

UNIT-II SINGLE VARIABLE CALCULUS

Let y=f(x) be a function continuous in the closed internal [a,b]. This means that if a < c < b,

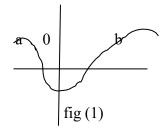
$$\lim_{x \to c} f(x) = f(c) \text{ and } \lim_{x \to a+0} f(x) = f(a), \lim_{x \to b-0} f(x) = f(b)$$

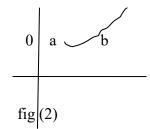
Let y = f(x) be differentiable in the closed interval [a,b]. This means that if a < c < b, the derivative of f(x) at x = c exists.

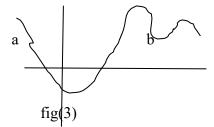
i.e.,
$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 exists

Further
$$\lim_{x\to a+0} \frac{f(x)-f(a)}{x-a}$$
 and $\lim_{x\to b-0} \frac{f(x)-f(b)}{x-b}$ exists.

Geometrically, if f(x) in a continuous function in the closed interval [a,b], the graph of y=f(x) is a continuous curve for the points x in [a,b]. If f(x) is derived in closed [a,b], there exists a unique tangent to the curve at every point in the interval [a,b]. This is shown in the following figures (1), (2), & (3).







Mean Value Theorems

I) Rolle's Theorem

Statement: Let f(x) be a function such that

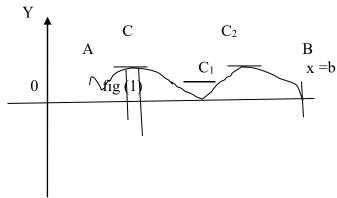
- i) It is continuous in closed interval [a,b]
- ii) It is differentiable in open interval [a,b] and
- f(a) = f(b)

Then there exists at least one point c in open interval (a,b) such that $f^1(c)=0$

Geometric interpretation of Roll's theorem

Consider the portion AB of the curve y=f(x), lying between x = a and x = b such that

- i) It goes continuously from A to B
- ii) It has a tangent at every point between A and B, and
- iii) Ordinate of A = ordinate of B



From the above fig(1), it is self evident that there is at least one point c (may be more) of the curve at which the tangent is parallel to the x – axis.

i.e. slope of the tangent at c(x = c) = 0. But the slope of the tangent at c is the value of the different co-efficient of f(x) with respect to x, therefore f(c) = 0.

Hence the theorem is proved.

Eg: 1) Verify Rolle's theorem for the function $f(x) = \frac{\sin x}{\cos x}$ or $e^{-x} \sin x$ in $[0,\pi]$

Solution: given $f(x) = \frac{\sin x}{x}$

- i) We know that every polynomial is continuous in [a,b] so that sin x & e^{-x} are also continuous function is $[0,\pi]$
- $\therefore \frac{\sin x}{-}$ is also continuous in $[0,\pi]$
- ii) Since $\sin x$ and e^x are derivable in $[0,\pi]$
- $\therefore \frac{\sin x}{-}$ is also continuous in $[0,\pi]$

iii)
$$F(o) = \frac{\sin o}{} = o \text{ and } f(\pi) = \frac{\sin w}{} = 0$$
$$\therefore f(o) = f(\pi)$$

Thus all the three conditions of Roll's theorem are satisfied.

 \therefore there exists $c \in (a,b)$ such that $f^{1}(c) = 0$

$$\therefore (\ c\text{-}a)^{m\text{-}1}\ (c-b\)^{n\text{-}1}\ [(m+n)\ c-(mb+na)]=0$$

$$\rightarrow (m+n) c - (mb+na) = 0$$

$$\rightarrow$$
 (m+n) c – mb+na

$$\rightarrow c = \frac{mb+na}{+} E(a,b)$$

[since the point $c \in (a,b)$ divides a and b internally in the ratio m:n]

:. Roll's theorem is verified.

(3) verify Rolle's theorem for the function $\log[\frac{x2+ab}{(+)}]$ in [a,b], a > o, b > o

Solution: let
$$f(x) = \log \frac{x^2 - ab}{(x^2 - ab)}$$
,
= $\log (x^2 + ab) - \log x (a + b)$
= $\log (x^2 + ab) - \log x - \log x (a + b)$

i) Since f(x) is a composite function of continuous functions in [a,b], it is continuous in [a,b].

ii)
$$f'(x) = \frac{1}{2+} 2x - \frac{1}{2} = \frac{x^2 - ab}{2(2+)}$$
, which exists $\forall x \in (a,b)$

 \therefore f(x) is derivable in (a,b)

iii)
$$f(a) = \log\left[\frac{2+}{a^2 - ab}\right] = \log 1 = 0$$

$$f(b) = \log\left[\frac{2+}{2+}\right] = \log 1 = 0$$

$$\therefore f(x) = f(b)$$

Thus f(x) satisfies all the three conditions of Rolle's theorem.

∴ there exists
$$c \in (a,b)$$
 such that $f^{l}(c) = 0$

i.e.,
$$\frac{c^2-ab}{(2+)}=0$$

i.e.,
$$c^2 - ab = 0$$

i.e.,
$$c^2 = ab$$

i.e.,
$$c = \pm \sqrt{ab}$$

$$\therefore$$
 c = \sqrt{ab} \in (a,b)

Hence Rolle's theorem is verified.

(4) Using Rolle's theorem, show that $g(x) = gx^3 - 6x^2 - 2x + 1$ has a zero between 0 and 1. Solution:

- i) since g(x) being a polynomial.
 - \therefore it is continuous on [0,1]
- ii) since the derivative of g(x) exists for all $x \epsilon(0,1)$
 - \therefore it is derivable on (0,1)

iii)
$$g(0)=1$$
, and $g(1) = 8-6-2+1=1$
 $g(0) = g(1)$

Hence all the conditions of Rolle's theorem are satisfied on [0,1]

Therefore, there exists a number $c \in (0,1)$ such that

$$g^{1}(c) = 0$$

Now
$$g^1(x) = 24x^2 - 12x - 2$$

$$\therefore$$
 g¹(c) = 0

i.e.,
$$24c^2 - 12c - 2 = 0$$

i.e.,
$$12c^2 - 6c - 1 = 0$$

i.e.,c =
$$\frac{3+\sqrt{21}}{12}$$

i.e.
$$c = 0.63$$
 or -0.132

Here clearly $c = 0.63 \in (0.1)$

Thus there exists at least one root between 0 & 1

- 5) Verify whether Rolle's theorem can be applied to the following functions in the intervals cited:
 - i) $f(x) = \tan x \text{ in } [0,\pi]$
 - ii) $f(x) = \frac{1}{2} in [-1, 1]$
 - ii) $f(x) = x^3$ in [1,3]

solution:

i) $F(x) = \tan x$ in $[0,\pi]$ since f(x) is discontinuous at $x = \pi/2$

Thus the condition (1) of Rolle's theorem is not satisfied.

