

# UNIT – II

**Eigen Values and Eigen Vectors** 

## **Eigen Values:-**

Let  $A = [aij]_{nxn}$  be a square matrix of order n & $\lambda$  is the scalar quantity, is called the

- The Matrix A  $\lambda I$  is called the characteristic Matrix is A where I is the unit matrix of order n.
- The polynomial  $|A \lambda I|$  in  $\lambda$  of degree n is called characteristic polynomial of A.
- 3) The equation  $|A \lambda I| = 0$

i.e., 
$$\begin{bmatrix} a21 & a22 - \lambda & a2n \\ \vdots & an1 & an2 & ann - \lambda \end{bmatrix} = 0$$
 is called characteristic equation of A

**Note:-** The characteristic equation is of the form  $(-1)^n \lambda^n + C_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_n = 0$ 

- The roots of the characteristic equation  $|A \lambda I| = 0$  are called characteristic roots (or) latent roots (or) Eigen values of the Matrix A.
- Note: 1. The set of all eigen values of A is called the Spectrum of A.
  - 2. The degree of the characteristic polynomial is equal to the order of the matrix.

#### **Eigen Vectors:-**

- Let A = [aij]nxn, A non zero vector x is said to be a characteristic vector of A if  $\lambda$  a scalar  $\lambda$  such that  $AX = \lambda X$ .
- If  $AX = \lambda X$ ,  $(x \neq 0)$  we say that x is Eigen vector or characteristic vector of A corresponding to the Eigen value or characteristic value  $\lambda$  of A.

#### **Solved Problems:**

- 1) Find the Eigen values of  $A = \begin{bmatrix} 5 & 4 \\ 4 & 2 \end{bmatrix}$ Sol:- Step 1:- Given Matrix  $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$
- Step 2:- Characteristic equation  $|A \lambda I| = 0$   $= \begin{bmatrix} 5 \lambda & 4 \\ 1 & 2 \lambda \end{bmatrix} = 0$   $(5-\lambda)(2-\lambda) 4 = 0$   $10-5\lambda-2\lambda+\lambda^2-4=0$   $\lambda^2-7\lambda+6=0$
- Step 3:- The roots of characteristic equation is called eigen values or eigen roots or latent values.

$$\lambda^{2}-7\lambda+6=0$$
 $\lambda^{2}-6\lambda-\lambda+6=0$ 
 $\lambda(\lambda-6)-1(\lambda-6)=0$ 
 $(\lambda-6)(\lambda-1)=0$ 
 $\lambda=1,6$ 

∴ Eigen values are 1,6

2) Find the characteristic roots or eigen roots of A = 
$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 0 \end{bmatrix}$$

Sol:- Step1: Given matrix 
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & -1 \end{bmatrix}$$
  
 $\begin{bmatrix} 2 & -1 & 0 \end{bmatrix}$ 

Step 2: Characteristic Equation

Step 3: roots of above egn are called eigen values.

$$\lambda^{3}-6\lambda-4=0$$

$$(\lambda-2) (\lambda^{2}+2\lambda-2)=0$$

$$\lambda=2, \lambda=\frac{-2\pm\sqrt{4+8}}{2}$$

$$\lambda = 2$$
,  $-1 \pm \sqrt{3}$ 

Eigen roots are 2,  $-1 \pm \sqrt{3}$ 

## **Exercise problems:-**

1) Find the eigen values 
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
2) Find the eigen values  $A = \begin{bmatrix} 0 & 2 & 3 \end{bmatrix}$ 

2) Find the eigen values 
$$A = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$

3) Find the eigen values 
$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \end{bmatrix}$$

4) Find the eigen values 
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

## **Eigen vector problems**

1) Find the Eigen values and Eigen vectors of the following matrix  $A = \begin{bmatrix} -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$ 

Sol: Step1:- given matrix 
$$A = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \end{bmatrix}$$

Step2:- Characteristic equation  $|A-\lambda I| = 0$ 

$$\begin{bmatrix} 5 - \lambda & -2 & 0 \\ [-2 & 6 - \lambda & 2] & = 0 \\ 0 & 2 & 7 - \lambda \end{bmatrix} = 0$$

$$(5-\lambda) \{(6-x) (7-\lambda)-4\} +2\{-2(7-\lambda)-0\} +0 = 0$$
$$-\lambda^3 +18\lambda^2 -99\lambda +162=0$$
$$\lambda^3 -18\lambda^2 +99\lambda -162=0$$
Step3:-(\lambda -3) (\lambda -6) (\lambda -9) = 0 \\ \lambda =3, 6,9

∴ Eigen values are 3,6,9

#### Step3: Eigen vectors

1) Eigen vector corresponding to  $\lambda = 3 [A-\lambda I]x = 0$ ; [A-3I]x = 0

$$5-3 \quad -2 \quad 0 \quad 1 \quad 0 \\
[-2 \quad 6-3 \quad 2 \quad ] \quad [2] = [0] \\
0 \quad 2 \quad 7-3 \quad x3 \quad 0 \\
2 \quad -2 \quad 0 \quad x1 \quad 0 \\
[-2 \quad 3 \quad 2] \quad [x2] = [0] \\
0 \quad 2 \quad 4 \quad 3 \quad 0$$

Using Echelon form

Rank = 2 = no. of non zero rows

N = no. of unknowns (or) no. of variables n = 3

 $r < n \Rightarrow n-r = 3-2 = 1$  we choose one variable to the one constant.

$$2x_{1}-2x_{2} = 0$$

$$x_{1}+2x_{3} = 0$$

$$let x_{3} = k$$

$$2x_{1} = 2x_{2} = 2[-2k] = -4k$$

$$x_{1} = \frac{-4}{2}k = -2k$$

$$x_{1} = -2k$$

Eigen vector 
$$\mathbf{x}_1 = \begin{bmatrix} x1 & -2k & 2 \\ [x2] & = [-2k] = k & [-2] \\ 3 & 0 \end{bmatrix}$$

Eigenvector corresponding to 6 :- [A-6I]x = 0

Using Echelon form

$$r=2$$
,  $n=3$ 

we choose one variable to the one constant.

$$-x_1-2x_2=0$$

$$4x_2+2x_3=0$$

$$x_3 = k$$

$$4x_2 = -2x_3 = -2k$$

$$X_2 = -\frac{1}{2} = k$$

$$-x_1-2x_2 = 0 \Rightarrow -x_1 = 2x_2 = 2\left[\frac{-1}{2}\right] k$$

$$x_1 = k$$
,  $x_2 = \frac{-1}{2}k$ ,  $x_3 = k$ ,

Eigen vector  $x_2 = [x_2] = [-1/2k]$ 

$$\mathbf{x}_2 = \frac{k}{2} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

Eigenvector corresponding to 9:- [A-9I]x = 0

$$-4 -2 0 x1 0$$

$$R_{2} \rightarrow 2R_{2} - R_{1} \begin{bmatrix} 0 & -4 & 4 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

$$0 & 2 & -2 & x3 & 0$$

$$-4 & -2 & 0 & 1 & 0$$

$$R_3 \rightarrow 2R_3 - R_2[\begin{array}{cccc} 0 & -4 & 4 \end{array}] \begin{bmatrix} 2 \\ 0 & 0 & 3 \end{array} = \begin{bmatrix} 0 \end{bmatrix}$$

$$r=2, n=3$$

$$n-r=3-2=1$$

Let 
$$x_3 = k$$

$$-4x_1 - 2x_2 = 0$$

$$-4x_2 + 4x_3 = 0$$

$$-x_2 = -x_3$$

$$\mathbf{x}_2 = \mathbf{x}_3 = \mathbf{k}$$

$$-4x_1-2x_2=0$$

$$-2x_1 = x_2$$

$$x_2 = -2x_1 = -2k$$

$$x_1 = \frac{-x^2}{2} = \frac{-k}{2}$$

$$1 - k/2$$

$$\therefore \text{ Eigen vector } \mathbf{x}_3 = [\mathbf{x}_2] = [\begin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \\$$

$$\mathbf{x}_3 = \frac{-1}{2} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Three eigen vectors are

$$x_1 = [-2], x_2 = [-1], x_3 = [2]$$
 $x_3 = [2]$ 

2) Find the characteristic roots and find the corresponding eigen vectors  $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \end{bmatrix}$ 

