

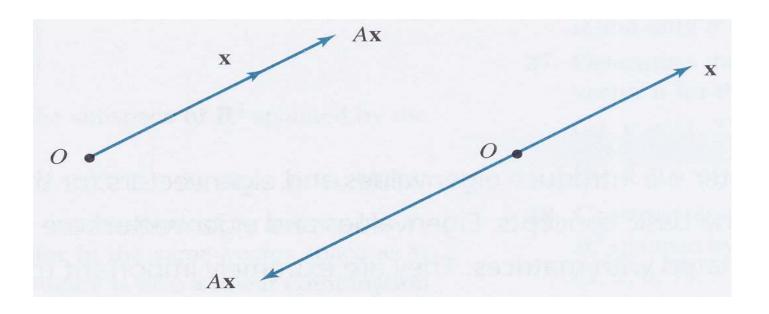
UNIT-II Eigen values and Eigen vectors

Eigenvalues and Eigenvectors

Definition

Let A be an $n \times n$ matrix. A <u>scalar</u> λ is called an <u>eigenvalue</u> of A if there exists a nonzero vector \mathbf{x} in \mathbf{R}^n such that $A\mathbf{x} = \lambda \mathbf{x}$.

The vector **x** is called an **eigenvector** corresponding to λ .



Computation of Eigenvalues and Eigenvectors

Let A be an $n \times n$ matrix with eigenvalue λ and corresponding eigenvector **x**. Thus A**x** = λ **x**. This equation may be written

$$A\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$

given

$$(A - \lambda I_n)\mathbf{x} = \mathbf{0}$$

Solving the equation $|A - \lambda I_n| = 0$ for λ leads to all the eigenvalues of A.

On expending the determinant $|A - \lambda I_n|$, we get a polynomial in λ . This polynomial is called the **characteristic polynomial** of A. The equation $|A - \lambda I_n| = 0$ is called the **characteristic equation** of A.

Example:

Find the eigenvalues and eigenvectors of the matrix

Solution Let us first derive the characteristic polynomial of A.

We get

$$\begin{vmatrix} A - \lambda I_2 &= \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -4 - \lambda & -6 \\ 3 & 5 - \lambda \end{bmatrix}$$
$$|A - \lambda I_2| = (-4 - \lambda)(5 - \lambda) + 18 = \lambda^2 - \lambda - 2$$

We now solve the characteristic equation of A.

$$\lambda^2 - \lambda - 2 = 0 \Rightarrow (\lambda - 2)(\lambda + 1) = 0 \Rightarrow \lambda = 2 \text{ or } -1$$

The eigenvalues of A are 2 and -1.

The corresponding eigenvectors are found by using these values of λ in the equation $(A - \lambda I_2)\mathbf{x} = \mathbf{0}$. There are many eigenvectors corresponding to each eigenvalue.

• For $\lambda = 2$

We solve the equation $(A - 2I_2)\mathbf{x} = \mathbf{0}$ for \mathbf{x} .

The matrix $(A - 2I_2)$ is obtained by subtracting 2 from the diagonal elements of A. We get

$$\begin{bmatrix} -6 & -6 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0}$$

This leads to the system of equations

$$-6x_1 - 6x_2 = 0$$
$$3x_1 + 3x_2 = 0$$

giving $x_1 = -x_2$. The solutions to this system of equations are $x_1 = -r$, $x_2 = r$, where r is a scalar. Thus the eigenvectors of A corresponding to $\lambda = 2$ are nonzero vectors of the form

$$v_1 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = r \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

• For $\lambda = -1$

We solve the equation $(A + 1I_2)x = 0$ for x.

The matrix $(A + 1I_2)$ is obtained by adding 1 to the diagonal elements of A. We get

$$\begin{bmatrix} -3 & -6 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0}$$

This leads to the system of equations

$$-3x_1 - 6x_2 = 0$$
$$3x_1 + 6x_2 = 0$$

Thus $x_1 = -2x_2$. The solutions to this system of equations are $x_1 = -2s$ and $x_2 = s$, where s is a scalar. Thus the **eigenvectors** of A corresponding to $\lambda = -1$ are nonzero vectors of the form

$$v_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Example:

Find the eigenvalues and eigenvectors of the matrix

Solution The matrix $A - \lambda I_3$ is obtained by subtracting λ from the diagonal elements of A. Thus

$$A - \lambda I_3 = \begin{bmatrix} 5 - \lambda & 4 & 2 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{bmatrix}$$

