25MA101: MATRICES AND CALCULUS

I B.Tech, I Semester,

Academic Year: 2025-26 (NR25)

UNIT-I Matrices

Introduction

Matrix algebra has at least two advantages:

- Reduces complicated systems of equations to simple expressions
- Adaptable to systematic method of mathematical treatment and well suited to computers

Definition:

A matrix is a set or group of numbers arranged in a square or rectangular array enclosed by two brackets

$$\begin{bmatrix} 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 4 & 2 \\ -3 & 0 \end{bmatrix} \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Properties:

- A specified number of rows and a specified number of columns
- Two numbers (rows x columns) describe the dimensions or size of the matrix.

Examples:

A matrix is denoted by a bold capital letter and the elements within the matrix are denoted by lower case letters

e.g. matrix [A] with elements a_{ij}

$$\mathbf{A}_{\max} = \begin{bmatrix} a_{11} & a_{12} & a_{ij} & a_{in} \\ a_{21} & a_{22} & a_{ij} & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{ij} & a_{mn} \end{bmatrix}$$

i goes from 1 to m

j goes from 1 to n

Matrices - Introduction TYPES OF MATRICES

1. Column matrix or vector:

The number of rows may be any integer but the number of columns is always 1

$$\begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ -3 \end{bmatrix} \qquad \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$

Matrices - Introduction TYPES OF MATRICES

2. Row matrix or vector

Any number of columns but only one row

$$[a_{11} \ a_{12} \ a_{13} \cdots \ a_{1n}]$$

TYPES OF MATRICES

3. Rectangular matrix

Contains more than one element and number of rows is not equal to the number of columns

Freshman Engineering

TYPES OF MATRICES

4. Square matrix

The number of rows is equal to the number of columns

(a square matrix \mathbf{A} has an order of m)

$$\begin{bmatrix} 1 & 1 \\ 3 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 \\ 9 & 9 & 0 \\ 6 & 6 & 1 \end{bmatrix}$$

The principal or main diagonal of a square matrix is composed of all elements a_{ij} for which i=j

TYPES OF MATRICES

5. Diagonal matrix

A square matrix where all the elements are zero except those on the main diagonal

i.e.
$$a_{ij} = 0$$
 for all $i \neq j$

$$a_{ij} \neq 0$$
 for some or all $i = j$

Matrices - Introduction TYPES OF MATRICES

6. Unit or Identity matrix - I

A diagonal matrix with ones on the main diagonal

i.e.
$$a_{ij} = 0$$
 for all $i \neq j$

$$a_{ij} = 1$$
 for some or all $i = j$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} a_{ij} & 0 \\ 0 & a_{ij} \end{bmatrix}$$

TYPES OF MATRICES

7. Null (zero) matrix - O

All elements in the matrix are zero

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$a_{ii} = 0$$
 For all i,j

Matrices - Introduction TYPES OF MATRICES

8. Triangular matrix

A square matrix whose elements above or below the main diagonal are all zero

Freshman Engineering

TYPES OF MATRICES

8a. Upper triangular matrix

A square matrix whose elements below the main diagonal are all zero

$$\begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ 0 & a_{ij} & a_{ij} \\ 0 & 0 & a_{ij} \end{bmatrix} \begin{bmatrix} 1 & 8 & 7 \\ 0 & 1 & 8 \\ 0 & 0 & 3 \end{bmatrix}$$

i.e. $a_{ij} = 0$ for all i > j

TYPES OF MATRICES

8b. Lower triangular matrix

A square matrix whose elements above the main diagonal are all zero

$$\begin{bmatrix} a_{ij} & 0 & 0 \\ a_{ij} & a_{ij} & 0 \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 2 & 3 \end{bmatrix}$$

i.e.
$$a_{ij} = 0$$
 for all $i < j$

Matrices – Introduction TYPES OF MATRICES

9. Scalar matrix

A diagonal matrix whose main diagonal elements are equal to the same scalar

A scalar is defined as a single number or constant

$$\begin{bmatrix} a_{ij} & 0 & 0 \\ 0 & a_{ij} & 0 \\ 0 & 0 & a_{ij} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \end{bmatrix}$$

$$\begin{bmatrix} a_{ij} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \end{bmatrix}$$

i.e. $a_{ij} = 0$ for all $i \neq j$ $a_{ii} = a$ for all i = j

EQUALITY OF MATRICES

Two matrices are said to be equal only when all corresponding elements are equal

Therefore their size or dimensions are equal as well

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 2 & 3 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 2 & 3 \end{bmatrix} \quad \mathbf{A} = \mathbf{B}$$

Freshman Engineering

Some properties of equality:

- If A = B, then B = A for all A and B
- If A = B, and B = C, then A = C for all A, B and C

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 2 & 3 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

If
$$\mathbf{A} = \mathbf{B}$$
 then $a_{ij} = b_{ij}$

ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, **A** and **B** of the same size yields a matrix **C** of the same size

$$c_{ij} = a_{ij} + b_{ij}$$

Matrices of different sizes cannot be added or subtracted

Freshman Engineering

Commutative Law:

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

Associative Law:

$$A + (B + C) = (A + B) + C = A + B + C$$

$$\begin{bmatrix} 7 & 3 & -1 \\ 2 & -5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 5 & 6 \\ -4 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 8 & 5 \\ -2 & -7 & 9 \end{bmatrix}$$

