the factor of safety if the criterion for failure is			
	i) Maximum principal stress theory			
	ii) Maximum Principal Strain Theory			
	iii) Maximum Shear Stress Theory			
	iv) Maximum Strain Energy Theory			
	v) Maximum Shear Strain Energy Theory			
14	In a steel member, at a point the major principal stress is 180MN/m ² (tensile) and minor			
370	principal stress is compressive. If the tensile yield point of the steel is 225MN/m ² , find the			
уU	value of minor principal stress at which yielding will commence, according to each of the			
_	following criterion:			
	i) Maximum Shear Stress Theory			
	ii) Maximum Strain Energy Theory			
	iii) Maximum Shear Strain Energy Theory			

15	The principal tensile stresses at a point across two perpendicular planes are 120MN/m ² and			
	60MN/m ² .			
	i)	The normal, tangential stresses and resultant stresses and its obliquity on a plane at		
		20° with the major principal plane.		
	ii)	The intensity of stress which acting alone can produce the same maximum strain.		
		Take poisson's ratio as 0.25.		

Rumpa Sutradhar, Assistant Professor, CE