Sol:- Step1: Given Matrix A = 
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \end{bmatrix}$$
$$2 & -1 & 3$$

Step 2:- Characteristic Egn  $|A-\lambda I| = 0$ 

$$\begin{bmatrix} 6 - \lambda & -2 & 2 \\ [-2 & 3 - \lambda & -1] = 0 \\ 2 & -1 & 3 - \lambda \end{bmatrix}$$

$$\Rightarrow \lambda^3 - 12\lambda^2 + 36\lambda - 32 = 0$$

$$\Rightarrow$$
 ( $\lambda$ -2) ( $\lambda$ <sup>2</sup>-10 $\lambda$ +16) = 0

$$(\lambda-2)(\lambda-2)(\lambda-8)=0$$

$$\lambda = 2, 2, 8$$

Step 3:- Eigen values are 2,2,8

Eigen Vectors:- The eigen vector of A Corresponding to  $\lambda = 2$ 

$$[A -\lambda I]x = 0, [A-2I]x = 0$$

$$-4 -2 2 xI 0$$

$$[-2 I -1][x2] = [0]$$

$$2 -1 I x3 0$$

The eigen vector of A corresponding to  $\lambda = 8$ 

$$[A-8I]x = 0$$

$$-2 -2 2 xI 0$$

$$[-2 -5 -1][x2] = [0]$$

$$2 -1 -5 x3 0$$

$$-2 -2 2 xI 0$$

$$R_2 \rightarrow R_2 - R_1; R_3 \rightarrow R_3 - R_1 [0 -3 -3][x2] = [0]$$

$$2 -3 -3 x3 0$$

$$-2 -2 2 x1 0$$

$$R_3 \rightarrow R_3 - R_1 [0 -3 -3][x2] = [0]$$

$$2 0 0 3 0$$

r=2, n=3, 1-r=3-2=1 we have to select one variable to the one constant i.e,  $x_3=k$ 

$$-2x_1-2x_2+2x_3=0$$

$$-3x_2+(-3)x_3=0$$

$$x_2 = -x_3 = -k$$



$$x_1 = 2k$$

$$x_1 = 2k$$

$$\Rightarrow x_3 = [x2] = [-k] = k[-1]$$

$$\exists \qquad \qquad 1 \qquad \qquad -1 \qquad 2$$

$$\therefore \text{ Eigen vectors are } x_1 = [2], x_2 = [0], x_3 = [-1]$$

#### **Exercise problems**

I. Find the eigen values & Eigen vectors of the following matrixs.

1) 
$$A = \begin{bmatrix} 1 & I & I \\ I & I & I \end{bmatrix}$$
  
 $\begin{bmatrix} I & I & I \end{bmatrix}$ 

Ans:- 
$$\lambda = 0.0.3$$
 Eigen Vectors  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ,  $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ ,  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 

$$\begin{array}{cccc}
8 & -6 & 2 \\
2) A = \begin{bmatrix} -6 & 7 & -4 \end{bmatrix} \\
2 & -4 & 3
\end{array}$$

Ans:- 
$$\lambda = 0.3,15$$
 Eigen Vectors [2], [-1],[-2]

3) 
$$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \end{bmatrix}$$
  
 $\begin{bmatrix} 1 & -1 & 3 \end{bmatrix}$ 

Ans:- 
$$\lambda = 2,3,6$$
 Eigen Vectors [1]

4) 
$$A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \end{bmatrix}$$
  
0 0 3

$$-2$$
 0 1  
Ans:-  $\lambda = 1,3,6$  Eigen Vectors [1], [0],[2]

5) 
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$

Ans:- 
$$\lambda = 1,2,-2$$
 Eigen Vectors  $[0], [1], [1]$ 

$$\begin{array}{cccc}
1 & 3 & 4 \\
6) A = \begin{bmatrix} 0 & 2 & 5 \end{bmatrix} \\
0 & 0 & 3 \end{array}$$

Ans:- 
$$\lambda = 1,2,3$$
 Eigen Vectors  $[0], [0], [10]$   
0 0 2



## Diagonalization of a matrix

A matrix A is diagonalizable if there exists an invertible matrix P such that  $P^{-1}AP = D$  where D is a diagonal matrix. Also the matrix P is then said to diagonalize A or transform A to diagonal form.

Similarity of Matrix:- Let A & B be square matrices to A It  $\exists$  a non – singular matrix P of order n  $\rightarrow$  B  $P^{-1}AP$ . It is denoted by A B. The transformation y = Px is called similarity transformation.

Thus a matrix is said to be diagonalizable if it is similar to a diagonal matrix.

Note:- A is nxn matrix. Then A is similar to a diagonal matrix  $D = \text{diag} [\lambda_1, \lambda_2, \dots, \lambda_n]$ 

 $\therefore$  An invertible matrix  $P = [x_1, x_2, \dots, x_n] \rightarrow P^{-1}AP = D = diag([\lambda^+, \lambda^+, \dots, \lambda_n))$ 



## **Modal & Spectral Matrix:-**

The matrix P in the above result which diagonalise the square matrix A is called the Modal matrix and the resulting diagonal D is called is known as spectral matrix.

Note:- If the eigen values of an nxn matrix are all district then it is always similar to a diagonal matrix. Calculation of power of a matrix:-

Let A be the Square matrix. Then a non-singular matrix P can be found

Premultiply (1) by P & Post multiply by P-1

$$PD^{n}P^{-1} = P(P^{-1}A^{n}P)P^{-1} = (PP^{-1}) A^{n} (PP^{-1}) = A^{n}$$

$$\Rightarrow A^{n} = PD^{n}P^{-1}$$

$$\Rightarrow A^{n} = PD^{n}P^{-1}$$

$$\downarrow \lambda^{n} \quad 0 \quad 0 \quad . \quad 0$$

$$\vdash 0 \quad \lambda 2^{n} \quad 0 \quad . \quad 0 \quad 1$$

$$A^{n} = P \quad 0 \quad 0 \quad \lambda 3^{n} \quad . \quad 0 \quad P^{-1}$$

$$\downarrow L \quad 0 \quad 0 \quad 0 \quad . \quad \lambda n^{n}$$

$$\downarrow 1 \quad 1 \quad 1$$

Diagonalize the matrix  $A = \begin{bmatrix} 0 & 2 & I \end{bmatrix}$  find  $A^4$  (or) find a matrix P which transform the  $-4 \quad 4 \quad 3$ 

matrix

A = 
$$\begin{bmatrix} 0 & 2 & 5 \end{bmatrix}$$
 to diagonal form Hence calculate A<sup>4</sup> and find the eigen value A<sup>-1</sup>
 $\begin{bmatrix} -4 & 4 & 3 \end{bmatrix}$ 

Sol:- A = 
$$\begin{bmatrix} 0 & 2 & 5 \end{bmatrix}$$
 Characteristic Equaltion  $|A-\lambda I| = 0$   
 $-4 & 4 & 3$   
 $1-\lambda \quad I \quad I$   
 $\begin{bmatrix} 0 & 2-\lambda & I \end{bmatrix} = 0$   
 $-4 \quad 4 \quad 3-\lambda$   
 $(1-\lambda)(2-\lambda)(3-\lambda) = 0$   
 $\lambda = 1,2,3$ 