A 2x3

B 2x3

C 2x3

$$\mathbf{A} + \mathbf{0} = \mathbf{0} + \mathbf{A} = \mathbf{A}$$

 $\mathbf{A} + (-\mathbf{A}) = \mathbf{0}$ (where $-\mathbf{A}$ is the matrix composed of $-\mathbf{a}_{ij}$ as elements)

$$\begin{bmatrix} 6 & 4 & 2 \\ 3 & 2 & 7 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & -1 \end{bmatrix}$$

SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single element)

Let k be a scalar quantity; then

$$kA = Ak$$

$$A = \begin{vmatrix} 3 & -1 \\ 2 & 1 \\ 2 & -3 \\ 4 & 1 \end{vmatrix}$$

$$4 \times \begin{bmatrix} 3 & -1 \\ 2 & 1 \\ 2 & -3 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 1 \\ 2 & -3 \\ 4 & 1 \end{bmatrix} \times 4 = \begin{bmatrix} 12 & -4 \\ 8 & 4 \\ 8 & -12 \\ 16 & 4 \end{bmatrix}$$

Properties:

•
$$k (A + B) = kA + kB$$

$$\bullet (k+g)A = kA + gA$$

•
$$k(AB) = (kA)B = A(k)B$$

MULTIPLICATION OF MATRICES

The product of two matrices is another matrix

Two matrices **A** and **B** must be **conformable** for multiplication to be possible

i.e. the number of columns of **A** must equal the number of rows of **B**

Example.

$$\mathbf{A} \quad \mathbf{x} \quad \mathbf{B} = \mathbf{C}$$

$$(1\mathbf{x}3) \quad (3\mathbf{x}1) \quad (1\mathbf{x}1)$$

$$\mathbf{B} \times \mathbf{A} = \text{Not possible!}$$

$$(2x1) (4x2)$$

$$\mathbf{A} \times \mathbf{B} = \text{Not possible!}$$

$$(6x2) \quad (6x3)$$

Example

$$\mathbf{A} \quad \mathbf{x} \quad \mathbf{B} \quad = \mathbf{C}$$

$$(2\mathbf{x}3) \quad (3\mathbf{x}2) \quad (2\mathbf{x}2)$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

$$(a_{11} \times b_{11}) + (a_{12} \times b_{21}) + (a_{13} \times b_{31}) = c_{11}$$

$$(a_{11} \times b_{12}) + (a_{12} \times b_{22}) + (a_{13} \times b_{32}) = c_{12}$$

$$(a_{21} \times b_{11}) + (a_{22} \times b_{21}) + (a_{23} \times b_{31}) = c_{21}$$

$$(a_{21} \times b_{12}) + (a_{22} \times b_{22}) + (a_{23} \times b_{32}) = c_{22}$$

Successive multiplication of row i of A with column j of B row by column multiplication

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 2 & 7 \end{bmatrix} \begin{bmatrix} 4 & 8 \\ 6 & 2 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} (1 \times 4) + (2 \times 6) + (3 \times 5) & (1 \times 8) + (2 \times 2) + (3 \times 3) \\ (4 \times 4) + (2 \times 6) + (7 \times 5) & (4 \times 8) + (2 \times 2) + (7 \times 3) \end{bmatrix}$$

$$= \begin{bmatrix} 31 & 21 \\ 63 & 57 \end{bmatrix}$$

Remember also:

$$IA = A$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 31 & 21 \\ 63 & 57 \end{bmatrix} = \begin{bmatrix} 31 & 21 \\ 63 & 57 \end{bmatrix}$$

Assuming that matrices **A**, **B** and **C** are conformable for the operations indicated, the following are true:

- $1. \quad AI = IA = A$
- 2. A(BC) = (AB)C = ABC (associative law)
- 3. A(B+C) = AB + AC (first distributive law)
- 4. (A+B)C = AC + BC (second distributive law)

NOTE:

- 1. AB not generally equal to BA, BA may not be conformable
- 2. If AB = 0, neither A nor B necessarily = 0
- 3. If AB = AC, B not necessarily = C

AB not generally equal to BA, BA may not be

conformable

$$T = \begin{bmatrix} 1 & 2 \\ 5 & 0 \end{bmatrix}$$

$$S = \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix}$$

$$TS = \begin{bmatrix} 1 & 2 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 15 & 20 \end{bmatrix}$$

$$ST = \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 23 & 6 \\ 10 & 0 \end{bmatrix}$$

If AB = 0, neither A nor B necessarily = 0

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

TRANSPOSE OF A MATRIX

If:

$$A = {}_{2}A^{3} = \begin{bmatrix} 2 & 4 & 7 \\ 5 & 3 & 1 \end{bmatrix}$$

Then transpose of A, denoted A^{T} is:

$$A^{T} = {}_{2}A^{3^{T}} = \begin{bmatrix} 2 & 5 \\ 4 & 3 \\ 7 & 1 \end{bmatrix}$$
$$a_{ij} = a_{ji}^{T} \quad \text{For all } i \text{ and } j$$

To transpose:

Interchange rows and columns

The dimensions of A^{T} are the reverse of the dimensions of A

$$A = {}_{2}A^{3} = \begin{bmatrix} 2 & 4 & 7 \\ 5 & 3 & 1 \end{bmatrix}$$
 2 x 3

$$A^{T} = {}_{3}A^{T^{2}} = \begin{bmatrix} 2 & 5 \\ 4 & 3 \\ 7 & 1 \end{bmatrix}$$
3 x 2