The characteristic polynomial of A is $|A - \lambda I_3|$. Using row and column operations to simplify determinants, we get

$$|A - \lambda I_3| = \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & -1 + \lambda & 0 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{vmatrix}$$

Freshman Engineering

$$= \begin{vmatrix} 1-\lambda & 0 & 0 \\ 4 & 9-\lambda & 2 \\ 2 & 4 & 2-\lambda \end{vmatrix}$$

=
$$(1 - \lambda)[(9 - \lambda)(2 - \lambda) - 8] = (1 - \lambda)[\lambda^2 - 11\lambda + 10]$$

= $(1 - \lambda)(\lambda - 10)(\lambda - 1) = -(\lambda - 10)(\lambda - 1)^2$

We now solving the characteristic equation of A:

$$-(\lambda - 10)(\lambda - 1)^2 = 0$$
$$\lambda = 10 \text{ or } 1$$

The eigenvalues of A are 10 and 1.

The corresponding eigenvectors are found by using three values of λ in the equation $(A - \lambda I_3)\mathbf{x} = \mathbf{0}$.

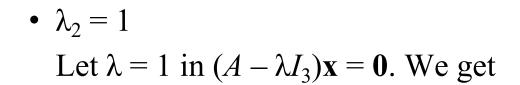
• $\lambda_1 = 10$ We get

$$(A-10I_3)\mathbf{x} = \mathbf{0}$$

$$\begin{bmatrix} -5 & 4 & 2 \\ 4 & -5 & 2 \\ 2 & 2 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{0}$$

The solution to this system of equations are $x_1 = 2r$, $x_2 = 2r$, and $x_3 = r$, where r is a scalar.

Thus the eigenspace of $\lambda_1 = 10$ is the one-dimensional space of vectors of the form.



$$(A-1I_3)\mathbf{x} = \mathbf{0}$$

$$\begin{bmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{0}$$

The solution to this system of equations can be shown to be $x_1 = -s - t$, $x_2 = s$, and $x_3 = 2t$, where s and t are scalars. Thus the eigenspace of $\lambda_2 = 1$ is the space of vectors of the form.

$$\begin{bmatrix} -s-t \\ s \\ 2t \end{bmatrix}$$

Separating the parameters *s* and *t*, we can write

$$\begin{bmatrix} -s-t \\ s \\ 2t \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$$

Thus the eigenspace of $\lambda = 1$ is a two-dimensional subspace of \mathbf{R}^3 with basis

$$\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0 \end{bmatrix} \right\}$$

If an eigenvalue occurs as a k times repeated root of the characteristic equation, we say that it is of multiplicity k. Thus $\lambda=10$ has multiplicity 1, while $\lambda=1$ has multiplicity 2 in this example.

11

• Exercise:

1, 4, 9, 11, 13, 15, 24, 26, 32

Ex: Prove that if A is a diagonal matrix, then its eigenvalues are the diagonal elements.

Ex: Prove that if A and A^t have the same eigenvalues.

Ex: Prove that the constant term of the characteristic polynomial of a matrix A is |A|.

Diagonalization of Matrices

Definition

Let A and B be square matrices of the same size. B is said to be similar to A if there exists an invertible matrix C such that $B = C^{-1}AC$. The transformation of the matrix A into the matrix B in this manner is called a similarity transformation.

Example:

Consider the following matrices A and C with C is invertible. Use the similarity transformation $C^{-1}AC$ to transform A into a matrix B.

Solution

$$B = C^{-1}AC = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 7 & -10 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 7 & -10 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & -10 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Similar matrices have the same eigenvalues.

Proof

Let A and B be similar matrices. Hence there exists a matrix C such that $B = C^{-1}AC$.

The characteristic polynomial of B is $|B - \lambda I_n|$. Substituting for B and using the multiplicative properties of determinants, we get

$$|B - \lambda I| = |C^{-1}AC - \lambda I| = |C^{-1}(A - \lambda I)C|$$

$$= |C^{-1}||A - \lambda I||C| = |A - \lambda I||C^{-1}||C|$$

$$= |A - \lambda I||C^{-1}C| = |A - \lambda I||I|$$

$$= |A - \lambda I|$$

The characteristic polynomials of A and B are identical. This means that their eigenvalues are the same.

Freshman Engineering

Example

- (a) Show that the matrix $A = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$ is diagonalizable.
- (b) Find a diagonal matrix D that is similar to A.
- (c) Determine the similarity transformation that diagonalizes A.

