UNIT-5 MULTIPLE CALCULUS(INTEGRATION)

Multiple Choice questions

1	$\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} dx$	xdydz =			
	a)24	b) 36	c) 48	d) 54	
2.	The area enclosed by the parabolas $x^2 = y$ and $y^2 = x$ is				
	a) 1/3	b) 1/4	c) ½	d) 1/5	
3.	$\int_{0}^{2} \int_{0}^{x} (x+y)dx$	xdy =			
	a) 1	b) 2	c) 3	d) 4	
4.	The volume of the tetrahedron bounded by $x = 0, y = 0, z = 0$ and $x + y + z = 1$				
	is				
	a) ½	b) 1/3	c) ½	d) 1/6	
5	By changin $\iint_{0}^{1} dy dx \text{be}$	g the order of integra comes	tion, the integral		
	$a) \int_0^1 \int_1^{e^y} dx$	$f d y \qquad b) \int_{1}^{e} \int_{\log g}^{1}$	$\int_{y}^{1} dx dy c) \int_{e}^{1} \int_{1}^{\log y}$	d x d y d) none	
6	$\int_{0}^{2} \int_{0}^{x^{2}} x(x^{2} +$	$-y^2)dxdy = -$			
	$a)\frac{32}{3}$	(b) $\frac{64}{3}$	$(c)\frac{84}{3}$	(d) 1	
7	$\int_0^\pi \int_0^{a\cos\theta} rs$	$\sin\theta dr d\theta = $			
	a) $\frac{a^2}{2}$	(b) $\frac{a^2}{3}$	(c) $\frac{a^3}{3}$	(d) $\frac{a^3}{4}$	
8	$\int_{0}^{1} dx \int_{0}^{x} e^{-t}$	$\int_{y/x} dy = \underline{\qquad}$			
	a)e-1	(b) $\frac{3(e-1)}{2}$	(c) $\frac{e-1}{3}$	(d) e	
9	$\iint_{R} dx dy \text{ rep}$	resents			
	a)Area	b) Volume	c) length	d) magnitude	

Accredited by NBA & NAAC with 'A' Grade

10	$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} dx dy dz = \underline{\qquad}$				
	a) $(e-1)^2$ (b) $e-1$ (c) $(e-1)^3$	(d) e+1			
11	$\int_0^1 \int_1^2 xy \ dy \ dx = \dots$				
	a) 1/3 b) 3/4 c) ½	d) 1/5			
12	The volume of the tetrahedraon bounded	by the coordinate plan	nes and the		
	plane x+y+z=1 is				
	a) 1/3 b) 3/4	c) ½	d) 1/6		
13	a) $1/3$ b) $3/4$ $\int_{1}^{0} \int_{0}^{1} (x+y) dx dy = $	-			
	a) 1/3 b) 3/4 c) 1	d) 1/5			
14	$\int_{a}^{2} \int_{a}^{x} (x+y) \ dy \ dx =$				
	a) 4 b) 3/4 c) ½	d) 1/5			
15	$\int_{0}^{2} \int_{0}^{x} (x+y) dy dx = \underline{\qquad \qquad }$ a) 4 b) 3/4 c) ½ $\int_{-1}^{2} \int_{x^{2}}^{x+2} dy dx = \underline{\qquad \qquad } [9/2]$	<i>[</i> ,]			
	a) 9/2 b) 3/4 c) ½	d) 1/5			
	Fill in the blanks				
1.	$\iint_{R} f(x, y) dx dy \text{ represents} \underline{\hspace{1cm}}$				
2	$\int_0^1 \int_1^2 xy dy dx$				
3	$\int_{0}^{a} \int_{0}^{\sqrt{ay}} xy dx dy = \underline{\qquad}$				
4	$\int_{1}^{0} \int_{0}^{1} (x+y) dx dy = _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$				
5	$\int_{0}^{1} \int_{0}^{x} e^{x+y} dy dx = \underline{\qquad}$				
6	$\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dx dy = \underline{\hspace{1cm}}$				
7	$\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2} yz dx dy dz = \underline{\hspace{1cm}}$				
8	The integral $\int_{0}^{1} \int_{x}^{\sqrt{x}} f(x, y) dx dy$	after changing the ord	der of integration		
9	To convert the variables (v. v.) into r	nolar coordinates v-	and v—		
	To convert the variables (x, y) into polar coordinates, x= and y=				
10	To convert the variables (x, y)in an integral	rai, into polar coordina	ites dxdy=		

11	equivalent integral with the order of integration reversed for		
	$\int_{-a}^{a} \int_{0}^{\sqrt{a^2 - y^2}} x dy dx = \underline{\qquad}$		
12	The volume of the tetrahedron bounded by the surfaces x=0,y=0, z=0 and $\frac{x}{a}$ +		
	$\left \frac{y}{b} + \frac{z}{c} \right = 1$		
13	Write the spherical polar coordinates		
14	Write the cylindrical polar coordinates		
15	Surface integration		