Properties of transposed matrices:

1.
$$(A+B)^T = A^T + B^T$$

2.
$$(AB)^T = B^T A^T$$

3.
$$(\mathbf{k}\mathbf{A})^{\mathrm{T}} = \mathbf{k}\mathbf{A}^{\mathrm{T}}$$

4.
$$(A^T)^T = A$$

1.
$$(A+B)^T = A^T + B^T$$

$$\begin{bmatrix} 7 & 3 & -1 \\ 2 & -5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 5 & 6 \\ -4 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 8 & 5 \\ -2 & -7 & 9 \end{bmatrix} \longrightarrow \begin{bmatrix} 8 & -2 \\ 8 & -7 \\ 5 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 \\ 3 & -5 \\ -1 & 6 \end{bmatrix} + \begin{bmatrix} 1 & -4 \\ 5 & -2 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 8 & -2 \\ 8 & -7 \\ 5 & 9 \end{bmatrix}$$

$$(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 8 \end{bmatrix}$$

SYMMETRIC MATRICES

A Square matrix is symmetric if it is equal to its transpose:

$$\mathbf{A} = \mathbf{A}^{\mathrm{T}}$$

$$A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$

When the original matrix is square, transposition does not affect the elements of the main diagonal

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

The identity matrix, **I**, a diagonal matrix **D**, and a scalar matrix, **K**, are equal to their transpose since the diagonal is unaffected.

INVERSE OF A MATRIX

Consider a scalar k. The inverse is the reciprocal or division of 1 by the scalar.

Example:

$$k=7$$
 the inverse of k or $k^{-1} = 1/k = 1/7$

Division of matrices is not defined since there may be $\mathbf{AB} = \mathbf{AC}$ while $\mathbf{B} \neq \mathbf{C}$

Instead matrix inversion is used.

The inverse of a square matrix, A, if it exists, is the unique matrix A^{-1} where:

$$AA^{-1} = A^{-1}A = I$$

Example:

$$A=_2A^2=\begin{bmatrix}3 & 1\\2 & 1\end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$

Because:

$$\begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Properties of the inverse:

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A^{-1})^{-1} = A$$

$$(A^{T})^{-1} = (A^{-1})^{T}$$

$$(kA)^{-1} = \frac{1}{k}A^{-1}$$

- A square matrix that has an inverse is called a nonsingular matrix
- A matrix that does not have an inverse is called a singular matrix
- Square matrices have inverses except when the determinant is zero
- When the determinant of a matrix is zero the matrix is singular

DETERMINANT OF A MATRIX

To compute the inverse of a matrix, the determinant is required

Each square matrix A has a unit scalar value called the determinant of A, denoted by det A or |A|

If
$$A = \begin{bmatrix} 1 & 2 \\ 6 & 5 \end{bmatrix}$$
then
$$|A| = \begin{vmatrix} 1 & 2 \\ 6 & 5 \end{vmatrix}$$

If A = [A] is a single element (1x1), then the determinant is defined as the value of the element

Then
$$|\mathbf{A}| = \det \mathbf{A} = \mathbf{a}_{11}$$

If A is (n x n), its determinant may be defined in terms of order (n-1) or less.

MINORS

If A is an n x n matrix and one row and one column are deleted, the resulting matrix is an (n-1) x (n-1) submatrix of A.

The determinant of such a submatrix is called a minor of A and is designated by m_{ij} , where i and j correspond to the deleted row and column, respectively.

 m_{ij} is the minor of the element a_{ij} in **A**.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Each element in A has a minor

Delete first row and column from A.

The determinant of the remaining 2 x 2 submatrix is the minor of a_{11}

$$m_1 = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

Freshman Engineering

Therefore the minor of a_{12} is:

$$m_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

And the minor for a_{13} is:

$$m_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

COFACTORS

The cofactor C_{ij} of an element a_{ij} is defined as:

$$C_{ij} = (-1)^{i+j} m_{ij}$$

When the sum of a row number i and column j is even, $c_{ij} = m_{ij}$ and when i+j is odd, $c_{ij} = -m_{ij}$

$$c_{11}(i = 1, j = 1) = (-1)^{1+1} m_1 = + m_1$$

 $c_{12}(i = 1, j = 2) = (-1)^{1+2} m_2 = -m_2$
 $c_{13}(i = 1, j = 3) = (-1)^{1+3} m_3 = + m_3$

DETERMINANTS CONTINUED

The determinant of an n x n matrix A can now be defined as

$$|A| = \det A = a_{11}c_{11} + a_{12}c_{12} + ... + a_{1n}c_{1n}$$

The determinant of A is therefore the sum of the products of the elements of the first row of A and their corresponding cofactors.