Hence we can't apply Rolle's theorem here.

ii)
$$f(x) = \frac{1}{2} in [-1, 1]$$

Here f(x) is discontinuous at x = 0

Hence Rolle's theorem can't be applied.

iii)
$$f(x) = x^3 \text{ in } [1,3]$$

Here clearly f(x) is continuous on [1,3] and derivable on (1,3)

But f(1) G f(3)

i.e., condition (3) of Rolle's theorem fails

Hence we can't apply Rolle's theorem for $f(x) = x^3$ in [1,3]

Exercise: (A)

- I) verify Rolle's theorem for the following functions in the intervals indicated.
 - i) x^2 in [-1,1] ii) $x(x+3) e^{-x/2}$ in [-3,0]

iii)
$$x^{2/3} - 2x^{1/3}$$
 in (0,8) iv) $\frac{x^2 - x - 6}{x - 1}$ in (-2,3)

v)
$$x^2 - 2x - 3$$
 in (1,-3) vi) $|x|$ in [-1,1]

answers : i) c = 0

ii) c = -2

iii) c = 1

iv) not applicable

v) c = 1

vi) not applicable.

II) Langrange's means value theorem :- (LMVT)

Statement: let f(x) be a function such that

- i) It is continuous is closed interval [a,b] and
- ii) Differentiable in open interval [a,b]

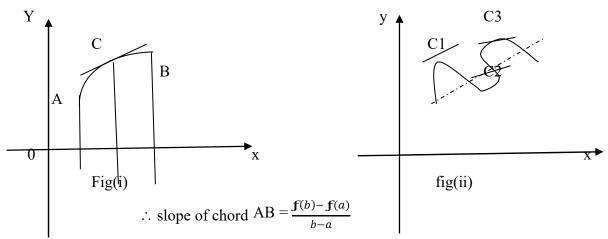
Then there exists at least one point of x say c in open interval (a,b) i.e. a < c < b such that

$$f^{l}(c) = \frac{f(b) - f(a)}{b - a}$$

Note: Langrange's mean value theorem is also known as first mean value theorem of differential calculus.

Geometric interpretation of Lagrange's mean value theorem

Let A,B be the points on the curve y = f(x) corresponding to x = a and x = b so that A = [a,f(a)] and B = [b,f(b)], shown in figure (i)&(ii) below.



By lagranges mean value theorem, the slope of the chord $AB = f^{1}(c)$, the slope of the tangent of the curve at c(x=c)

Hence the lagrange's mean value theorem asserts that if a curve AB has a tangent at each of its points, then there exists at least one point C on this curve, the tangent at which is parallel to the chord AB.

Another form of Lagrange's mean value theorem

Let f(x) be a function such that

- i) It is continuous in the closed interval [a,a+b],
- ii) $f^{1}(x)$ exists in the open interval (a,a+b)

Then there exists at least one number θ (0 < θ < 1)

such that
$$f(a+b) = f(a) + hf^{1}(a+\theta b)$$

Solved examples

Eg (1): Verify Lagrange's mean value theorem for

$$f(x) = x^3-x^2-5x+3$$
 in [0,4]

solution:

Since f(x) is a polynomial so that it is continuous and derivable for every value of x.

In particular, f(x) is continuous in closed interval [0,4] and derivable in open interval (0,4).

Hence by Lagange's mean value theorem, there exists a point c in open interval (0,4) such that

$$f^{l}(c) = \frac{f^{(4)} - f^{(0)}}{4 - 0}$$
i.e., $3c^{2} - 2c - 5 = \frac{f^{(4)} - f^{(0)}}{4}$ ----- (1) (:: $f^{l}(x) = 3x^{2} - 2x - 5$)

Here
$$f(4) = 4^3-4^2-5(4)+3 = 64-16-20+3=31$$

and
$$f(0) = 3$$

from (1), we have $3c^2-2c-5=7$

$$=3c^{2}-2c-12=0$$

$$\therefore c = \frac{2\pm\sqrt{4+144}}{6} = \frac{2\pm\sqrt{148}}{6} = \frac{1\pm\sqrt{37}}{3}$$

Here clearly $c = \frac{1 \pm \sqrt{37}}{3} c (0,4)$

2) Verify lagrage's mean value theorem for $f(x)=\log_e x$ in [1,e]

Solution: given
$$f(x) = \log_e x$$
 $f'(x) = \frac{1}{2}$

Since f(x) is a polynomial so that it is continuous in [1,e] and derivable in [1,e]

... By lagrage's mean value theorem, there exists a point c c (1,e) such that

$$f^{l}(c) = \frac{f(e) - f(1)}{e - 1} = \frac{1 - 0}{e - 1} = \frac{1}{e - 1} - -- (1)$$
but $f^{l}(c) = \frac{1}{c}$

$$\frac{1}{c} = \frac{1}{e - 1}$$

$$\therefore c = e - 1 \ c \ (1, e)$$

Hence lagrange's mean value theorem is verified.

3) State whether langrange's mean value theorem can be applied to the following function in the interval indicated justify your answer.

$$F(x) = x^{3/4}$$
 in [-1,1]

Solution:

Given
$$f(x) = x^{1/3}$$

Clearly f(x) is continuous in closed interval[-1,1]

But
$$f^{1}(x) = \frac{1}{3} x \frac{1}{3} = \frac{1}{3^{2/3}}$$
 is not derivable at $x = 0$.

Hence it is not derivable in open interval (-1,1)

Hence we can't apply lagrange's mean value theorem.

Exercise: (B)

- 1) Verify lagrange's mean value theorem for the following functions in the intervals indicated.
- i) $\cos x \text{ in } [0,\pi/2]$
- ii) |x| in [-1,1]
- iii) x^3-2x^2 in [2,5]
- v) $2x^2 7x + 10$; a-2, b=5
- 2) Find C of the lagrange's theorem for

$$F(x) = (x-1) (x-2) (x-3)$$
 on [0,4] ans: $C = \frac{16\pm 3}{3}$

3) State whether LMVT can be applicable for the function

$$F(x) = \frac{1}{2} in [-1,1]$$
 ans: not applicable

Eg:

1) If a < b, prove that $\frac{b-a}{1+2} < \tan^{-1} a < \frac{b-a}{1+2}$ using lagrange's mean value theorem reduce the following

i)
$$\frac{1}{4} + \frac{3}{25} < \tan^{-1} \frac{4}{3} < \frac{1}{4} + \frac{1}{6}$$

ii)
$$\frac{5+4}{20} < \tan^{-1}2 < \frac{+2}{4}$$

Solution:

Consider
$$f(x) = \tan^{-1}x$$
 in [a,b] for $0 < a < b < 1$

Since f(x) is continuous in closed interval [a,b] and derivable in open interval[a,b] we can apply lagrange's mean value theorem.