Characteristic vector corresponding to  $\lambda = 1$ 

$$[A-\lambda I] = 0$$

$$[A-I] = 0$$

$$0 \quad 1 \quad 1 \quad 0$$

$$[0 \quad 1 \quad 1][] = [0]$$

$$-4 \quad 4 \quad 2 \quad z \quad 0$$

$$Y+z=0; \qquad \Rightarrow \qquad y=-z$$

$$y+z=0; \qquad let z=k$$

$$-4x+4y+2z = 0$$

$$y = -k$$

$$X = -k/2$$

Eigen vector 
$$\mathbf{x}_1 = \begin{bmatrix} x & -2k/2 & 1 \\ 1 & -2k/2 & 2 \end{bmatrix}$$
  
 $-2k/2$ 

$$\therefore \mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ -2$$

Characteristic vector corresponding to  $\lambda = 2$ 

$$[A-\lambda I]x = 0; [A-2I]x = 0$$

$$-4$$
 4 1  $z$  0

$$-1$$
 1 1  $x$ 

$$R_3 \rightarrow R_3 - 4R_1 \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$
  
 $0 & 0 & -3 \quad z \quad 0$ 

$$-1$$
  $1$   $1$   $x$   $0$ 

$$R_3 \rightarrow R_3 - 3R_2 \quad \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

$$0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

r=2, n=3, n-r=3-2=1 we have to give one variables to the one arbitrary constant.

$$-x+y+z=0; z=0$$

Then we take x (or) y = y

$$\therefore y = k$$

$$-x+k+0=0$$

$$x=k, y=k, z=0$$

$$\Rightarrow \mathbf{x}_2 = [y] = [k] = \mathbf{k} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

∴ Eigen value of A<sup>-1</sup>

Characteristic vector corresponding to  $\lambda = 3$ 

$$\begin{bmatrix} -2 & 1 & 1 & x & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

$$-4$$
 4 0  $z$  0

$$-2$$
 1 1 0

$$R_3 \rightarrow R_3 - 4R_1 \begin{bmatrix} 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & = [0] \\ 0 & 2 & -2 & 0 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - 2R_2$$
  $\begin{bmatrix} 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$ 

$$r=2$$
,  $n=3$ ,  $n-r=3-2=1$ 

$$-2x+y+7=0$$

$$-y+z=0$$

Let 
$$z = k$$

$$-y=-z=-k \Rightarrow y=k$$
  
 $-2z=-y-z=-k-k$ 

$$-2x=-2k \Rightarrow x = k$$

Eigen vector 
$$\mathbf{x3} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix}$$

2) P-1AP = D = 
$$\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$$
 = Diagonalization  $\begin{bmatrix} 0 & 0 & 3 \end{bmatrix}$ 

Power of a matrix  $A^n = PD^nP^{-1}$ ;  $A^4=PD^4P^{-1}$ 

$$A4 = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 16 & 0 \end{bmatrix} \begin{bmatrix} 4 & -3 & -1 \end{bmatrix}$$

$$-2 & 0 & 1 & 0 & 0 & 81 & -2 & 2 & -1 \end{bmatrix}$$

$$-99 \quad 115 \quad 65$$

$$= \begin{bmatrix} -100 & 116 & 65 \end{bmatrix}$$

$$-160 \quad -160 \quad 81$$

Eigen value of A<sup>-1</sup> =  $1/\lambda = 1/1, 1/2, 1/3$ 

2. find the diagonal matrix that will diagonaize the real symmetric matrix  $A = \begin{bmatrix} 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$ 

Also find the resulting diagonal matrix. (or) Diagonalize the matrix  $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$  3 6 9

Sol:- 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$$
 Characteristic Equation  $|A - \lambda I| = 0$   
 $\begin{vmatrix} 1 - \lambda & 2 & 3 \\ 2 & 4 - \lambda & 6 \\ 3 & 6 & 9 - \lambda \end{vmatrix} = 0$ 

$$\Rightarrow \lambda(\lambda^2-14\lambda)=0$$

$$\lambda=0,\,0,\,14$$
 Eigen roots  $\lambda=0,\,0,\,14$ 

Eigen vector corresponding to  $\lambda = 14$ 

$$[A-14I]x = 0$$

$$x_1 = 1$$
,  $x_2 = 2$ ,  $x_3 = 3$ 

Eigen vector 
$$\mathbf{x}_1 = \begin{bmatrix} 1 & 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \end{bmatrix}$$

To the Eigen Vector corresponding to  $\lambda = 0$ 

$$[A-\lambda I]x =$$

$$R_2 \rightarrow R_2 - 2r_1; R_3 \rightarrow R_3 - 3R_1 \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$r=1, n=3, n-r=3-1=2$$

let 
$$x^2 = k_1$$
,  $x_3 = k_2$ 

$$x_1 + 2x_2 + 3x_3 = 0$$

$$x_1 = -2k_1 - 3k_2$$

$$x_2=k_1$$

$$x_3=k_2$$

Eigen vector = 
$$\begin{bmatrix} -2k1 - 3k2 & -2 & -3 \\ 1 & ]=k_1[1] + k_2[0] \\ 2 & 0 & 1 \end{bmatrix}$$
  
 $\begin{bmatrix} 1 & -2 & -3 \\ x_1 = [2] & x_2 = [1] & x_3 = [0] \end{bmatrix}$ 

$$x_1 = [2]$$
,  $x_2 = [1]$ ,  $x_3 = [0]$ 

Normalised Model matrix = 
$$p = [1 \ 2 \ 3] = [2 \ 1 \ 0]$$
  
3 0 1

$$P = \begin{bmatrix} \frac{1}{|| \ 1||} \frac{2}{|| \ 2||} \frac{3}{|| \ 3||} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{14} & -2/\sqrt{5} & -3/\sqrt{10} \\ = [2/\sqrt{14} & 1/\sqrt{5} & 0 ] \\ 3/\sqrt{14} & 0 & 1/\sqrt{10} \end{bmatrix}$$

$$\Rightarrow P^{-1} = P^{T} = \begin{bmatrix} -2/\sqrt{5} & 1/\sqrt{5} & 0 \\ -3/\sqrt{10} & 0 & 1/\sqrt{10} \end{bmatrix}$$

$$P^{-1}AP = P^{T}AP = \begin{bmatrix} 1/\sqrt{14} & 2/\sqrt{14} & 3/\sqrt{14} & 1 & 2 & 3 & 1/\sqrt{14} & 2/\sqrt{5} & -3/\sqrt{10} \\ -2/\sqrt{5} & 1/\sqrt{5} & 0 & ] \begin{bmatrix} 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 2/\sqrt{14} & 1/\sqrt{5} & 0 \\ -3/\sqrt{10} & 0 & 1/\sqrt{10} & 3 & 6 & 9 & 3/\sqrt{14} & 0 & 1/\sqrt{10} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ [0 & 0 & 0 ] \Rightarrow P^{-1}AP = P^{T}AP = D \\ 0 & 0 & 14 \end{bmatrix}$$

\ A is reduced to diagonal form by orthogonal reduction.

Exercise problems:

- 1. Diagonalize the matrix  $A = \begin{bmatrix} 0 & 3 & -1 \end{bmatrix}$  by orthogonal reduction (or) Diagonalize the matrix.  $\begin{bmatrix} 0 & -1 & 3 \end{bmatrix}$
- 2) Determine the diagonal matrix orthogonally similar to the following symmetric matrix

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \end{bmatrix} \\ 1 & -1 & 3$$

3) Determine the diagonal matrix orthogonally similar to the following symmetrix matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

4) Diagonalize the matrix 
$$A = \begin{bmatrix} 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

5) Find a matrix P which transorm the matrix  $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \end{bmatrix}$  to diagonal form. 2 2 3

Hence calculate  $A^4$  (or) Diagonalize the matrix  $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ 

- 6) Prove that the matrix  $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$  is not diagonalizable.
- 7) S.T. the matrix  $A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \end{bmatrix}$  cannot be diagonalized. 0 0 1

## **Quadratic forms**

#### Quadratic form:-

A homogeneous expression of the second degree in any number of variables is called a quadratic form. An expression of the form  $Q = x^T A x = \sum_{i=1}^n \sum_{j=1}^n aij \ x \ i \ x \ j$  where aij's are constants is called quadratic form in n variables  $x_1, x_2, \ldots, x_n$ . If the constants aij's are real numbers it is called a real quadratic form.  $[x_1, x_2, \ldots, x_n]$ 