Solution

(a) The eigenvalues and corresponding eigenvector of this matrix were found in Example 1 of Section 5.1. They are

$$\lambda_1 = 2$$
, $\mathbf{v}_1 = r \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $\lambda_2 = -1$, and $\mathbf{v}_2 = s \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

Since A, a 2 × 2 matrix, has two linearly independent eigenvectors, it is diagonalizable.

(b) A is similar to the diagonal matrix D, which has diagonal elements $\lambda_1 = 2$ and $\lambda_2 = -1$. Thus

$$A = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} \text{ is similar to } D = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$

(c) Select two convenient linearly independent eigenvectors, say

$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

Let these vectors be the column vectors of the diagonalizing matrix C.

We get
$$C = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$C^{-1}AC = \begin{bmatrix} -1 & -2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} = D$$

Note

If A is similar to a diagonal matrix D under the transformation $C^{-1}AC$, then it can be shown that $A^k = CD^kC^{-1}$.

This result can be used to compute A^k . Let us derive this result and then apply it.

$$D^{k} = (C^{-1}AC)^{k} = (C^{-1}AC) \cdots (C^{-1}AC) = C^{-1}A^{k}C$$

k times

This leads to

$$A^k = CD^kC^{-1}$$

Example:

Compute A^9 for the following matrix A.

Solution

A is the matrix of the previous example. Use the values of C and D from that example. We get

$$D^{9} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}^{9} = \begin{bmatrix} 2^{9} & 0 \\ 0 & (-1)^{9} \end{bmatrix} = \begin{bmatrix} 512 & 0 \\ 0 & -1 \end{bmatrix}$$

$$A^{9} = CD^{9}C^{-1}$$

$$= \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 512 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -514 & -1026 \\ 513 & 1025 \end{bmatrix}$$

Example

Show that the following matrix A is not diagonalizable.

Solution

$$A - \lambda I_2 = \begin{bmatrix} 5 - \lambda & -3 \\ 3 & -1 - \lambda \end{bmatrix}$$

The characteristic equation is

$$|A - \lambda I_2| = 0 \Rightarrow (5 - \lambda)(-1 - \lambda) + 9 = 0$$

$$\Rightarrow \lambda^2 - 4\lambda + 4 = 0 \Rightarrow (\lambda - 2)(\lambda - 2) = 0$$

There is a single eigenvalue, $\lambda = 2$. We find he corresponding

eigenvectors.
$$(A - 2I) \mathbf{x} = \mathbf{0}$$
 gives $\begin{bmatrix} 3 & -3 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0} \Rightarrow 3x_1 - 3x_2 = 0$.
Thus $x_1 = r$, $x_2 = r$. The eigenvectors are nonzero vectors of the

form
$$r = 1$$

The eigenspace is a one-dimensional space. A is a 2×2 matrix, but it does not have two linearly independent eigenvectors. Thus A is not diagonalizable.

Let A be an $n \times n$ symmetric matrix.

- (a) All the eigenvalues of A are real numbers.
- (b) The dimension of an eigenspace of A is the multiplicity of the eigenvalues as a root of the characteristic equation.
- (c) A has n linearly independent eigenvectors.

Freshman Engineering

QUADRATIC FORMS

- **8** A **quadratic form** is an homogeneous expression of every term degree two.
- Matrix form of Q.F= X^TAX where A is symmetric matrix.
- The matrix A is called the matrix of the quadratic form.

QUADRATIC FORMS

$$\mathbf{x} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
 Compute $\mathbf{x}^T A \mathbf{x}$ for the

Example: Let

following matrices.

a.
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$

a.
$$A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$$

QUADRATIC FORMS

Solution:

a.
$$x^T A x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4x_1 \\ 3x_2 \end{bmatrix} = 4x_1^2 + 3x_2^2$$

a. There are two -2 entries in A.

$$x^{T}Ax = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 3x_{1} - 2x_{2} \\ -2x_{1} + 7x_{2} \end{bmatrix}$$

$$= x_{1}(3x_{1} - 2x_{2}) + x_{2}(-2x_{1} + 7x_{2})$$

$$= 3x_{1}^{2} - 2x_{1}x_{2} - 2x_{2}x_{1} + 7x_{2}^{2}$$

$$= 3x_{1}^{2} - 4x_{1}x_{2} + 7x_{2}^{2}$$

 If x represents a variable vector in , then a change of variable is an equation of the form

$$\chi = Py$$
, or equivalently, $y = P^{-1}X$ ----(1) where P is an invertible matrix and y is a new variable vector in Y

- Here y is the coordinate vector of x relative to the basis of determined by the columns of P.
- If the change of variable (1) is made in a quadratic form $\mathbf{x}^T A \mathbf{x}$, then

$$\mathbf{x}^{\mathsf{T}} A \mathbf{x} = (P \mathbf{y})^{\mathsf{T}} A (P \mathbf{y}) = \mathbf{y}^{\mathsf{T}} P^{\mathsf{T}} A P \mathbf{y} = \mathbf{y}^{\mathsf{T}} (P^{\mathsf{T}} A P) \mathbf{y} \qquad ----$$

and the new matrix of the quadratic form is P^TAP .