Hence exists a point c c (a,b) such that

$$f^{l}(x) = \frac{f^{(b)} - f(a)}{b-a}$$

Hence
$$f^{1}(x) = \frac{1}{1+x^{2}}$$

$$f^{l}(c) = \frac{1}{1+^{2}}$$

Thus there exists a point c, a < c < b such that

$$\frac{1}{1+\frac{2}{a}} = \frac{tan^{-1}b - tan^{-1}a}{b-a} \quad ----- (1)$$

We have a < c < b

$$1+a^{2} < 1+c^{2} < 1+b^{2}$$

$$\frac{1}{1+2} > \frac{1}{1+2} > \frac{1}{1+2}$$
(2)

Using 1) and 2), we have

$$\frac{1}{1+2} > \frac{tan^{-1}b - tan^{-1}a}{b-a} > \frac{1}{1+2}$$

or
$$\frac{b-a}{1+\frac{2}{2}} < \tan^{-1}b - \tan^{-1}a < \frac{ba}{1+\frac{2}{2}}$$
 ----- (3)

Hence the result.

Deduction:

i) We have
$$\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+b^2}$$
 ---- (4)

Put
$$b = \frac{4}{3}$$
, a=1, we get

$$= \frac{\frac{4}{3} - 1}{1 + \frac{16}{9}} < \tan^{-1} \left(\frac{4}{3}\right) - \tan^{-1} \left(1\right) < \frac{\frac{4}{3} - 1}{1 + 1^{2}}$$

$$\rightarrow \frac{\frac{4-3}{3}}{\frac{25}{5}} < \tan^{-1} \left(\frac{4}{3}\right) - \frac{\pi}{4} < \frac{\frac{4-3}{3}}{2}$$

$$\rightarrow \frac{3}{25} + \frac{\pi}{4} < \tan^{-1}\left(\frac{4}{3}\right) < \frac{\pi}{4} + \frac{1}{6}$$

$$\frac{2-1}{1+2^2} < tan^{-1}(2) - tan^{-1}(1) < \frac{2-1}{1+2^2}$$

$$\rightarrow \frac{1}{5} < \tan^{-1}(2) - \pi/4 > \frac{1}{2}$$

$$\rightarrow \frac{1}{5} + \frac{\pi}{4} < \tan^{-1}(2) < \frac{\pi}{4} + \frac{1}{2}$$

or
$$\frac{4+5}{20} < \tan^{-1}(2) < \frac{2+}{4}$$

2) Prove that $\frac{\pi}{6} + \frac{1}{5\sqrt{3}} \le \sin^{-1} \frac{3}{4} \le \frac{\pi}{6} \pm \frac{1}{8}$ using langrange's mean value theorem.

Solution: let $f(x) = \sin^{-1}(x)$, which is continuous and differentiable.

Now
$$f^{l}(x) = \frac{1}{\sqrt{1-x^2}} - f^{l}(c) = \frac{1}{\sqrt{1-c^2}}$$

By Langrange's mean value theorem, there exist c c (a,b) such that a < c < b and

$$f^{l}(c) = \frac{f(b) - f(a)}{b - a}$$

i.e,
$$\frac{1}{\sqrt{1-c^2}} = \frac{\sin^{-1}b - \sin^{-1}a}{b-a}$$
 ---- (1)

We have a < c < b

Put a = 1/2 and b = 3/5

$$\rightarrow \frac{3}{5} \frac{1}{2} < \sin^{-1}\frac{3}{4} - \sin^{-1}\frac{1}{2} < \frac{\frac{3}{5} \frac{1}{2}}{\sqrt{1 - (\frac{1}{4})^2}}$$

$$\rightarrow \frac{2}{10\sqrt{3}} < \sin^{-1}\frac{3}{4} - \frac{<1}{6} \frac{1}{8}$$

$$\frac{1}{6} + \frac{1}{5\sqrt{3}} < \sin^{-1}\frac{3}{5} < \frac{+1}{6} \frac{1}{8}$$

3) Prove using mean value theorem $|\sin u - \sin v| \le |u - v|$

Solution: if u = v, there, is nothing to prove.

If u > v, then consider the function

$$F(u) = \sin u \text{ on } [v,u]$$

Clearly, f is continuous on [v,u] and derivable on(v,u)

:. By Lagrange's mean valve theorem, there exists c c (v,u)

Such that
$$\frac{\mathbf{f}(u) - \mathbf{f}(v)}{u - v} = \mathbf{f}^1$$
 (c)

$$\frac{\sin u - \sin g v}{u - v} = \cos c$$

But
$$|\cos c| \le 1$$

$$\therefore \ |\frac{\sin u - \sin g \, v}{u - v}| \le 1$$

If v > u, then in similar manner, we have

$$|\sin v - \sin u| \le |v - u|$$

$$|\sin u - \sin v| \le |u - v|$$
 [$\therefore |x| = |x|$]

Hence for all u, v E R

$$|\sin u - \sin v| \le |u - v|$$

4) show that for any x > 0, $1+x < e^x < 1+e^x$

Solution:

Let
$$f(x) = e^x$$
 defined on $[0,x]$ and derivable on $(0,x)$

.. By Lagrange's mean value theorem

There exists a number c c (0,x) such that

$$\frac{\mathbf{f}(x) - \mathbf{f}(o)}{x - o} = \mathbf{f}^{1}(\mathbf{c})$$

$$\frac{e^{x} - e^{o}}{\mathbf{e}^{c}} = \mathbf{e}^{c}$$

$$\frac{e^{x} - 1}{\mathbf{e}^{c}} = \mathbf{e}^{c}$$
(1)

Now
$$c \in (0,x)$$
 i.e., $0 < c < x$

$$e^{o} < e^{c} < e^{x}$$
 $1 < \frac{e^{x} - 1}{c} < e^{x} < \text{from (1)} > 0$
 $x < e^{x} - 1 < xe^{x}$
 $1 + x < e^{x} < 1 + xe^{x}$

Exercise: (C)

1) Find c of cauchys mean value theorem for
$$f(x) = \sqrt{3}$$
 and $g(x) = \frac{1}{\sqrt{x}}$ in $[a,b]$

Solutions:

Clearly f, g are continuous on [a,b]

We have
$$f(x) = \sqrt{x}$$

$$F^{1}(x) = \frac{1}{2\sqrt{x}}$$
 And $g(x) = \frac{1}{\sqrt{x}}$
$$g^{1}(x) = -\frac{1}{2x\sqrt{x}}$$
, which exists on (a,b)

:. f,g are differentiable on (a,b)

Also
$$g^1(x) \neq 0 \ \forall \ x \ \epsilon(a,b) \ CR^+$$

: conditions of cauchys mean value theorem are satisfied on (a,b)

: there exists c c (a,b) such that

$$\frac{\mathbf{f}(b) - \mathbf{f}(a)}{\mathbf{g}(b) - \mathbf{f}(a)} = \frac{\mathbf{f}^{1}(c)}{\mathbf{g}^{1}(c)}$$

$$\frac{\sqrt{b} - \sqrt{a}}{\sqrt{b}} = \frac{\frac{1}{2\sqrt{c}}}{\frac{1}{\sqrt{c}}}$$

$$\frac{1}{\sqrt{b}} - \frac{1}{\sqrt{a}} = \frac{\frac{1}{2\sqrt{c}}}{\frac{1}{2c\sqrt{c}}}$$

$$\frac{\sqrt{b} - \sqrt{a}}{\sqrt{ab}} = \frac{2c\sqrt{c}}{\sqrt{c}}$$

$$\frac{\sqrt{ab} (\sqrt{b} - \sqrt{a})}{\sqrt{b} - \sqrt{a}} = c$$

$$\sqrt{ab} = c$$
Clearly $c = \sqrt{ab} c (a,b)$

Hence Cauchy mean value theorem is verified.