 $Q = x^{T}Ax Ex-1$ )  $3x^{2}+5xy-2y^{2}$  is a quadratic form in two variables x & y

2)  $2x^2+3y^2-4z^2+2xy-3yz+5zx$  is a quadratic form of 3 variables x,y,& z

Symmetric Matrix :-

 $Q = X^{T}AX$  is a quadratic form where A is known as real symmetric matrix.

$$coeff. of x1^2 = \frac{1}{2} coeff. of x1x2 = \frac{1}{2} coeff of x1x2$$

$$A = \text{symmetric Matrix} = \frac{1}{I_1^2} coeff of x1x2 = \frac{1}{2} coeff of x1x2 = \frac{1}{2} coeff of x2x3$$

$$L_2 = \frac{1}{2} coeff of x1x3 = \frac{1}{2} coeff of x2x3 = \frac{1}{2} coeff of x3^2$$

Eg 1:- Write the symmetric matrix of the quadratic form  $x_1^2$ -+6 $x_1x_2$ +5 $x_2^2$ 

Sol:- Symmetric matrix of the quadratic form  $x1^2+6x_1x_2+5x_2^2$ 

Sol:- A Symmetrix matrix 
$$= \begin{array}{ccc} 1 & \begin{bmatrix} 1 & \frac{6}{2} \end{bmatrix} = \begin{array}{ccc} 1 & 3 \\ 2 & \frac{6}{2} & 5 \end{array} \begin{bmatrix} 1 & \frac{3}{2} \end{bmatrix}$$

2) Find the symmetric matrix of the quadratic form  $x_1^2 + 2x_2^2 + 4x_2x_3 x_3 x_4$ 

find the quadratic form of the given symmetric matrix A  $\begin{bmatrix} h & b & f \end{bmatrix}$  $\begin{bmatrix} g & f & c \end{bmatrix}$ 

Sol:- Quadratic form = 
$$X^TAX = [x \ y \ z] \begin{bmatrix} a & h & g & x \\ [h & b & f] \ [y] \\ g & f & c & z \end{bmatrix}$$

$$= ax^2 + by^2 + cz^2 + 2hxy + 2gxz + 2fyz$$

#### **Exercise Problems:-**

Write the Symmetrix matrix of the following quadratic forms

1. 
$$x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 8x_1x_3$$

2. 
$$x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 8x_1x_3 + 5x_2x_3$$

3. 
$$2x_1x_2+6x_1x_3-4x_2x_3$$

4. 
$$x^2+2y^2+3z^2+4xy+5yz+6zx$$

5. 
$$x^2+y^2+z^2+2xt+2yz+3zt+4t^2$$

6. Obtain the quadratic form of the following Matrices.

4) 
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & ' \end{bmatrix}$$
 5)  $\begin{bmatrix} 3 & 7 & 1 & 0 & 3 \\ 4 & 7 & 1 & 2 & 3 & 5 & 4 \end{bmatrix}$ 

#### Canonical form

The conanical form of a quadratic form  $x^TAx$  is  $y^TDy$  (or)  $\lambda_1y_1^2 + \lambda_2y_2^2 + \dots + \lambda_ny_n^2$ 

This form is also known as the sum of the squares form or principal axes form

Canonical form = 
$$y^TDy = \begin{bmatrix} y_1y_2 & y_3 \end{bmatrix} \begin{bmatrix} 0 & \lambda 2 & 0 \end{bmatrix} \begin{bmatrix} y^2 \end{bmatrix} = \lambda_1y_1^2 + \lambda_2y_2^2 + \lambda_3y_3^2 \\ 0 & 0 & \lambda 3 & y^3 \end{bmatrix}$$

#### Reduction of Quadratic form to canonical form by Linear Transformation.

Consider a quadratic form in n variables

 $x^{T}Ax$  and a non singular linear transformation x = Py then  $x^{T} = [Py]^{T} = y^{T}P^{T}$ 

$$x^{T}Ax = y^{T}P^{T}APy = y^{T}(P^{T}AP)y = y^{T}Dy$$
 where  $D = P^{T}AP$ 

$$\Rightarrow$$
  $\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{y}^{\mathrm{T}}\mathbf{D}\mathbf{y}$ 

Thus, the quadratic form  $x^TAx$  is reduced to the canonical form  $y^TDy$ . The diagonal Matrix D and matrix A and called Congruent matrices.

Reduction of Quadratic

## Nature of the Quadratic form

The quadratic form  $x^{T}Ax$  in n variables is said to be

1) Positive definite:-

If r = n & s = n (or) if all the eigen values are +ve.

2) Negative definite:-

If r = n & s = 0 (or) if all the eigen values are -ve.

3) Positive semidefinite (or) semipositive:-

If r $\le$ n & s=r (or) if all the eigen values of A $\ge$ 0 & at least one eigen value is zero.

4) semi negative:-

If r<n & s = 0 (or) if all the eigen values of A $\le$ 0 & at lease one eigen value is zero.

5) Indefinite:-

In all other cases (or) some are positive, -ve.

#### →Index of a real quadratic form

The number of positive terms in canonical form (or) normal form of a quadratic form is known as the index. It is denoted by 's'

#### Signature of a quadratic form

If r is the rank of a quadratic form & s is the number of positive terms in its normal form, then  $\exists$  number of positive terms over the number of negative terms in a normal form of  $x^TAx$ .  $\therefore$  Signature = [+ve terms] - [-ve terms]

**Note:** Signature = 2s-r

Where  $s \rightarrow index$ 

 $r\rightarrow rank = no.$  of non zero rows.

Short Answer question:-

1) Find the nature, rank, Index of a quadratic form  $2x^2+2y^2+2z^2+2yz$ 

Sol:- 
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
  
 $0 & 1 & 2$   
 $2 - \lambda \quad 0 \quad 0$   
 $|A - \lambda I| = 0 \Rightarrow \begin{bmatrix} 0 & 2 - \lambda & 1 \\ 0 & 1 & 2 - \lambda \end{bmatrix} = 0$ 

$$\lambda = 1, 2, 3$$

Nature ;- all th eigen values are +ve

 $\Rightarrow$  positive definite

Rank: r = 3

Index : S = no. of positive terms = 3

Signature: - [+ve terms] - [-ve terms] = 
$$3 - 0 = 3$$

Discuss the nature of the given quadratic form

1) 
$$x_1^2 + 4x_2^2 + x_3^2 - 4x_1x_2 + 2x_1x_3 - 4x_2x_3$$

2) 
$$x^2+4xy+6xz-y^2+2yz+4z^2$$

## Reduction of Quadratic form to canonical form by orthogonal reduction:

- 1) Write the coefficient matrix A associated with the given quadratic form
- 2) A = symmetric Matrix = [
- 3) Find the eigen values & eigen vectors.
- 4) Model Matrix  $P = [x_1 \ x_2 \ x_3]$
- 5) Normalized model matrix  $P = \begin{bmatrix} \frac{1}{||1||} & \frac{2}{||2||} & \frac{3}{||3||} \end{bmatrix}$
- 6) Find  $P^{-1}$ ;  $P^{-1} = P^{T}$

7) 
$$P^{-1}AP = P^{T}AP = D = \begin{bmatrix} 0 & \lambda 2 & 0 \\ 0 & 0 & \lambda 3 \end{bmatrix}$$

8) Canoniclal form = 
$$y^{T}Dy = [y_1 \ y_2 \ y_3] \begin{bmatrix} 0 & \lambda 2 & 0 \end{bmatrix} [y2] \\ 0 & 0 & \lambda 3 & 3 \end{bmatrix}$$
  
=  $\lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2$ 

- 9) Linear transformation is x = Py,
- 1. Reduce the quadratic form  $3x^2+2y^2+3z^2-2xy-2yz$  to the normal form by orthogonal transformation . Also write the rank, Index, nature and signature.

