UNIT-3

SINGLE VARIABLE CALCULUS

Multiple Choice questions

1	For the function $f(x)=1/x$, in [-1,1], Rolles mean value theorem cannot be applicable, due to		
	a) f is not continuous	b) f is not derivable	
	c) $f(1) \neq f(-1)$	d) all the above	
2.	for $f(x) = x \text{ in [-1, 1]}$, Rolles mean value theorem cannot be applicable, due		
	to		
	a) f is not continuous	b) f is not derivable	
	c) $f(1) \neq f(-1)$	d) all the above	
3.	for $f(x) = x \ln[-1, 1]$, Rolles mean value theorem cannot be applicable,		
	due to		
	a) 0	b) 1	
	c) 2	d) 4	
4.	The curve $y = ax^2$ is symmetric about		
	a)Y- axis	b) x- axis	
	c) origin	d) x= a	
5.	The curve $x^2 = 4ay$ intersects x- axis at		
	a)(0,0)	b) (a, 0)	
	c) (0, a)	d) (a, a)	
6	The asymptote of the curve $x^2 = 4ay$ is		
	a)X- axis	b) Y- axis	
	c) y= a	d) No asymptotes	
7.	The value of "c" of Cauchys theorem for $f(x) = \sqrt{x}$ and		
	$g(x) = \frac{1}{\sqrt{x}} in [a, b] is$		
	a) \sqrt{ab}	b) $\frac{a-b}{2}$	
	c) $\frac{a+b}{2}$ d) $\frac{2a}{a+}$	$\frac{b}{b}$	
8.	The value of "c" of Rolles theorem for $f(x) = \frac{\sin x}{e^x}$ in $(0,\pi)is$		
	α)π	b) $\frac{\pi}{4}$	
	c) $\frac{\pi}{3}$	d) $\frac{\pi}{2}$	
9.	The series expansion of sin x is		

An Autonomous Institution| Affiliated to JNTUH | Approved by AICTE Accredited by NBA & NAAC with 'A' Grade

	a) $x + x^2 + x^3 + \dots$ b) $1 + x + x^2 + x^3 + \dots$			
	c) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$ d) $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$			
10	If there are many tangents at a point on a curve, then it is[
	a)Not derivable at that point b) Not continuous at that point			
	c)Derivable at that point d) Continuous at that point			
	Fill in the blanks			
1.	The value of 'c' is of Lagrange's mean value theorem for $f(x) =$			
	$x^{2} in [1, 5]$			
2	The value of 'c' of Cauchy's theorem for $f(x) = x^2$ and $g(x) = x^3$ in [1,2] is			
3	The expansion cos x in powers of "x" is			
4	The value of c by Rolle's mean value theorem for $f(x) = x^2$ in [-1, 1] is			
5	If a function $f(x)$ is both continuous in [a, b] and derivable in (a, b) then $f^1(c)$ = for some c in (a, b).			
6	For a continuous function defined in [a, b], Lagrange's mean value theorem is not applicable when the function is notin (a, b).			
7	The condition to check whether a function is symmetric about origin is			
8	The tangent to the curve $y^2 = 4ax$ at origin is			
9	The curve $f(x)$ is symmetric about both the axis if			
10	The curve $x^2 + y^2 = a^2$ is symmetric about X- axis. Is this True?			