2) Find c of Cauchy mean value theorem on [a,b] for

$$f(x) = e^x \text{ and } g(x) = e^x (a,b > 0)$$

solution:

given
$$(x) = e^x$$
 and $g(x) = e^{-x}$

clearly f, g are continuous on[a,b] and f,g are differentiable on (a,b)

also
$$g^1(x) = -e^{-x} \neq 0 \ \forall \ x \in (a,b)$$
 such that

$$\frac{\mathbf{f}(b) - \mathbf{f}(a)}{\mathbf{g}(b) - \mathbf{f}(a)} = \frac{\mathbf{f}^{1}(c)}{\mathbf{g}^{1}(c)}$$

$$\frac{e^b - e^a}{e^{-b} - e^{-a}} = \frac{e^{-c}}{-e^{-c}}$$

$$\frac{e^b - e^a}{1 - 1} = -e^{2c}$$

$$\frac{e^b - e^a}{\frac{e^a - e^b}{e^a - e^b}} = -e^{2c}$$

$$\frac{e^b - e^a}{\frac{e^a - e^b}{}} = -e^{2c}$$

$$\frac{e^{a+b}(e^b-e^a)}{-(e^b-e^a)} = -e^{2c}$$

$$e^{a+b} = e^{2c}$$

$$a+b=2c$$

$$C = \frac{+}{2}c$$
 (a,b)

Hence LMVT is verified

Exercise :(D)

1) Verify cauchy mean value theorem for the following

i)
$$f(x) = \frac{1}{2}$$
, $g(x) = \frac{1}{2}$ on [a,b] ans: $c = \frac{2}{1}$

ii)
$$f(x) = \sin x$$
, $g(x) = \cos x$ on $[0, \frac{\pi}{2} \text{ ans } : c = \pi/4$

iii)
$$f(x) = \log x \text{ and } g(x) = x^2 \text{ in [a,b], b>a>1 show that} = \frac{+}{2 \cdot 2}$$

iv)
$$f(x) = x^2$$
, $g(x) = x^3$ in [1,2] ans : $c = \frac{14}{9}$

Taylor's theorem

Statement: If $f:[a,b] \rightarrow R$ is such that

- i) fⁿ⁻¹ is continuous on [a,b]
- ii) $f^{n-1}\text{is derivable on (a,b) or } f^{(n)} \text{ exists on (a,b) then there exists a point c c (a,b) such that}$ $f(b) = f(a) + \frac{b-a}{1!} f^{1}(a) + \frac{(b-a)^{2}}{2!} f^{1}(a) + \dots + \frac{(b-a)^{n-1}}{n-1} f^{n-1}(a) + R$
- i) Scholmitch Roche's form of remainder:

$$R_{n} = \frac{(b-a)^{p}(b-c)^{n-p} \mathbf{f}^{n}(c)}{(n-1)!} \quad ----- (1)$$

ii) Lagrange's form of remainder: put p=1, in (1) we get

$$R_n = \frac{(b-a)^n f^n(c)}{1}$$

iii) Cauchy's form remainder: put p=1 in (1), we get

$$R_{n} = \frac{(b-a) (b-c)^{n-1} f^{n}(c)}{(n-1)!}$$

Note: $(x) = f(a) + (x-a) f'(a) + \frac{(x-a)^2}{2!} f''(a) + \cdots$ is called Taylor's series for f(x) about

x = a

Machlaurin's theorem

Statement: If $f:[0,x] \to R$ is such that

- i) f^{h-1} is continuous on [0,x]
- ii) $f^{n-1} \text{ is derivable on}(0,x) \text{ then there exists a real number } \theta \text{ c } (0,1) \text{ such that}$ $f(x) = f(0) + x \text{ } f^{1}(0) + \frac{x^{2}}{2!} \text{ } f''(0) + \dots + x^{n-1} \text{ } f^{(n-1)}(0) + R$
- i) Roche's form of remainder:

$$R_{n} = \frac{x^{n}(1-\theta)^{n-p} \mathbf{f}^{n}(\theta x)}{(n-1)!} \quad ----- (1)$$

ii) Langrange's form remainder: put p=n in (1)

We get
$$R_n = \frac{1}{1} f^n(\theta x)$$

iii) Cauchys form of remainder : put p=1 in (1)

We get
$$R_n = \frac{x(1-\theta)^{n-p} \mathbf{f}^n(\theta x)}{(n-1)!}$$

Note: $f(x) = f(0) + xf'(0) + \frac{2}{2!} f'''(0) + \dots + \frac{x^n}{!} f''(0) + \dots$ is called maclaurin's series expansion of f(x).

Solved examples

1) Obtain Taylor's series expansion of $f(x) = e^x$ in powers of x+1

Obtain the talylor's series expansion of e^x about x = -1.

Solution: let
$$f(x) = e^x$$
 about $x = -1$

Here
$$a = -1$$

$$f(x) = e^x f^1(x) = e^x f^1(a) = e^{-1}$$

$$f'(x) = e^{x}$$
 $f'(a) = e^{-1}$

We know that the Talylor's series expansion of f(x) about x = a is

$$f(x) = f(a) + (x-a) f'(a) + \frac{(x-a)^2}{2!} f''(a) + \cdots (1)$$

put
$$f(x) = e^x \& a=-1 \text{ in } (1)$$
, we get

$$e^{x} = f(-1) + (x+1) f^{1}(-1) + \frac{(+1)^{2}}{2!} f^{11}(-1) + \dots$$

$$e^{x} = e^{-1} + (x+1) e^{-1} + \frac{(+2)^{2}}{2!} + \dots$$

 $e^x = e^{-1} \left[1 + (x+1) + \frac{(x+1)^2}{2!} + \dots \right]$ is the required Taylor's series expansion about x = -1

2) Show that
$$\frac{\sin^{-1}x}{\sqrt{1-x^2}} = x+4 \frac{x^3}{3!} + \dots$$

Let
$$f(x) = \frac{\sin^{-1}x}{\sqrt{1-x^2}}$$
 then $f(0) = 0$

$$\sqrt{1-x^2}$$
 f(x) = sin⁻¹x-----(1)

Differentiating (1) w.r.t. x, we get

$$\sqrt{1-x^2}$$
 f¹(x) +f(x) $(\frac{-2x}{2\sqrt{1-x^2}}) = \frac{1}{\sqrt{1-x^2}}$

$$(1-x^2) f^1(x) - xf(x) = 1$$
-----(2)