Sol:- given quadratic form 
$$3x^2+2y^2+3z^2-2xy-2yz$$
 A =  $\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \end{bmatrix}$   
0 -1 3

Characteristic equation is  $|A-\lambda I| = 0$ 

$$\begin{bmatrix} 3-\lambda & -1 & 0 \\ -1 & 2-\lambda & -1 \end{bmatrix} = 0$$
$$0 & -1 & 3-\lambda$$

 $\lambda = 3, 1, 4$ ; eigen values  $\lambda = 3, 1, 4$ 

Eigen vectors 
$$x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
,  $x_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ ,  $x_3 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$   
 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$   
 $P = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 0 & 2 & -1 \\ -1 & 1 & 1 \end{bmatrix}$ 

$$P = \text{normalized model matrix } P = [e_1 \ e_2 \ e_3] = \begin{bmatrix} 0 & 2/\sqrt{6} & -1/\sqrt{6} \\ -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{6} \end{bmatrix}$$

$$\begin{array}{cccc} & 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ P \text{ is orthogonal } P^{-1} = P^T = \begin{bmatrix} 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \end{bmatrix} \\ & 1/\sqrt{6} & -1/\sqrt{6} & 1/\sqrt{6} \end{array}$$

$$P^{-1}AP = P^{T}AP = \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} & 3 & -1 & 0 & 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 2/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 0 & 2/\sqrt{6} & -1/\sqrt{3} \end{bmatrix} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} & 0 & -1 & 3 & -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = D$$
 & the quadratic form will be reduced to the normal form  $\begin{bmatrix} 0 & 0 & 4 \end{bmatrix}$ 

Canonical form =  $y^TDy$ 

$$= \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & y1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} y2 \\ 0 & 0 & 4 & y3 \end{bmatrix}$$

$$=3y_1^2+y_2^2+4y_3^2$$

Index :- No. of positive terms = S = 3



Rank: r = 3

Nature:- all eigen values are +ve = S = 3

Signature:- = [no of +ve terms] - [no. of -ve terms]

$$= 3-0 = 3$$

Orthogonal transformation is x = Py

$$x = y_1 / \sqrt{2} + 1 / \sqrt{6}y_2 + 1 / \sqrt{3} y_3$$

$$y = 2/\sqrt{6}y^2 - 1/\sqrt{3}y_3$$

$$z=-1/\sqrt{2}y1+1/\sqrt{6}y2+1/\sqrt{3}y_3$$

Exercise:

Reduce the Quadratic form to canonical form by orthogonal Reduction. And write the transformation, nature index, rank, signature

1) 
$$2x^2+2y^2+2z^2-2xy+2zx-2yz$$

2) 
$$x_1^2 + 3x_2^2 + 3x_3^2 - 2x_2x_3$$

3) 
$$3x^2+5y^2+3z^2-2yz+2zx-2xy$$

4) 
$$6x^2+3y^2+3z^2-2yz+4zx-4xy$$

$$1 \ 2 \ -3$$

2) for the matrix 
$$A = \begin{bmatrix} 0 & 3 & 2 \end{bmatrix}$$
 find the eigen values of  $3A^3 + 5A^2 - 6A + 2I$   
0 0 -2

$$1 \ 2 \ -3$$

Sol:- A=[0 3 2] characteristic egn is 
$$|A-\lambda I| = 0$$
  
0 0 -2

$$\begin{bmatrix} 1 - \lambda & 2 & -3 \\ 0 & 3 - \lambda & 2 \end{bmatrix} = 0$$
$$0 & 0 & -2 - \lambda$$

$$(1-\lambda)(3-\lambda)(-2-\lambda) = 0; \lambda=1,3,-2$$

 $\lambda$  is the Eigen value of A & f(A) is a polynomial in A, then the eigen value of f(A) is f( $\lambda$ )

$$f(A) = 3A^3 + 5A^2 - 6A + 2I$$

Then the eigen value of f(A) are

$$f(1) = 3(1)^3 + 5(1)^2 - 6(1) + 2 = 4$$

$$f(3) = 3(3)^3 + 5(3)^2 - 6(3) + 2(1) = 110$$

$$f(-2) = 3(-2)^3 + 5(-2)^2 - 6(-2) + 2(1) = 10$$

Thus the Eigen value of  $3A^3+5A^2-6A+2I$  are 4, 110, 10

$$\rightarrow$$
P.T. the matrix  $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$  is not diagonalizable.

Sol:- The characteristic equation is  $|A-\lambda I| = 0$ 

$$\begin{bmatrix} -\lambda & 1 \\ 0 & -\lambda \end{bmatrix} = 0 \Rightarrow \lambda^2 = 0$$
$$\lambda = 0.0$$

 $\lambda = 0$ , The characteristic vector. [A- $\lambda$ I]x = 0

$$=\begin{bmatrix}0&1\\0&0\end{bmatrix}\begin{bmatrix}x1\\x2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}$$

$$x_2=0, x_1=k$$

The characteristic vector is  $\begin{bmatrix} k \\ 0 \end{bmatrix} = K \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 

The given matrix has only one i.j. charactestic vector  $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$  corresponding to repeated characteristic value **'**0'

The matrix is not diagonalizable

Note: A is nilpolent matrix  $\Rightarrow$  A is not diagonalised.

$$\begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$$

Sol:- 
$$A = \begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$$
 characteristic equation is

$$|A-\lambda I|=0$$

$$\begin{bmatrix} 8 - \lambda & -4 \\ 2 & 2 - \lambda \end{bmatrix} = 0 \Rightarrow (8-\lambda) (2-\lambda) + 8 = 0$$

$$16-8\lambda-2\lambda+\lambda^2+8=0$$

$$\lambda^2-10\lambda+24=0$$

$$\lambda^2-6\lambda-4\lambda+24=0$$

$$\lambda(\lambda-6)-4(\lambda-6)=0$$

$$(\lambda-6) (\lambda-4)=0$$

$$\lambda=6, 4$$

$$B = 2A^2 - \frac{1}{2}A + 3I$$

 $\lambda$  is the eigen value of A

Then the eigen value of B is

$$B = 2(6)^2 - \frac{1}{2}(6) + 3$$
,  $B = 2(4)^2 - \frac{1}{2}(4) + 3 = 72$ , 33

Eigen value of B is 33,72  

$$B = 2A^{2} - \frac{1}{2}A + 3I = \begin{bmatrix} 112 & -80 \\ 40 & -8 & 1 & 1 \end{bmatrix} - \begin{bmatrix} 4 & -2 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 111 & -78 \\ 39 & -6 \end{bmatrix}$$

Characteristic Equation  $|B-\lambda I| = 0$ 

$$\begin{bmatrix} 111 - \lambda & -78 \\ 39 & -6 - \lambda \end{bmatrix} = 0 \Rightarrow \lambda^2 + 105 - 2376 = 0$$
  
  $\lambda = 33, 72$ 

Eigen value of B are 33 & 72

 $\lambda$ =33, the eigen vector of B is given by [B-33I]x = 0

$$\begin{bmatrix} 78 & -78 \\ 39 & -39 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow$$
 x = 1, x<sub>2</sub> =1

$$\lambda = 33, x1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 $\lambda$ =72, the eigen vector of B is given by [B-72I]x = 0

$$\begin{bmatrix} 39 & -78 \\ 39 & -78 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow$$
 x<sub>2</sub> = 1, x<sub>1</sub> = 2

∴ The eigen vector for 
$$\lambda$$
=72,  $x2=\begin{bmatrix}2\\1\end{bmatrix}$ 

1) Find the inverse transformation of  $y_1=2x_1+x_2+x_3$ ,  $y_2=x_1+x_2+2x_3$ ,  $y_3=x_1-2x_3$ 

Sol: The given transformation can be written as

$$y1$$
 2 1 1 x1  $[y2] = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix} [x2]$   $y3$  1 0 -2 x3

Y=Ax

$$|A| = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} = -1 \neq 0$$

$$1 \quad 0 \quad -2$$

Thus the matrix A is non-singular and hence the transformation is regular. The inverse transformation is given by  $x=A^{-1}y$ 

$$x_1 = 2y_1 - 2y_2 - y_3$$

$$x_2 = -4y_1 + 5y_2 + 3y_3$$

$$x_3 = y_1 - y_2 - y_3$$

2) S.T. the transformation  $y_1=x_1\cos\theta=x_2\sin\theta$ ,  $y_2=-x_1\sin\theta+x_2\cos\theta$  is orthogonal.