- Since A is symmetric, Theorem guarantees that there is an orthogonal matrix P such that P^TAP is a diagonal matrix D, and the quadratic form in (2) becomes $\mathbf{Y}^TD\mathbf{Y}$.
- **Example :** Make a change of variable that transforms the quadratic form $Q(x) = x_1^2 8x_1x_2 5x_2^2$ into a quadratic form with no cross-product term.
- Solution: The matrix of the given quadratic form is

$$A = \begin{bmatrix} 1 & -4 \\ -4 & -5 \end{bmatrix}$$

- The first step is to orthogonally diagonalize A.
- Its eigenvalues turn out to be $\lambda = 3$ and $\lambda = -.7$
- Associated unit eigenvectors are

$$\lambda = 3: \begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix}; \lambda = -7: \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$$

 These vectors are automatically orthogonal (because they correspond to distinct eigenvalues)

• Let
$$P = \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}, D = \begin{bmatrix} 3 & 0 \\ 0 & -7 \end{bmatrix}$$

- Then $A = PDP^{-1}$ and $D = P^{-1}AP = P^{T}AP$
- A suitable change of variable is

$$x = Py$$
, where $x = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ and $y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$

• Then

$$x_1^2 - 8x_1x_2 - 5x_2^2 = x^T Ax = (Py)^T A(Py)$$

 $= y^T P^T A P y = y^T D y$
 $= 3y_1^2 - 7y_2^2$

• To illustrate the meaning of the equality of quadratic forms in Example, we can compute $Q(\mathbf{x})$ for X = (2, -2) using the new quadratic form.

$$x = Py$$

• First, since

$$y = P^{-1}x = P^{T}x$$

so
$$y = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 6/\sqrt{5} \\ -2/\sqrt{5} \end{bmatrix}$$

Hence

$$3y_1^2 - 7y_2^2 = 3(6/\sqrt{5})^2 - 7(-2/\sqrt{5})^2 = 3(36/5) - 7(4/5)$$

= 80/5=16

• This is the value of Q(x) when

$$x = (2, -2)$$

CLASSIFYING QUADRATIC FORMS

- Definition: A quadratic form Q is:
 - **a.** positive definite if Q(x) > 0 for all $x \ne 0$
 - **b.** negative definite if Q(x) < 0 for all $X \neq 0$
 - c. indefinite if $Q(\mathbf{x})$ assumes both positive and negative values.
- Also, Q is said to be **positive semidefinite** for all x, and $Q(x) \ge 0$ negative semidefinite if $Q(x) \le 0$ for all x.

QUADRATIC FORMS AND EIGENVALUES

- **Theorem**: Let A be an $n \times n$ symmetric matrix. Then a quadratic form $\mathbf{x}^T A \mathbf{x}$ is:
 - a. positive definite if and only if the eigenvalues of A are all positive,
 - b. negative definite if and only if the eigenvalues of A are all negative, or
 - c. indefinite if and only if A has both positive and negative eigenvalues.

QUADRATIC FORMS AND EIGENVALUES

 Proof: By the Principal Axes Theorem, there exists an orthogonal change of variable X = Py such that

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y} = {}_{1} \mathbf{y}_{1}^2 \mathbf{h} + {}_{2} \mathbf{y}_{2}^2 + \cdots \mathbf{h} + {}_{n} \mathbf{y}_{n}^2$$

where $\lambda_1,...,\lambda_n$ are the eigenvalues of A.

• Since *P* is invertible, there is a one-to-one correspondence between all nonzero **x** and all nonzero **y**.

QUADRATIC FORMS AND EIGENVALUES

• Thus the values of $Q(\mathbf{x})$ for $X \neq 0$ coincide with the values of the expression on the right side of (4), which is controlled by the signs of the eigenvalues $\lambda_1,...,\lambda_n$, in three ways described in the theorem .