Now
$$f^{1}(0) = 1$$

Differentiate (2) w.r.t. x, we get

$$(1-x^2) f^{11}(x) + f^{1}(x) (-2x) - x f^{1}(x) - f(x) = 0$$
-----(3)

$$(1-x^2) f^{11}(x) - 3xf^{1}(x) - f(x) = 0$$

Then
$$f^{11}(0) = 0$$

Differentiate (3) w.r.t. x, we get

$$(1-x^2)$$
 $f^{111}(x) - 2x$ $f^{11}(x) - 3f^{1}(x) - 3x$ $f^{11}(x) - f^{1}(x) = 0$

$$(1-x^2) f^{111}(x) -5x f^{11}(x) -4f^{1}(x) = 0$$

$$f^{111}(o) - 4f^{1}(o) = 0$$

$$f^{111}(o) = 4$$
 (: $f^{1}(0) = 1$)

Similarly
$$f^{IV}(O) = 0$$

We have by Taylor's theorem,

F(x) = f(o)+1.x+
$$\frac{3}{2!}$$
 $\frac{111}{11!}$ $\frac{3}{3!}$ $\frac{111}{11!}$ $\frac{1}{4!}$ $\frac{1}{4!}$

$$\frac{\sin^{-1}x}{\sqrt{1-x^2}} = 0 + 1.x + \frac{11}{2!} \frac{3}{1!} \frac{111}{1!} \frac{4}{1!} \frac{1}{1!} \frac{1}{1!}$$

3) Show that
$$log(1+e^x) = log 2 + \frac{1}{2} + \frac{2}{8} - \frac{24}{192} + \dots$$
 and hence reduce that

$$\frac{2}{+1} = \frac{1}{2} + \frac{1}{4} - \frac{1}{48} + \dots$$

Solution: let $f(x) = \log(1+e^x)$ then $f(0) = \log 2$

Differentiate successively w.r.t. x, w get

$$f^{l}(x) = \frac{1}{1+} \stackrel{x}{\therefore} f^{l}(0) = \frac{1}{1+1} = \frac{1}{2}$$

$$f^{l1}(x) = \frac{(1+e^{x})^{x} - e^{x}e^{x}}{(1+)^{2}} = \frac{1}{(1+)^{2}} \stackrel{\cdot}{\therefore} f^{l}(0) = \frac{1}{(1+1)^{2}} = \frac{1}{4}$$

$$f^{l1l}(X) = \frac{(1+e^{x})^{2}e^{x} - 2e^{x}(1-e^{x})e^{x}}{(1+)^{4}} = \frac{(1-e^{x})e^{x}[e^{x} + e^{2x} - 2e^{2x}]}{(1+)^{4}}$$

$$= \frac{x - e^{2x}}{(1+)^{3}}$$

$$\therefore f^{l1l}(0) = 0$$

$$\frac{(1+e^x)^3(e^x-2e^{2x})-(e^x-e^{2x}) \ 3(1+e^x)^2e^x}{(1+)^6}$$

$$=\frac{(1+e^x)(e^x-2e^{2x})-3e^x(1-1)}{(1-1)^4}=\frac{2}{16}=\frac{1}{8}$$

Substituting the values of f(o), $f^{II}(o)$,-----in the maclaurin's series

Deduction:

Differentiating the result given by (1) w.r.t x,

We get
$$\frac{1}{1+2}e^x = \frac{1}{2} + \frac{2}{8} - \frac{3}{48} + \dots$$

4) Verify Taylor's theorem for $f(x) = (1-x)^{5/2}$ with lagrange's form of remainder upto 2 terms in the interval [0,1].

Solution: consider $f(x) = (1-x)^{5/2}$ in [0,1]

- i) f(x), f'(x) are continuous in [0,1]
- ii) $f^{II}(x)$ is differentiable in (0,1)

Thus f(x) satisfies the conditions of Taylor's theorem.

We consider Taylor's theorem with Lagrange's form of remainder

$$f(x) = f(0) + xf'(0) + \frac{2}{2!} f^{11}(0)$$
 with $0 < \theta < 1$ -----(1)
Here $n = p = 2$, $a = 0$, and $x = 1$

$$f(x) = (1-x)^{5/2}$$
 then $f(0) = 1$

$$f^{1}(x) = \frac{5}{2}(1-x)^{3/2}$$
 then $f^{1}(0) = -5/2$

$$f^{II}(x) = \frac{15}{4} (1-x)^{1/2}$$
 then $f^{II}(\theta x) = \frac{15}{4} (1-\theta x)^{1/2}$

i.e.,
$$f^{II}(\theta) = \frac{15}{4}$$
 $(1-\theta)^{1/2}$

and
$$f(1) = 0$$

From (1), we have
$$f(x) = f(0) + xf^{1}(0) + \frac{2}{2!} f^{11}(\theta x)$$

Substituting the above values, we get

$$\theta = \frac{9}{25} = 0.36$$

 \therefore θ lies between 0 and 1.

Thus Taylor's theorem is verified.

5) Obtain the Maclaurins series expression of the following functions.

i)
$$e^x$$
 ii) $\sin x$ iii) $\log_e(1+x)$

solutions:

i) let
$$f(x) = e^x$$
 then
 $f^1(x) = f^{11}(x) = f^{111}(x) = ---- = e^x$
 $\therefore f(0) = f^1(0) = f^{11}(0) = f^{111}(0) - --- = e^0 = 1$

The Maclaurins series expression of f(x) is given by

$$f(x) = f(0) + xf^{1}(0) + \frac{2}{2!} f^{11}(0) + \dots + \frac{1}{!} f^{n}(0) + \dots$$
i.e., $e^{x} = 1 + \frac{2}{1!} + \frac{2}{2!} + \frac{3}{3!} + \dots + \frac{1}{!} + \dots$

ii) let
$$f(x) = \sin x$$
 then $f(0) = \sin 0 = 0$

Then
$$f^{I}(x) = \cos x \rightarrow f^{I}(0) = \cos 0 = 1$$

 $f^{I1}(x) = -\sin x \rightarrow f^{I1}(0) = -\sin 0 = 0$
 $f^{I11}(x) = -\cos x \rightarrow f^{I11}(0) = -\cos 0 = -1$
 $f^{IV}(x) = \sin x \rightarrow f^{IV}(0) = \sin 0 = 0$

substituting all these values in maclarins series of f(x) given by,

$$f(x) = f(0) + xf^1(0) + \qquad f^{11}(0) + \qquad \frac{1}{2!} \qquad \frac{1}{3!} \qquad \frac{1}{4!} \qquad \frac{$$

iii) let
$$f(x) = \log_e (1+x)$$

$$f^{I}(x) = \frac{1}{1+} \rightarrow f^{I}(0) = \frac{1}{1+0} = 1$$

$$f^{II}(x) = \frac{1}{(1+)^{2}} \rightarrow f^{II}(0) = \frac{1}{(1+0)^{2}} = 1$$

$$f^{III}(x) = \frac{2}{(1+)^{3}} \rightarrow f^{III}(0) = \frac{2}{(1+0)^{3}} = 2$$

$$f^{IV}(x) = \frac{-6}{(1+)^{4}} \rightarrow f^{IV}(0) = \frac{-6}{(1+0)^{4}} = -6$$

substituting all these values in macluring series expansion of
$$f(x)$$
 given by,
$$f(x) = f(0) + xf^{1}(0) + \underbrace{f^{11}(0) + \underbrace{111}_{2!} \underbrace{f^{11}(0) + \underbrace{111}_{4!} \underbrace{f^{11}(0) + \underbrace{f^$$

Exercise: (E)

- 1) Obtain the maclaurins series for the following functions.
 - i) $\cos x$ ii) $\sin x$ iii) $(1-x)^n$
- 2) Obtain the Taylor's series expansion of sinx in powers of x $\frac{\pi}{4}$
- 3) Write Taylor's series for $f(x) = (1-x)^{5/2}$ with lagrange's form of remainder upto 3 terms in the interval [0,1].