Sol:- The given transformation can be written as Y=Ax

$$Y = \begin{array}{cc} y_1 \\ y_2 \end{array} \quad A = \left[ \begin{array}{cc} c \ \theta \\ -i \ \theta \end{array} \right], \quad x = \begin{bmatrix} x_1 \\ x_2 \end{array}$$

Here the matrix of transformation is 
$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}, A^{-1} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = A^{T}$$

the transformation is orthogonal.

## Cayley - Hamilton Theorem

Theorem:- Every square matrix statisfies its own characteristic equation.

#### Applications of cayley - Hamilton Theorem

The important applications of Cayley - Hamilton theorem are

- 1) To find the inverse of a matrix
- 2) To find higher powers of a matrix.

1) If 
$$A = \begin{bmatrix} 2 & -1 \\ 2 & 1 & -2 \end{bmatrix}$$
 verify cayley – Hamilton theorem  $\begin{bmatrix} 2 & -2 & -1 \end{bmatrix}$ 

Find A<sup>-1</sup>& A<sup>4</sup> using cayley – Hamilton theorem.

Sol: 
$$A = \begin{bmatrix} 2 & -1 \\ 2 & 1 & -2 \end{bmatrix}$$
 Characteristic Equation  $|A-\lambda I| = 0$   
 $2 - 2 - 1$   
 $1 - \lambda$  2  $-1$   
 $\begin{bmatrix} 2 & 1 - \lambda & -2 \\ 2 & -2 & -1 - \lambda \end{bmatrix} x^3 - 3\lambda^2 - 3\lambda + 9 = 0$ 

By cayley – Hamilton theorem, matrix A should satisfy its characterstic Equation.

i.e., 
$$A^3-3A^2-3A+9I=0$$

$$A = \begin{bmatrix} 2 & 1 & -2 \\ 2 & 1 & -2 \end{bmatrix}$$

$$2 -2 +1$$

$$1 & 2 & -1 & 1 & 2 & -1 & 3 & 6 & -6$$

$$A^{2}=A.A = \begin{bmatrix} 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 9 & -6 \end{bmatrix}$$

$$2 -2 & -1 & 2 & -2 & 1 & 0 & 0 & 3$$

$$3 & 6 & -6 & 1 & 2 & -1 & 3 & 24 & -21$$

$$A^{3}=A^{2}.A = \begin{bmatrix} 0 & 9 & -6 \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 6 & 21 & -24 \end{bmatrix}$$

$$0 & 0 & 3 & 2 & -2 & 1 & 6 & -6 & 3$$

$$A^{3}-3A^{2}-3A+9I =$$

$$3 & 24 & -21 & 3 & 6 & -6 & 1 & 2 & -1 & 1$$

$$A^3-3A^2-3A+9I=0$$



Hence cayley – Hamilton is verified.

To find A<sup>-1</sup>:-

Multiplying equation (1) with A<sup>-1</sup> on b/s

$$A^{-1}[A^3-3A^2-3A+9]=0$$

$$A^2-3A-3AI+9A^{-1}=0$$

$$9A^{-1} = 3A + 3I - A^2$$

$$A^{-1} = \frac{1}{9} [3A + 3I - A^2]$$

$$A^{-1} = \frac{1}{9} [3A + 3I - A^{2}] = \frac{1}{9} \{ \begin{bmatrix} 6 & 3 & 6 & -3 & 3 & 0 & 0 & 3 & 6 & -6 \\ 6 & 3 & -6 \end{bmatrix} + \begin{bmatrix} 0 & 3 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 9 & -6 \end{bmatrix} \}$$

$$= \frac{\frac{1}{3}}{\frac{3}{3}} \frac{0}{\frac{1}{3}} \frac{\frac{1}{3}}{0}$$

$$= \frac{\frac{2}{3}}{\frac{1}{3}} \frac{-1}{\frac{3}{3}} \frac{0}{\frac{1}{3}}$$

$$= \frac{\frac{1}{3}}{\frac{1}{3}} \frac{-2}{\frac{1}{3}} \frac{1}{\frac{1}{3}}$$

Find  $A^4$ :-

Multiplying with A

$$A[A^3-3A^2-3A+9I] = 0$$

$$A^4 = 3A^3 + 3A^2 - 9A$$

1) Show that the matrix satisfies its characteristic Equation Find A-1& A4 (or) verify cayley Hamilton

Theorem. Find A<sup>-1</sup>& A<sup>4</sup>

1) 
$$A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

3) 
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & -1 & -1 \end{bmatrix}$$
$$1 & -1 & 1$$

$$A = \begin{bmatrix}
 1 & 1 & 3 \\
 1 & 3 & -3
\end{bmatrix} \\
 -2 & -4 & -4$$

1) using cayley – Hamilton theorm. Find 
$$A^{8}$$
, If  $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ 

Sol:- 
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 Characteristic Equation

$$|A-\lambda I|=0$$

$$\begin{bmatrix} 1-\lambda & 2 \\ 2 & -1-\lambda \end{bmatrix} = 0$$

$$\lambda^2 - 5 = 0$$

By cayley – Hamilton Theorem. Every square matrix satisfied its characteristic equation.

$$A^2-5=0$$

$$A^2 = 5I$$

$$A^8 = A^2.A^2.A^2 = [5I].[5I].[5I]$$

$$A^8 = 625I$$

2 1 1  
2) If 
$$A = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$
, find the value the matrix  $A^8-5A^7+7A^6-3A^5+A^4-5A^3+8A^2-2A+I$   
1 1 2

Sol: The characteristic Equation  $|A-\lambda I| = 0$ 

$$\begin{bmatrix} 2 - \lambda & 1 & -1 \\ [0 & 1 - \lambda & 0 ] = 0 \\ 1 & 1 & 2 - \lambda \end{bmatrix}$$

 $x^3-5\lambda^2-7\lambda-3=0$  By Cayley Hamilton theorm

$$A^3-5A^2+7A-3I=0$$

We can rewrite the given expression as  $A^{5}[A^{3}-5A^{2}+7A-3I] + A[A^{3}-5A^{2}+7A-3I]$ 

$$A^{8}-5A^{7}+7A^{6}-3A^{5}+A^{4}-5A^{3}+8A^{2}-2A+I$$

$$= A^{5}[A^{3}-5A^{2}+7A-3I] + A[A^{3}-5A^{2}+8A-2I]=I$$

$$= A^{5}(0) + A[A^{3}-5A^{2}+7A-3I] + A^{2}+A+I=I$$

$$A[A^3-5A^2+7A-3I] + (A+I)]+I$$

$$= A^2 + A + I$$

But 
$$A^2+A+I=\begin{bmatrix} 5 & 4 & 4 & 2 & 1 & 1 & 1 & 0 & 0 & 8 & 5 & 5 \\ [0 & 1 & 0] & +\begin{bmatrix} 0 & 1 & 0\end{bmatrix} & +\begin{bmatrix} 0 & 1 & 0\end{bmatrix} & +\begin{bmatrix} 0 & 1 & 0\end{bmatrix} & =\begin{bmatrix} 0 & 3 & 0\end{bmatrix} \\ 4 & 4 & 5 & 1 & 1 & 2 & 0 & 0 & 1 & 5 & 5 & 8 \end{bmatrix}$$

Exercise:

1) If 
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 write  $2A^5 - 3A^4 + A^2 - 4I$  as a linear polynomial in  $A$   
Sol:-  $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} |A - \lambda I| = 0$   
$$\begin{bmatrix} 3 - \lambda & 1 \\ -1 & 2 - \lambda \end{bmatrix} = 0 \Rightarrow \lambda 2 - 5\lambda + 7 = 0$$

By cayley - Hamilton Theorm,

A must satisfy its characteristic equation.

$$A^2-5A+7I = 0$$

$$A^2 = 5A-7I$$

$$A^3 = 5A^2 - 7A$$

$$A^4 = 5A^3 - 7A^2$$

$$A^5 = 5A^4 - 7A^3$$

$$2A^{5}-3A^{4}+A^{2}-4I$$

$$=2[5A^4-7A^3]-3[5A^3-7A^2]+[5A-7I]-4I$$

$$= 7A^4-14A^3+A^2-4I$$

$$= 7[5A^3-7A^2]-14A^3+A^2-4I$$

$$= 21A^3-48A^2-4I$$

$$= 21(5A^2-7A) -48A^2-4I$$

$$= 57A^2-147A-4I$$

$$= 57(5A-7I) -147A-4I$$

= 138A-403I which is a linear poly in A

## Unit – II(Important questions)

- 1. Find all the eigen values of A<sup>2</sup>+3A-2I, If A =  $\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$  2 Marks
- 2. Find the nature, index, signature of the quadratic form  $3x^2+5y^2+3z^2$ . 3Marks
- 3. Find the Eigenvalues & Eigenvectors of the matrix  $A = \begin{bmatrix} -6 & 7 & -4 \end{bmatrix}$  5 Marks  $\begin{bmatrix} 2 & -4 & 3 \\ 1 & 2 & 3 \end{bmatrix}$
- 4. Verify cayley Hamilton theorem for the matrix  $A = \begin{bmatrix} 2 & 4 & 5 \end{bmatrix}$  Express  $3 \quad 5 \quad 6$

 $B = A^{8} - 11A^{7} - 4A^{6} + A^{5} + A^{4} - 11A^{3} - 3A^{2} + 2A + I \text{ as a quadratic poly in A} \qquad 5 \text{ Marks}$ 

#### 1 1 1

- 5. Diagonalize the Matrix  $A = A = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix}$  hence find  $A^4 = 5$  Marks -4 = 4 = 3
- 6. Reduce the Q.F. to C.F. C.F. Hence find its nature  $x^2+y^2+z^2-2xy+4xz+4yz$  5 Marks
- 7. Find the sum & product of the Eigen values of the matrix A [1 4 6] 2Marks 2 -2 3
- 8. Write the quadratic form Corresponding to the matrix  $A = \begin{bmatrix} 5 & 4 & 6 \end{bmatrix}$  3 Marks  $\begin{bmatrix} 7 & 6 & 3 \end{bmatrix}$
- 9. Find the eigen values  $5A^2-2A^2+7A-3A^{-1}+I$  if  $A = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix}$  5 Marks
- 10. Using cayley Hamilton Then find A<sup>-1</sup>& A<sup>-2</sup> if A =  $\begin{bmatrix} 1 & 3 & 2 \end{bmatrix}$  5 Marks  $\begin{bmatrix} -1 & -4 & -3 \end{bmatrix}$



11. Reduce the Q.form  $8x^2+7y^2+3z^2+12xy+4xz+8yz$  to canonical form and find rank, nature, index & signature 10 Marks

## **Properties of Eigen Values:**

**Theorm 1:** The sum of the eigen values of a square matrix is equal to its trace and product of the eigen values is equal to its determinant.

Proof: Characterristic equation of A is .  $|A-\lambda I|=0$ 

Proof: Characterristic equation of A is . 
$$|A-\lambda I|=0$$

$$\begin{bmatrix} a_{11}-\lambda & a_{12} & L & a_{1n} \\ a & a & -\lambda & L & a \end{bmatrix}$$
i.e, 
$$\begin{bmatrix} a_{11}-\lambda & a_{12} & L & a_{1n} \\ a & a & -\lambda & L & a \end{bmatrix} expanding this we get$$

$$\begin{bmatrix} L & L & L & L \\ a & a & L & a & -\lambda \\ a & a & a & a & a & a \end{bmatrix}$$

$$(a_{11}-\lambda)(a_{22}-\lambda)L$$
  $(a_{nn}-\lambda)-a_{12}$  (a polynomial of degree  $n-2$ )

$$+ a_{13}$$
 (a polynomial of degree  $n + 2$ )  $+ ... + = 0$ 

$$\Rightarrow$$
  $(-1)[\lambda^n - (a_{11} + a_{22} + ... + a_{nn})^{-1} + a \ polynomila \ of \ degree \ (n-2)]$ 

$$(-1)^n \lambda^n + (-1)^{n+1} (Trave A) \lambda^{n-1} + a polynomial of degree (n-2) in \lambda = 0$$

If  $\lambda_1, \lambda_2, \ldots, \lambda_n$  are the roots of this equation

$$sum of the roots = \frac{(-1)^{n+1}(A)}{(-1)} = (A)$$

$$urther \mid -\lambda \mid = (-1)^n \lambda^n + . + a_0$$

put 
$$\lambda = 0$$
 then  $|A| = a_0$ 

$$(-1)^n \lambda^n + a_{n-1} \lambda^{n-1} + a_{n-2} \lambda^{n-2} + \dots + a_0 = 0$$

Product of the roots = 
$$\frac{(-1)^n a_0}{(-1)^n} = a_0$$

$$_{0} = | \ | = det$$

Hence the result

**Theorm 2**: If  $\lambda$  is an eigen value of A corresponding to the eigen vector X, then  $\lambda^n$  is eigen value  $A^n$ corresponding to the eigen vector X.

Proof: Since  $\lambda$  is an eigen value of A corresponding to the eigen value X, we have

$$AX = \lambda X - \dots (1)$$

Pre multiply (1) by A, A(AX) = A(X)

$$(AA)X = (AX)$$

$$A^2X = (\lambda X)$$

$$A^2X = XX$$



 $\Lambda^2$  is eigen value of  $\Lambda^2$  with X itself as the corresponding eigen vector. Thus the theorm is true for n=2

let we assume it is true for n = k

i.e., 
$$A^{K}X = \lambda^{K}X$$
-----(2)

Premultiplying (2) by A, we get

$$A(A^kX) = A(K^kX)$$

$$(AA^{K})X = K(AX) = K(AX)$$

$$A^{K+1}X = X^{K+1}X$$

 $\lambda^{K+1}$  is eigen value of  $A^{K+1}$  with X itself as the corresponding eigen vector.

Thus, by M.I.,  $\lambda^n$  is an eigen value of  $A^n$ 

**Theorm 3:** A Square matrix A and its transpose A<sup>T</sup> have the same eigen values.

Proof: We have  $(A - \lambda I)^T = A^T - \lambda^{T}$ 

$$= A^T - \lambda I$$

$$|(\mathbf{A} - \lambda \mathbf{I})^{\mathrm{T}}| = |\mathbf{A}^{\mathrm{T}} - \lambda \mathbf{I}| \text{ (or)}$$

$$|A - \lambda I| = |A^T - \lambda I|$$

 $|A - \lambda I| = 0$  if and only if  $|A^T - \lambda I| = 0$ 

 $\lambda$  is eigen value of A if and only if  $\lambda$  is eigen value of  $A^T$ 

Hence the theorm

**Theorrm 4:** If A and B are n-rowed square matrices and If A is invertible show that A<sup>-1</sup>B and B A<sup>-1</sup> have same eigen values.

Proof: Given A is invertile

i.e, A<sup>-1</sup> exist

w e know that if A and P are the square matrices of order n such that P is non-singular then A and P-1 AP hence the same eigen values.