(It is possible to define |A| in terms of any other row or column but for simplicity, the first row only is used)

Therefore the 2 x 2 matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Has cofactors:

$$c_{11} = m_1 = |a_{22}| = a_{22}$$

And:

$$c_{12} = -m_2 = -|a_{21}| = -a_{21}$$

And the determinant of **A** is:

$$|A| = a_{11}c_{11} + a_{12}c_{12} = a_{11}a_{22} - a_{12}a_{21}$$

Example 1:

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$
$$|A| = (3)(2) - (1)(1) = 5$$

For a 3 x 3 matrix: Matrices - Operations

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

The cofactors of the first row are:

$$c_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{22}a_{33} - a_{23}a_{32}$$

$$c_{12} = -\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} = -(a_{21}a_{33} - a_{23}a_{31})$$

$$c_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{21}a_{32} - a_{22}a_{31}$$
Freshman Engineering

The determinant of a matrix A is:

$$|A| = a_{11}c_{11} + a_{12}c_{12} = a_{11}a_{22} - a_{12}a_{21}$$

Which by substituting for the cofactors in this case is:

$$|A| = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

Example:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ -1 & 0 & 1 \end{bmatrix}$$

$$|A| = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$|A| = (1)(2-0) - (0)(0+3) + (1)(0+2) = 4$$

ADJOINT MATRICES

A cofactor matrix C of a matrix A is the square matrix of the same order as A in which each element a_{ij} is replaced by its cofactor c_{ij} .

Example:

If
$$A = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$$

The cofactor C of A is
$$C = \begin{bmatrix} 4 & 3 \\ -2 & 1 \end{bmatrix}$$

The adjoint matrix of **A**, denoted by adj **A**, is the transpose of its cofactor matrix

$$adjA = C^T$$

It can be shown that:

$$\mathbf{A}(\text{adj }\mathbf{A}) = (\text{adj}\mathbf{A}) \mathbf{A} = |\mathbf{A}| \mathbf{I}$$

Example:
$$A = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$$

 $|A| = (1)(4) - (2)(-3) = 10$
 $adjA = C^{T} = \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix}$

Freshman Engineering

$$A(adjA) = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} = 10/$$

$$(adjA) A = \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} = 10/$$

USING THE ADJOINT MATRIX IN MATRIX INVERSION

Since

$$AA^{-1} = A^{-1}A = I$$

and

$$\mathbf{A}(\mathrm{adj}\ \mathbf{A}) = (\mathrm{adj}\mathbf{A})\ \mathbf{A} = |\mathbf{A}|\ \mathbf{I}$$

then

$$A^{-1} = \frac{adjA}{|A|}$$

Example

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$$

$$A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 0.4 & -0.2 \\ 0.3 & 0.1 \end{bmatrix}$$

$$AA^{-1} = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} 0.4 & -0.2 \\ 0.3 & 0.1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

 $AA^{-1} = A^{-1}A = I$

$$A^{-1}A = \begin{bmatrix} 0.4 & -0.2 \\ 0.3 & 0.1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Example:

$$A = \begin{bmatrix} 3 & -1 & 1 \\ 2 & 1 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$

The determinant of A is

$$|\mathbf{A}| = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2$$

The elements of the cofactor matrix are

$$c_{11} = +(-1),$$
 $c_{12} = -(-2),$ $c_{13} = +(3),$ $c_{21} = -(-1),$ $c_{22} = +(-4),$ $c_{23} = -(7),$ $c_{31} = +(-1),$ $c_{32} = -(-2),$ $c_{33} = +(5),$

The cofactor matrix is therefore

$$C = \begin{bmatrix} -1 & 2 & 3 \\ 1 & -4 & -7 \\ -1 & 2 & 5 \end{bmatrix}$$

so
$$adjA = C^{T} = \begin{bmatrix} -1 & 1 & -1 \\ 2 & -4 & 2 \\ 3 & -7 & 5 \end{bmatrix}$$

and
$$A^{-1} = \frac{adjA}{|A|} = \frac{1}{-2} \begin{bmatrix} -1 & 1 & -1 \\ 2 & -4 & 2 \\ 3 & -7 & 5 \end{bmatrix} = \begin{bmatrix} 0.5 & -0.5 & 0.5 \\ -1.0 & 2.0 & -1.0 \\ -1.5 & 3.5 & -2.5 \end{bmatrix}$$

The result can be checked using

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1} \mathbf{A} = \mathbf{I}$$

The determinant of a matrix must not be zero for the inverse to exist as there will not be a solution

Nonsingular matrices have non-zero determinants

Singular matrices have zero determinants

- Linear Equations

 Linear equations are common and important for survey problems
- Matrices can be used to express these linear equations and aid in the computation of unknown values
- n equations in n unknowns, the a_{ij} are numerical coefficients, the b_i are constants and the x_i are unknowns

The equations may be expressed in the form

$$AX = B$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{1n} \\ a_{21} & a_{22} & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n1} & a_{nn} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \text{ and } B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

 $n \times n$

n x 1

n x 1

Number of unknowns = number of equations = n

If the determinant is nonzero, the equation can be solved to produce n numerical values for x that satisfy all the simultaneous equations

To solve, premultiply both sides of the equation by ${\bf A}^{-1}$ which exists because $|{\bf A}| \neq {\bf 0}$

$$\mathbf{A}^{-1} \mathbf{A} \mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$$

Now since

$$\mathbf{A}^{-1} \mathbf{A} = \mathbf{I}$$

We get
$$\mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$$

So if the inverse of the coefficient matrix is found, the unknowns, X would be determined

Freshman Engineering

63

Example

$$3x_1 - x_2 + x_3 = 2$$

 $2x_1 + x_2 = 1$
 $x_1 + 2x_2 - x_3 = 3$

The equations can be expressed as

$$\begin{bmatrix} 3 & -1 & 1 \\ 2 & 1 & 0 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

When A^{-1} is computed the equation becomes

$$X = A^{-1}B = \begin{bmatrix} 0.5 & -0.5 & 0.5 \\ -1.0 & 2.0 & -1.0 \\ -1.5 & 3.5 & -2.5 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 7 \end{bmatrix}$$