Applications of definite integral's

Definite integral:

Definition

Given a function f(x) that is continuous on the interval [a,b] we divide the interval into n sub intervals of equal width Δx and from each interval choose a point, x_i^* . Then the definite integral of f(x) a to b is

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{b} f(x_{i}^{*}) \Delta x$$

The integration procedure helps us in evaluating length of plane curves, volume of solids of revolutions, surface area of solids of revolution, determination of centre of mass of a plane mass distribution etc.,

Surface areas of Revolution:

Equation of curve	Axis of revolution	Surface area
Cartesion form:		$S = 2\pi \int_{a}^{b} y \sqrt{1 + (\frac{dy}{2})^2} dx$
i) Y = f(x)	X - axis	
ii) $X=f(y)$	Y – axis	$S = 2\pi \int_{-\infty}^{\infty} y \sqrt{1 + (\frac{dy}{2})^2} dy$

Solved examples

1) Find the area of the surface of the revolution generated by revolving about the x – axis of the arc of the parabola y^2 =12x from x =0 to x=3

Solution: given
$$y^2 = 12x$$

$$y = 2\sqrt{3} \sqrt{x}$$

$$\frac{dy}{dx} = 2\sqrt{3} \frac{1}{2\sqrt{x}} = \sqrt{\frac{3}{x}}$$

$$\therefore \text{ Surface area} = 2\pi \int_0^b y\sqrt{1 + (\frac{dy}{y})^2} \, dx$$

$$= 2\pi \int_0^3 2\sqrt{3} \sqrt{x} \sqrt{1 + \frac{3}{x}} \, dx$$

$$= 4\pi \sqrt{3} \int_0^3 \sqrt{x} \sqrt{1 + \frac{x+3}{x}} \, dx$$

$$= 4\pi \sqrt{3} \int_0^3 (1 + x)^{\frac{1}{2}}$$

$$= 4\pi \sqrt{3} \left[\frac{x+3^{3/2}}{3/2} \right]$$

$$= \frac{8\sqrt{3}}{3} \left[(6)^{3/2} - (3)^{3/2} \right]$$

$$= \frac{8}{\sqrt{3}} (3)^{3/2} \left[(2)^{3/2} - 1 \right]$$

$$= 24\pi \left[2\sqrt{2} - 1 \right]$$

2) Find the area of the surface of revolution generates by revolving one area of the curve $y=\sin x$ about the x-axis.

Solution: given curve is $y = \sin x$

Here x varies from 0 to $\pi/2$

$$\therefore \frac{dy}{dx} = \cos x$$

Hence required surface area

$$= 2\pi \int_{0}^{\pi/2} \sqrt{1 + (-t)^{2}} dx$$

$$= 2\pi \int_{0}^{\pi/2} \sin x \sqrt{1 + \cos^{2}x} dx$$

$$= 2\pi \int_{0}^{1} \sqrt{1 + t^{2}} dt \text{ (putting } \cos x = t)$$

$$= 2\pi \left[\frac{t}{2} \sqrt{1 + t^{2}} + \frac{1}{2} \sinh^{-1} t \right]_{0}^{1}$$

$$= 2\pi \frac{1}{2} \sqrt{2} + \frac{1}{2} \sin h^{-1} (1) - 0 - 0 \right]$$

$$= \pi \left[\sqrt{2} + \sin h^{-1} (1) \right]$$

3) The area of the curve $x = y^3$ between y = 0 and y = 2 is revolved about y-axis. Find the area of surface so generated.

Solution: given curve is $x = y^3$

Then
$$= 3y^2$$

∴ required surface area =
$$2\pi \int_0^2 x \sqrt{1 + (\frac{dx}{2})^2} \, dy$$

= $2\pi \int_0^2 y^3 \sqrt{1 + (3y^2)^2} \, dy$
= $2\pi \int_0^2 y^3 \sqrt{1 + 9y^4} \, dy$
= $2\pi \int_1^{145} \frac{\sqrt{t}}{36} dt$ (putting 1+9y⁴=t)
= $\frac{2\pi \int_0^2 y^3 \sqrt{1 + 9y^4} \, dy}{36}$
= $\frac{2\pi \int_0^2 y^3 \sqrt{1 + 9y^4} \, dy}{36}$
= $\frac{2\pi \int_0^2 y^3 \sqrt{1 + 9y^4} \, dy}{36}$
= $\frac{2\pi \int_0^2 y^3 \sqrt{1 + 9y^4} \, dy}{36}$

Exercise: (F)

- 1) Find the surface area generated by the revolution of an arc of the catenary y=C cos h $\frac{x}{2}$ about x axis ans : π c²[1+ $\frac{\sin h2}{2}$]
- 2) Find the area of the surface of revolution generated by revolving the arc of the curve a^2 y=x³ from x =0 to x =a about the x -axis ans: $\frac{\pi}{27}$ [10 $\sqrt{10}$ -1]
- 3) Find the surface area of s phere of radius 'a' ans: $4\pi a^2$

Volumes of solids of revolution:

Region		Volume of solid generated		
Castesion form				
i)	y=f(x) the $x-axis$ and the lines x	$V = \pi \int^{D} y^{2} dx$		
	=a, x=b			
ii)	x=g(y) the y – axis and the lines	$V = \pi \int^{a} x^{2} dy$		
	y=c, y=d			
iii)	$y = y_1(x)$, $y = y_2(x)$ the x – axis and	$V = \pi \int_{0}^{\pi} (x_2^2 - x_1^2) dy$		
	ordinates x=a, x=b			

Solved examples:

1) Find the volume of a sphere of radius 'a'.

Solution:

Sphere is formed by the revolution of the area enclosed by a semi circle its diameter

Equation to circle of radius 'a' is $x^2+y^2=a^2$ (1)

Then
$$y^2 = a^2 - x^2$$

In semi circle 'x' varies from -a to a.

$$\therefore \text{ Required volume} = \pi \int_{-a}^{a} dx$$

$$= \pi \int_{-a}^{a} (a^2 - x^2) dx$$

$$= \pi \left[a^2 x - \frac{x^3}{3} \right]_a^a$$

$$= \pi \left[a^3 - \frac{a^3}{3} + a^3 - \frac{a^3}{3} \right]$$

$$= \pi \left[2a^2 - \frac{2a^3}{3} \right]$$

$$= \frac{4}{3} \text{ cubic units}$$

2) Find the volume of the solid that result when the region enclosed by the curve $y=x^3$, y=0, y=1 is revolved about y - axis.

Solution:

Given curve is
$$y = x^3$$

Then
$$x=y^{1/3}$$

$$\therefore \text{ Required volume} = \pi \int_0^1 x^2 \text{ dy}$$
$$= \pi \int_0^1 (y^{1/3})^2 \text{ dy}$$

$$= \left[\frac{\frac{5/3}{5/3}}{\frac{5}{3}}\right]_{0}^{1}$$

$$= \frac{3}{5} [(1)^{5/3} - 0]$$

$$= \frac{3}{5} \text{ cu. units}$$

3) Find the area of the solid generated by revolving the arc of the parabola $x^2 = 12y$, bounded by its latusrectum about y - axis.

Solution:

$$x^2 = 12y = 4(3)y$$
 (i.e $x^2 = 4ay$)

let 'O' be the vertex and LL1 be the latusrectum as shown in fig.

for the arc OL, y varies from 0 to 3.

 \therefore Required volume = 2(volume generated by the revolution about the y – axis of the area OLC)

=
$$2\pi \int_0^3 x^2 dy$$

= $2\pi \int_0^3 (12) dy$
= $24\pi \left[\frac{y}{2} \right]_0^3 = 108\pi$ cubic units

4) Find the volume of the solid generated by revolving the ellipse $\frac{a}{2} + \frac{a}{2} = 1$ (0 < b < a) about the major axis.

Solution:

Given equation of the ellipse is

$$\frac{2}{2} + \frac{2}{2} = 1$$

When y = 0, x = \pm a

 \therefore major axis of the ellipse is x = -a to +a

(-a,o) (a,0) (o,b)

... The volume of the solid generated by the given ellipse revolving about the major axis

$$= \int_{-a}^{a} 2 \, dx$$

$$= 2\pi \int_{0}^{a} y^{2} \, dx$$

$$= 2\pi \int_{0}^{a} (b^{2} - \frac{b^{2}}{2})^{2} \, dy$$

$$= 2\pi \left[b^{2}x - \frac{b^{2}}{2} \frac{x^{3}}{3} \right]_{0}^{a}$$

$$= 2\pi \left[b^{2}a - \frac{b^{2}}{2} \frac{a^{3}}{3} - (0) \right]$$

$$=2\pi \left[ab^2 - \frac{ab^2}{3}\right] = \frac{4}{3} \pi ab^2$$

Exercise :(G)

1) Find the volume got by the revolution of the area bounded by x - axis, the catenary $y = a \cosh(\frac{x}{2})$ about the x-axis between the ordinates $x = \pm a$

Ans :
$$\pi a^3 (1 + \frac{1}{2} \sinh 2)$$

2) Find the volume of the solid when ellipse $\frac{2}{2} = 1$, (o< b< a) rotates about minor axis

Ans:
$$\frac{4^{-2}}{3}$$

Objective type Questions

- 1. The value of c of Rolle's theorem for $f(x) = \frac{\sin x}{1}$ in $((0,\Pi)$ is
 - a) Π b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$
- 2. Using which mean value theorem, we can calculate approximately the value of (65)^{1/6} in the easier way
 - a) Cauch's b) Lagrange's c) Taylor's II order d) Rolle's
- 3. The value of Cauchy's mean value theorem for $(x) = e^x$ and $g(x) = e^{-x}$ defined on [a,b], o<a
b is
 - a) \sqrt{ab} b) $\frac{a-b}{2}$ c) $\frac{+}{2}$ d) $\frac{2}{+}$
- 4. If f(x) is continuous in [a,b], $f^1(x)$ exists for every value of x in (a,b), f(a)=f(b), there exists at least one value c of x in (a,b) such that $f^1(c) = \underline{\hspace{1cm}}$

- a) 0
- b) a+b
- c) c
- d) b
- 5. Lagrange's mean value theorem for $f(x) = \sec x$ in (0.2Π) is
 - a) Applicable b) not applicable due to non-differentiability
 - c) applicable and $\frac{1}{2}$ d) not applicable due to discontinuity
- 6. $F(a+h) = f(a) + hf'(a) + \frac{h^2}{2} f^{II}(a) + \dots + \frac{h^2}{2} f^n(a+\theta h)$ is called
 - a) Taylor's theorem with lagrange form of remainder
 - b) Caughy's theorem with lagranges form of remainder
 - c) Raiman's theorem with lagrange form of remainder
 - d) Lagrange's theorem with lagrange form of remainder
- 7. If $f(x) = f(0) + \dots F^{II}(0)$, _then the series is called
 - a) Maclaurin's Series
- b) Taylor's Series

c) Cauchy's Series

- d) lagrange's series
- The value of Rolle's theorem in (-1,1) for $f(x) = x^3-x$ is

- b) $\pm \frac{1}{\sqrt{3}}$ c) $\frac{1}{2}$ d) $\pm \frac{1}{\sqrt{2}}$
- 9. The value of x so that $\frac{f^{(b)}-f(a)}{b-a}f^{(b)}(x)$ when a < x < b given $f(x)=\frac{1}{2}$, a=1, b=4
 - a) $\frac{3}{4}$
- b) $\frac{1}{2}$ c) $\frac{1}{4}$ d) $\frac{9}{4}$
- 10. The value of c of Cauchy's mean value theorem for the function $f(x) = x^2$, $g(x) = x^3$ in the interval [1,2] is

 - a) $\frac{14}{9}$ b) $\frac{3}{14}$ c) $\frac{17}{9}$
- 11. If f(o)=0, $f^{I}(0)=1$, $f^{II}(0)=1$, $f^{III}(0)=1$, then the machlaurin's expansion of f(x) is given by

 - a) $x + \frac{2}{2} + \frac{3}{3} + \dots$ b) $x + \frac{2}{2} + \frac{3}{6} + \dots$
 - c) $-x \frac{2}{2} + \frac{3}{3} + \dots$ d) $x \frac{2}{2} + \frac{3}{3} + \dots$
- 12. The value c of Rolle's theorem in $\left[\frac{1}{2},2\right]$ for $f(x) = x^2 + \frac{1}{2}$ is
- b) $\frac{5}{4}$ c) 1 d) $\frac{3}{2}$
- 13. Lagrange's mean value theorem for f(x)=secc in $(0,2\pi)$ is
- a) Not applicable due to discontinuity b) applicable & $c = \frac{1}{2}$
 - c) not applicable due to non differentiable d) applicable