Therefore

$$x_1 = 2$$
,
 $x_2 = -3$,
 $x_3 = -7$

The values for the unknowns should be checked by substitution back into the initial equations

$$x_1 = 2$$

$$x_2 = -3$$

$$x_3 = -7$$

$$3x_1 - x_2 + x_3 = 2$$

$$2x_1 + x_2 = 1$$

$$x_1 + 2x_2 - x_3 = 3$$

$$3 \times (2) - (-3) + (-7) = 2$$

$$2 \times (2) + (-3) = 1$$

$$(2) + 2 \times (-3) - (-7) = 3$$

Rank of a matrix:

Let A is be an matrix .If A is null matrix, we define its rank to be 0 (zero).

- If A is non zero matrix ,we say that 'r' is the rank of A if
- (i) every (r+1)th order minor of A is 0(zero) and
- (ii) there exists at least one rth order minor of A which is not zero
- Rank of A is denoted by $\rho(A)$
- Note:
- 1) Every matrix will have rank
- 2) Rank of a matrix is unique
- 3) ρ (A)= 1 when A is a non-zero matrix
- 4)If A is a matrix of order rank of $A = \rho(A) \min(m,n)$
- •5)If ρ (A) = r then every minor of A of order r+1 or more is zero
- 6)Rank of the identity matrix In is n
- 7)If A is a matrix of order 'n' and A is non-singular (i.e; det A 0) then ρ (A)=n.
- 8)The rank of the transpose of a matrix is the some as that of the original matrix(i.e; ρ (A)= ρ (AT))
- 9) If A and B are two equivalent matrices then rank A= rank B
- 10) if A and B are two equivalent matrixes then rank A = rank B.

2) Find rank of the matrix
$$\begin{bmatrix} 1 & -2 & -1 \\ -3 & 3 & 0 \\ 2 & 2 & 4 \end{bmatrix}$$

Sol:-
$$\det A = (A) = 1(12-0) - (-2)(-12-0) - 1(-6-6)$$

= $12-24+12=0$

... A is singular

Let us take a submatrix of given matrix

$$B = \begin{bmatrix} 1 & -2 \\ -3 & 3 \end{bmatrix} \Rightarrow \{B\} = 3.6 = .3 \neq 0$$

Rank of given matrix = submatrix rank = P(A) = 2

Find the rank of the matrix
$$A = \begin{bmatrix} -1 & 0 & 6 \\ 3 & 6 & 1 \\ -5 & 1 & 3 \end{bmatrix}_{3x3}$$

Det A of given matrix (A) =
$$-1(18-1) - 0(9+5) + (3+30) = -17-0+198$$

= $181 \neq 0$

A is non – singular third order matrix

rank of $A = \rho(A) = 3 = order$ of given matrix.

Echelon form:

The Echelon form of a matrix A is an equivalent matrix, obtained by finite number of elementary operations on A by the following way.

- The zero rows, if any, are below a nonzero row
- The first nonzero entry in each nonzero row is one (1)
- 3) The number of zeros before the first nonzero entry in a row is less than the number of such zeros in the next row immediately below it.

Note:- (i) Condition (2) is optinal

(ii) The rank of A is equal to the number of nonzero rows in its echelon form.

Solved Problems:

1) Find the rank of the matrix by echelon form

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$$

Sol:- Given A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - R_1$$
; $R_3 \rightarrow R_3 - 2R_1$

$$\begin{bmatrix}
 1 & 2 & 3 \\
 0 & 2 & -1 \\
 0 & 2 & -1
 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - 2R_3$$

$$\begin{bmatrix}
 1 & 2 & 3 \\
 0 & 2 & -1 \\
 0 & 0 & 0
 \end{bmatrix}$$

- $\square \rho(A) = Rank \text{ of } A = number \text{ of non zero rows} = 2$
- 2) Find the rank of the matrix $\begin{bmatrix} 4 & 2 & 3 \\ 8 & 4 & 6 \\ -2 & -1 & -15 \end{bmatrix}$

Sol :- Given A =
$$\begin{bmatrix} 4 & 2 & 3 \\ 8 & 4 & 6 \\ -2 & -1 & -15 \end{bmatrix}$$

$$R_2 \rightarrow R_2-2R_1$$
; $R_3 \rightarrow 2R_3+R_1$

$$\sim \begin{bmatrix} 4 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \therefore \text{ Rank of A} = \rho \text{ (A)} = \text{Number of non zero rows} = 1$$

3) Find the value of K such that the rank of A = $\begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & k & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$ is 2

Sol:- Given A =
$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & k & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - R_1$$
; $R_3 \rightarrow R_3 - 3R_1$

$$\begin{bmatrix}
1 & +1 & -1 & 1 \\
0 & -2 & k+1 & -2 \\
0 & -2 & +3 & -2
\end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_2$$

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & -2 & k+1 & -2 \\ 0 & 0 & -k+2 & 0 \end{bmatrix}$$

Give rank of A is 2, there will be only two non zero rows

$$\Rightarrow K = 2$$

Normal form:

Every m x n matrix of rank r can be reduced to the for [Ir 0] or Ir or (3) $\begin{bmatrix} Ir & 0 \\ 0 & 0 \end{bmatrix}$ by a finale number of elementary row or column transformations. Here 'r' indicates rank of the matrix. Solved Problems:

1) Find the rank of the matrix by using normal form where $A = \begin{bmatrix} 2 & 3 & 7 \\ 3 & -2 & 4 \\ 1 & -3 & -1 \end{bmatrix}$

Sol:- Given A =
$$\begin{bmatrix} 2 & 3 & 7 \\ 3 & -2 & 4 \\ 1 & -3 & -1 \end{bmatrix}$$

$$R_1 \leftrightarrow R_3$$

$$\begin{bmatrix} 1 & -3 & -1 \\ 3 & -2 & 4 \\ 2 & 3 & 7 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - 3R_1 ; R_3 \rightarrow R_3 - 2R_1$$

$$\begin{bmatrix} 1 & -3 & -1 \\ 0 & 7 & 7 \\ 0 & 9 & 9 \end{bmatrix}$$

$$C_2 \rightarrow C_2 + 3C_1$$
; $C_3 \rightarrow C_3 + C_1$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 7 \\ 0 & 9 & 9 \end{bmatrix}$$

$$R_2 \rightarrow R_2 \, \frac{1}{7} \,$$
 , $R_3 \rightarrow R_3 \, . \, \frac{1}{9}$

$$-\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_2$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$C_3 \to C_3 - C_2$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
I^{22} & 0 \\
0 & 0
\end{bmatrix}$$

Rank of $A = \rho(A) = r = 2 = unit matrix order$

$$\begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$$
 by using normal form.

Sol: Given
$$A = \begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$$

$$C_1 \leftrightarrow C_2$$

$$A = \begin{bmatrix} 1 & 0 & 2 & -2 \\ 0 & 4 & 2 & 6 \\ 1 & 2 & 3 & 1 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_1$$

$$\begin{bmatrix}
1 & 0 & 2 & -2 \\
0 & 4 & 2 & 6 \\
0 & 2 & 1 & 3
\end{bmatrix}$$

$$C_3 \rightarrow C_3 - 2C$$
, $C_4 \rightarrow C_4 + 2C_1$

$$-\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & -6 & 6 \\ 0 & 2 & -3 & 3 \end{bmatrix}$$

$$R_3 \rightarrow 2R_3 R_2$$

$$-\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & -6 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C_2 \rightarrow C_2 \cdot \frac{1}{4}$$

$$-\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -6 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C_3 \rightarrow C_3 + 6C_2, C_4 \rightarrow C_4 - 6C_2$$

$$-\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$-\begin{bmatrix} I^2 & 0 \\ 0 & 0 \end{bmatrix}$$

Rank of
$$A = \rho(A) = r = 2$$

Inverse of Non-singular matrix by Gauss - Jordan method:-

We can find the inverse of a non-singular square matrix using elementary row operations only. NRCM

Suppose A is a nonsingular square matrix of order n we write A= IoA

Now we apply elementary row operations only to the matrix A and the prefactor I_n of the R.H.S. We will do this till we get an equation of the form $I_n = BA$. Then abviously B is the inverse of A.

1) Find the inverse of the Matrix
$$\begin{bmatrix} 2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$
 by using Gaus – Jordan Method

Sol:- Given A =
$$\begin{bmatrix} 2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

Write
$$A = I_n A$$

$$\begin{bmatrix} 2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} . A$$

$$R_1 \leftrightarrow R_2$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 3 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot A$$

$$R_2 \rightarrow R_2 - 2R_1$$
; $R_3 \rightarrow R_3$ - R_4

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & 1 \\ 0 & -2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & -1 & 1 \end{bmatrix} . A$$

$$R_2 \rightarrow R_2 \cdot (\frac{-1}{3})$$

$$\begin{bmatrix} 1 & 1 & -1/3 \\ 0 & 1 & -1/3 \\ 0 & -2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -1/3 & 2/3 & 0 \\ 0 & -1 & 1 \end{bmatrix}. A$$

$$R_1 \rightarrow R_1 - R_2; R_3 \rightarrow R_3 + 2R_2$$

$$\begin{bmatrix} 1 & 0 & 4/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & -2/3 \end{bmatrix} = \begin{bmatrix} 1/3 & 1/3 & 0 \\ -1/3 & 2/3 & 0 \\ -2/3 & 1/3 & 1 \end{bmatrix}$$

$$R_3 \rightarrow R3(-3/2)$$

$$\begin{bmatrix} 1 & 0 & 4/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/3 & 1/3 & 0 \\ -1/3 & 2/3 & 0 \\ 1 & -1/2 & -3/2 \end{bmatrix} . A$$

$$R_1 \rightarrow R_1 - 4/3 . R_3; R_2 \rightarrow R_2 + 1/3 . R_3$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 1/2 & -1/2 \\ 1 & -1/2 & -3/2 \end{bmatrix} . A$$

$$I_{3x3} = B.A \text{ where } B = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 1/2 & -1/2 \\ 1 & -1/2 & -3/2 \end{bmatrix} \text{ is the inverse of given matrix.}$$

Exercise:

Find the inverse of the following matrixes by using Gaugs - Jordan method.

$$\begin{bmatrix} -2 & 1 & 3 \\ 0 & -1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

3)
$$\begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$

Solution of linear System of equations:

An equation of the form $a_1x_1+a_2x_2+a_3x_4+...+a_nx_n=b$(1)

Where x_1, x_2, \ldots, x_n are unknowns and a_1, a_2, \ldots, a_n , b are constants is called a linear equations in n unknowns consider the system of m linear equations in n unknowns.

x₁,x₂....., x_n as given below

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b2$
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = bm$ (2)

where aij's and b_1, b_2, \dots, b_m are constants. An ordered n- tuple (x_1, x_2, \dots, x_n) satisfying all equations in (2) is called a solution of the system (2).