14. In the	Taylor'	s theorem,	the cauch	y's form	of rem	ainder is

a)
$$\frac{h^{n-1}f^{n-1}(a-\theta h)}{h^n f^n (a+\theta h)}$$

b)
$$h^n$$
 f^n (a+ θh)

c)
$$\frac{h(1-\theta)^{n-1}f^n(a-\theta h)}{h^{n-1}}$$
 d) $\frac{h^{n+1}f(a-\theta h)}{h^{n-1}}$

d)
$$\frac{h^{n+1}\mathbf{f}(a-\theta h)}{}$$

15. The value of c in Rolle's theorem for $f(x) = \sin x \text{ in}(0,\pi a)$ is

a)
$$\frac{1}{2}$$

$$c)_{\overline{7}}$$

b)
$$\frac{\pi}{4}$$
 c) $\frac{\pi}{7}$ d) $\frac{\pi}{hn}$

16. The value of c in Rolle's theorem for $f(x)=x^2-x$ in (-1,1)

- a) 0
- b) 0.5
- c) 0.25

17. The value of c in Rolle's theorem for $f(x) = x^2 - x(0,1)$

- a) 0
- b) 0.5
- c) 0.25
- d) -0.5

18. The value of c in lagrange's mean value theorem for $f(x) = e^x$ in (0,1) is

a)
$$Log(e-e^{-1})$$

a) $Log(e-e^{-1})$ b) loge(c) c) log(e+1) d) log(e-1)

19. The value of c in Cauchy's MVT for $f(x)=e^x$ and $g(x)=e^{-x}$ in (3,7) is

- a) 4
- b) 5
- c) 4.5
- d) 6

20. The value of θ if $f(x)=x^2 & f(x+h)=f(x)+hf^1(x+\theta h)$

- a) -0.5
- b) 0.25 c) 0

21. The value of c in Cauchy's mean value theorem for $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{\sqrt{x}}$ in (1,4) is

- a) 1.5
- b) 2
- c) 2.5
- d) 3

22. The value of c in lagrange's mean value theorem for $f(x) = \log x$ in [1,e] is

- a) $(e-1)^{-1}$
- b) e+1
- c) e-1

23. Lagrange's mean value theorem is not applicable to the function $f(x) = x^{\frac{1}{3}}$ in [-1,1] because

- a) $F(-1) \neq f(1)$
- b) f is not continuous in [-1,1]

c) f is not derivable in (-1,1) d) f is not a objective function

24. Lagrange's MVT is not applicable to the function defined on [-1,1] by $f(x) = x\sin^{2}(x\neq 0)$ and

f(0)=0 because

- a) F(-1) = f(1)
- b) f is not continuous in [-1,1]

c) f is not deriable in (-1,1) d) f is not a one to one function

The value of c for lagrange's MVT for the function $f(x) = \cos x$ in $\left[0, \frac{\pi}{2}\right]$ is 25.

- a) $\cos^{-1}(\frac{2}{})$ b) $\sin^{-1}(\frac{2}{})$ c) $\sin^{-1}(\frac{1}{})$ d) $\cos^{-1}(\frac{1}{})$

26. The value of c for Rolle's theorem for f(x)=(x-a)(x-b) in [a,b] is

a)
$$-\frac{a+b}{2}$$
 b) \sqrt{ab} c) a+b

b)
$$\sqrt{ab}$$

d)
$$\frac{a+b}{2}$$

27. The value of c for lagrange's mean value theorem for f(x)=(x-2)(x-3) in [0,1] is

- c) 2.5

28. The value of c of Rolle's theorem for f(x)=(x-1)(x-2) in [0,3] is

- a) 1.5
- b) 2.5

29. The value of c of Cauchy's mean value theorem for $f(x)=\sin x$ and $g(x)=\cos x$ in $\left[0,\frac{\pi}{2}\right]$

a)
$$\frac{\pi}{0}$$
 b) $\frac{\pi}{6}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{3}$

b)
$$\frac{1}{6}$$

30. Maclaurin's expansion for
$$log(1+x)$$
 is

a) $x - \frac{2}{2} + \frac{3}{3} - \frac{4}{4} + \dots$ b) $x + \frac{2}{2} + \frac{3}{3} + \frac{4}{4} + \dots$

b)
$$x + \frac{2}{2} + \frac{3}{3} + \frac{4}{4} + \dots$$

b) c)
$$x + \frac{2}{2!} + \frac{3}{3!} + \frac{4}{4!} + \dots$$
 d) $x - \frac{2}{2!} + \frac{3}{3!} - \frac{4}{4!} + \dots$

31. Maclaurin's expansion of cosx is

a)
$$\sum_{k=0}^{\infty} \frac{K^{2r}}{(2r)!}$$

a)
$$\sum_{=0}^{\infty} \frac{K^{2r}}{(2)!}$$
 b) $\sum_{=0}^{\infty} \frac{(-1)^r K^{2r}}{(2)!}$

c)
$$\sum_{=0}^{\infty} \frac{(-1)^{r} (K^{2r+1})}{(2+1)!}$$
 d) $\sum_{=0}^{\infty} \frac{K^{2r+1}}{(2+1)!}$

d)
$$\sum_{=0}^{\infty} \frac{K^{2r+1}}{(2+1)!}$$

32. The expansion of e^x in powers of (x-1)

a)
$$E\left(\sum_{i=0}^{\infty} \frac{(1-K)^{i}}{i!}\right)$$
 b) $e^{-1} \sum_{i=0}^{\infty} \frac{(1-K)^{i}}{i!}$

b)
$$e^{-1} \sum_{k=0}^{\infty} \frac{(1-K)^k}{k!}$$

c)
$$e(\sum_{=0}^{\infty} \frac{(-1)^r (K-1)^r}{!})$$
 d) $\sum_{=0}^{\infty} \frac{(-1)^r (K-1)^r}{!}$

d)
$$\sum_{k=0}^{\infty} \frac{(-1)^{k}(K-1)^{k}}{k}$$

33. The expansion for sinx in powers of $(x-\frac{1}{2})$ is

a)
$$1 - \frac{1}{2}(x - \frac{\pi}{2})^2 + \frac{1}{4}(x - \frac{\pi}{2})^4 - \dots$$

b)
$$x+(x-\frac{\pi}{2})+\frac{1}{3!}(x-\frac{\pi}{2})^3+\dots$$

c)
$$1+\frac{1}{2}(x-\pi)^2+\frac{1}{4!}(x-\pi)^4+\dots$$

d)
$$x-(x-\pi)^2+\frac{1}{3!}(x-\pi)^3+\dots$$

34. Volume of the solid generated by revolving y=f(x), the x-axis and the lines x=a, x=b is

a)
$$\int_{a}^{b} \pi x^{2} dx$$

b)
$$\int_{0}^{b} (y^2 - x^2) dx$$

a)
$$\int_{0}^{b} \pi x^{2} dx$$
 b) $\int_{0}^{b} (y^{2} - x^{2}) dx$ c) $\int_{0}^{b} \pi y^{2} dx$ d) none

35. Volume of the solid generated by revolving the area bounded by the curve x=f(x), the y-axis and the lines y=a, y=b is

a)
$$\int_a^b \pi x^2 dx$$
 b) $\int_a^b \pi x^2 dy$ c) $\int_a^b \pi x^2 dx$ d) $\int_a^b \pi y^2 dy$

b)
$$\int_{a}^{b} \pi x^{2} dy$$

c)
$$\int_{a}^{b} \pi x^{2} dx$$

d)
$$\int_{a}^{b} \pi y^{2} dy$$