The System of equations in (2) can be written in matrix from A X= B(3)

Where
$$A = [aij], x = (x_1, x_2, ..., x_n)^T$$
, $B = (b_1, b_2, ..., b_m)^T$

The Matrix [A/B] is called the augmented matrix of the system(2)

If B=0 in (3), the system is said to be Homogeneous otherwise the system is said to be non - homogeneous.

- * The system AX = 0 is always consistent since X = 0 (i.e., $x_0 = 0$, $x_2 = 0$, ..., $X_n = 0$) is always a solution of AX = 0 This solution is called Trival solution of the system.
- Given AX = 0, we try to decide whether it has a solution X ≠ 0. Such a solution, if exists, is called a non-Trival solution
- * If there is a least one solution for the given system is said to consistent, if the system does not have any solution, the system is said to be inconsistent.

Solution of Non-homogeneous system of equations:

The system AX=B is consistent i.e., it has a solution (unique or infinite) if and only if rank A = rank[A/B]

- i) If rank of A = rank of $[A/B] = r \circ n$ then the system is consistent and it has infinitely many solutions. There r = rank, n = number of unknowns in the system.
- If rant of A = rank of [A/B] = r = n then the system has unique solution.
- If rank of A≠ rank [A/B] then the system is inconsistent i.e., It has no solution.

Solved Problems:

1) Solve the system of equations x+2y+3z=1; 2x+37+8z=2; x+y+z=3 Sol: Given system can be written in matrix form

35

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 8 \\ 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} I \\ 2 \\ 3 \end{bmatrix}$$

$$A \qquad X = B$$

Augmented matrix of the given system

$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 8 & 2 \\ 1 & 1 & 1 & 3 \end{bmatrix}$$

 $R_2 \rightarrow R_2 - 2R_1$; $R_3 \rightarrow R_3 - R_3$

$$- \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & -2 & 2 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_2$$

$$- \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & -4 & 2 \end{bmatrix}$$

.. rank of A = rank [A/B] = r = 3 = number of unknowns = n

$$n = r = 3$$

.. The given system is consistent and it has unique solution. The solution is as follows from the last augmented matrix we can write as

$$-4z = 2$$

$$-y+2z=0$$

$$x+2y+3z = 1$$

$$z = \frac{-1}{2}$$

$$2z = y$$

$$x = 1-2y-3z$$

$$2(\frac{-l}{2}) = y$$

$$=1-2(-1)-3(\frac{-1}{2})$$

$$X = 9/2$$

.. The solution of given system : x=9/2; y=-1, z=-1/2

$$x+2y+z=14$$

$$3x+4y+z = 11$$

 $2x+3y+z = 11$

Sol:- Given system can be written in matrix form as

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 1 \\ 2 & 3 & 1 \end{bmatrix} \quad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 14 \\ 11 \\ 11 \end{bmatrix}$$

$$A \qquad X = B$$

The augmented matrix of the given system as

$$[A/B] = \begin{bmatrix} 1 & 2 & 1 & 14 \\ 3 & 4 & 1 & 11 \\ 2 & 3 & 1 & 11 \end{bmatrix}$$

 $R_2 \rightarrow R_2 - 3R_1$; $R_3 \rightarrow R_3 - 2R_4$

$$\begin{bmatrix}
1 & 2 & 1 & 14 \\
0 & -2 & -2 & -31 \\
0 & -1 & -1 & -17
\end{bmatrix}$$

$$R_3 \rightarrow 2R_3 - R_2$$

$$\begin{bmatrix}
1 & 2 & 1 & 14 \\
0 & -2 & -2 & -31 \\
0 & 0 & -0 & -3
\end{bmatrix}$$

Rank of $A = 2 \pm 3 = rank$ of AB

- .. The given system has no solution, i.e., the system is inconsistent
- 3) Show that the system x+y+z=6; x+2y+3z=14; x+4y+7z=30 are consistent and solve them. Sol:- Given system can be written in matrix form as

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 14 \\ 30 \end{bmatrix}$$

Augmented matrix

$$[A/B] = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 14 \\ 1 & 4 & 7 & 30 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - R_1$$
; $R_3 \rightarrow R_3 - R_1$
 $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 8 \\ 0 & 3 & 6 & 24 \end{bmatrix}$
 $R_3 \rightarrow R_3 - 3R_2$
 $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Rank of A = rank of AB = r = 2 < 3 = n = number of unknowns

... The system has consistent and it has infinitely many solutions.

.. The system has infinitely many solutions x=k-2; y=8-2k; z=k

β) For what values of λ and μ the system of equations

$$2x+3y+5z = 9$$

have (i) no solution

$$7x + 3y - 2x = 8$$

(ii) unique solution

$$2x+3y+1z = \mu$$

(iii) infinitely many solutions

The matrix form of given system of equations

$$\begin{bmatrix} 2 & 3 & 5 \\ 7 & 3 & -2 \\ 2 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 8 \\ \mu \end{bmatrix}$$

The augumented matrix of given system

$$[A/B] = \begin{bmatrix} 2 & 3 & 5 & 9 \\ 7 & 3 & -2 & 8 \\ 2 & 3 & \lambda & \lambda \end{bmatrix}$$

 $R_2 \rightarrow 2R_2 - 7R1$; $R_3 \rightarrow R_3 - R_4$

$$\begin{bmatrix}
2 & 3 & 5 & 9 \\
0 & -15 & -39 & -47 \\
0 & 0 & \lambda - 5 & \mu - 9
\end{bmatrix}$$

 $R_1 \rightarrow R_1 \Leftrightarrow$

$$\begin{bmatrix}
1 & 3/2 & 5/2 & 9/2 \\
0 & -15 & -39 & -47 \\
0 & 0 & \lambda - 5 & \mu - 9
\end{bmatrix}$$

Case 1: $\lambda=5$, $\mu\neq9$

Then
$$\rho(A) = 2$$
, $\rho(AB) = 3$
 $\rho(A) = 2 \neq 3 = \rho(AB)$

The system has no solution

Then
$$\rho(A) = \rho(A/B) = r=n=3$$

... The system has unique solution

Case 3:
$$\lambda=5$$
, $\mu=9$

Then
$$\rho(A) = \rho(A/B) = r=2 < 3 = n = number of unknowns$$

... The system has infinitely many solutions.

Consistency of system of homogeneous linear equations:

Consider of system of homogeneous linear equations in n unknowns namely

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$

This system can be written in matrix form

$$\begin{bmatrix} a_{11} & a_{12} & \dots & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$A \qquad X = 0$$

- If rank of A = n (number of variables)
- ⇒ The system of equations have only trivial solution (i.e., zero solution)
- If r n then the system have an infinitive number of non trivial solutions.

.

Solved Problems:

1) Find all the solutions of the system of equations

Sol. Given system can be written in matrix form

$$\begin{bmatrix} 1 & 2 & -I \\ 2 & I & I \\ I & -4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Augmented matrix

$$[A/B] = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 2 & 1 & 1 & 0 \\ 1 & -4 & 5 & 0 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - 2R_1$$
; $R_3 \rightarrow R_3 - R_1$

$$\begin{bmatrix}
1 & 2 & -1 & 0 \\
0 & -3 & 3 & 0 \\
0 & -6 & 6 & 0
\end{bmatrix}$$

$$R_3 \rightarrow R_3 - 2R_2$$

$$- \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Rank of A = rank of AB = r = number of non zero rows = 2<3=n= number of variables

... The system has infinitely many solutions from the above matrix

$$x+2y-z=0$$

$$\Rightarrow$$
 y=z

Let us consider n-r=3-2=1 arbitrary constants

Let z=k, then y=k

$$x=-k$$

Since
$$x+2y-z=0$$

 $\Rightarrow x=z-2y$

$$= z-2v$$

$$=k-2k$$

2) Solve the system of equations x+y+w=0; y+z=0, x+y+z+w=0, x+y+2z=0 Sol: Given system can be written in matrix form

$$\begin{bmatrix} 1 & I & 0 & I \\ 0 & I & I & 0 \\ I & I & I & I \\ I & I & 2 & 0 \end{bmatrix} \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Augmented matrix

$$[A/B] = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_1$$
; $R_4 \rightarrow R_4 - R_1$

$$R_4 \rightarrow R_4 - 2R_3$$

$$R_1 \rightarrow R_1 + R_4$$

Rank of A = Rank of AB = r =4=n= number of unknowns

- .. Therefore there is no non=zero solution.
- .. x=y = z=w=0 is only the trivial solution.

Gauss Seidel iteration method:

We will consider the system of equations

$$a_{11}x_1+a_{12}x_2+a_{13}x_3 = b_1$$
 (1)
 $a_{21}x_1+a_{22}x_2+a_{23}x_3 = b_2$ (2)
 $a_{11}x_1+a_{12}x_2+a_{13}x_1 = b_3$ (3)

Where the diagonal coefficients are not zero and are large compared to other coefficients such a system is called a "diagonally dominant system".

The system of equations (1) can be written as

$$x_1 = \frac{J}{a_{11}} [b_1 - a_{12}x_2 - a_{13}x_3].....(4)$$

 $x_2 = \frac{J}{a_{22}} [b_2 - a_{21}x_1 - a_{23}x_3].....(5)$
 $x_3 = \frac{J}{a_{22}} [b_3 - a_{31}x_1 - a_{32}x_2].....(6)$

Let the initial approximate solution be $x_1^{(0)}$, $x_2^{(0)}$, $x_3^{(0)}$ are zero Substitute x_2^0 , x_3^0 in (4) we get $x_1^1 = 1/a_{11}$ [b_1 - $a_{12}x_2^0$ - $a_{13}x_3^0$] this is taken as first approximation of x_1 Substitute x_1^1 , x_3^0 in (5) we get $x_2^1 = 1/a_{22}[b_2$ - $a_{21}x_1^1$ - $a_{23}x_3^0$]

This is taken as first approximation of x_2 now substitute x_1^1, x_2^1 in (6), we get

$$x_3^1 = 1/a_{33} b_3 - a_{31} x_1^1 - a_{32} x_2^1$$

This is taken as first approximation of x_3 continue the same procedure until the desired order of approximation is reached or two successive iterations are nearly same. The final values of x_1, x_2, x_3 obtained an approximate solution of the given system.