Taking A=B A<sup>-1</sup> and P=A, we have

B A-1 and A-1 (B A-1)A have the same eigen value

 $B\ A^{\text{--}1}$  and  $(A^{\text{--}1}\,B)(\ A^{\text{--}1}\,A)$  have the same eigen values

B A<sup>-1</sup> and (A<sup>-1</sup> B)I have the same eigen values

B A<sup>-1</sup> and A<sup>-1</sup> B have the same eigen values

**Theorm 5:** If  $\lambda_1, \lambda_2, \ldots, \lambda_n$  are the eigen values of a matrix A then  $k \lambda_1, k \lambda_2, \ldots, k \lambda_n$  are the eigen value of the matrix KA, where K is a non-zero scalar.

Proof: Let A be a square matrix of order n. Then  $|KA - KI| = |K(A - I)| = K^n |A - I|$ 



Since  $K \neq 0$ , therefore  $|KA - \mathcal{K}I| = 0 \implies |A - \lambda I| = 0$ 

i. e,  $K\lambda$  is an eigen value of  $KA \iff$  if  $\lambda$  is an eigen value of A

Thus  $k \lambda$ ,  $k \lambda$ ...  $k \lambda$  are the eigen values of the matrix KA

 $\Leftrightarrow \lambda_1, \ \lambda_2 \dots \ \lambda_n$  are the eigen values of the matrix A

**Theorm 6**: If  $\lambda$  is an eigen value of the matrix. Then  $\lambda K$  is an eigen value of the matrix A+KI

Proof: Let  $\lambda$  be an eigen value of A and X the corresponding eigen vector. Then by definition  $AX = \lambda X$ 

Now 
$$(A+KI)X = (\lambda + KI)X$$

$$=\lambda X + KX$$

$$=(\lambda + K) X$$

 $\lambda + K$  is an eigen value of the matrix A + KI

**Theorm 7:** If  $\lambda_1, \ \lambda_2 \dots \ \lambda_n$  are the eigen values of A the  $\lambda_1 - K, \ \lambda_2 - K, \dots \ \lambda_n - K,$ 

are the eigen values of the matrix (A - KI) where K is a non - zero scalar

Proof: Since  $\lambda_1, \lambda_2, \dots, \lambda_n$  are the eigen values of A.

The characteristic polynomial of A is

$$|A - \lambda I| = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \dots (\lambda_n - \lambda)$$
-----1

Thus the characteristic polynomial of A-KI is

$$|(A - KI) - \lambda I| = |A - (k + \lambda)I|$$

= 
$$[\lambda_1 - (\lambda + K)] [\lambda_2 - (\lambda + K)] ..... [\lambda_n - (\lambda + K)]$$

$$= [(\lambda_1 - K) - \lambda][(\lambda_2 - K) - \lambda] \dots [(\lambda_n - K) - \lambda]$$

Which shows that the eigen values of A-KI are  $\lambda_1 - K$ ,  $\lambda_2 - K$ , ... ...  $\lambda_n - K$ 

**Theorm 8:** If  $\lambda_1, \lambda_2 \dots \lambda_n$  are the eigen values of A find the eigen values of the matrix  $(A - \lambda I)^2$ 

Sol: First we will find the eigen values of the matrix A-  $\lambda I$ 

Since  $\lambda_1, \lambda_2 \dots \lambda_n$  are the eigen values of A

The characteristics polynomial is

$$|A-\lambda I| = (\lambda_1 - K)(\lambda_2 - K)....(\lambda_n - K) - - - - - (1)$$
 where K is scalar

The characteristic polynomial of the matrix (A-  $\lambda I$ ) is

$$|A - \lambda I - KI| = |A - (\lambda + K)I|$$

$$= \, \left[ \lambda_1 - (\lambda + \mathrm{K}) \right] \left[ \lambda_2 - (\lambda + \mathrm{K}) \right] ... \left[ \, \lambda_n - (\, \lambda \!\!+\! \mathrm{K}) \right]$$

= 
$$[(\lambda_1 - \lambda) - K)][(\lambda_2 - \lambda) - K]...[(\lambda_n - \lambda) - K)]$$

Which shows that eigen values of (A-  $\lambda$ I) are  $\lambda_1 - \lambda$ ,  $(\lambda_2 - \lambda) \dots \lambda_n - \lambda$ 

We know that if the eigen values of A are  $\lambda_1, \lambda_2 \dots \lambda_n$  then the eigen values of  $A^2$  are  $\lambda_1^2, \lambda_2^2, \dots, \lambda_n^2$ 



**Theorm 9:** If  $\lambda$  is an eigen value of a non-singular matrix A corresponding to the eigen vector then  $\lambda^{-1}$  is an eigne vector of  $A^{-1}$  and corresponding eigen vector X itself.

Proof: Since A is non-singular and product of the eigen values is equal to |A|. it follows that none of the eigen vectors of A is o.

If  $\lambda$  is an eigen vector of the non-singular matrix A and X is the corresponding eigen vector #0 and

AX=  $\lambda X$ . Premultiplying this with  $A^{-1}$ , we get  $A^{-1}(AX) = A^{-1}(\lambda X)$ 

$$\Rightarrow (A^{-1}A)X = \lambda A^{-1}X \Rightarrow IX = \lambda A^{-1}X$$

$$X = \lambda A^{-1}X \Rightarrow A^{-1}X = \lambda^{-1}X$$

Hence  $\lambda^{-1}$  is an eigen value of  $A^{-1}$ 

Theorm 10: If  $\lambda$  is an eigen value of a non — singular matrix A, then  $\frac{|A|}{\lambda}$  is an eigen value of the matrix Adj A

Proof: Since  $\lambda$  is an eigen value of a non-singular matrix, therfore  $\not\equiv 0$ 

Also  $\lambda$  is an eigen value of A implies that there exists a non-zero vector X such that  $AX = -\lambda X$ ----- (1)

$$\Rightarrow$$
  $(adj A)AX = (Adj A)(\lambda X)$ 

$$\Rightarrow [(adj A)A]X = \lambda(adj A)X$$

$$\Rightarrow |A|IX = \lambda (adj A)X$$

$$\Rightarrow \frac{|A|}{\lambda}X = (adj \ A)X \ on \ (adj \ A)X = \frac{|A|}{\lambda}X$$

 $\Rightarrow$  Since X is a non - zero vector, therfore the relation (1)

it is clear that  $\frac{|A|}{X}$  is an eigen value of the matrix Adj A

Theorm 11: If  $\lambda$  is an eigen value of an orthogonal matrix then  $\frac{1}{\lambda}$  is also an eigen value

Proof: We know that if  $\lambda$  is an eigen value of a matrix A, then  $\frac{1}{\lambda}$  is an eigen value of  $A^{-1}$ 

Since A is an orthogonal matrix, therefore  $A^{-1} = A^{1}$ 

 $\frac{1}{\lambda}$  is an eigen value of  $A^1$ 

But the matrices A and A<sup>1</sup> hence the same eigen values, since the determinants |A-I| and  $|A^1-I|$  are same.

Hence  $\frac{1}{\lambda}$  is also an eigen value of A.

**Theorm 12:** If  $\lambda$  is eigen value of A then prove that the eigen value of  $B = a_0A^2 + a_1A + a_2I$  is  $a_0 \lambda + a_1 \lambda + a_2I$ 

Proof: If X be the eigen vector corresponding to the eigen value  $\lambda$ , then AX =  $\lambda$ X --- (1)



Premultiplying by A on both sides

$$\Rightarrow A(AX) = A(\lambda X)$$

$$\implies A^2X = \lambda(AX) = \lambda(\lambda X) = \lambda^2X$$

This shows that  $\lambda^2$  is an eigen vector of  $A^2$ 

we have  $B = a_0 A^2 + a_1 A + a_2 I$ 

$$BX = (a_0A^2 + a_1A + a_2I)X$$

$$= a_0A^2X + a_1AX + a_{2X}$$

$$= a_0 A^2 X + a_1 \lambda X + a_2 X$$
  $= (a_0 \mathcal{R} X + a_1 \lambda + a_2) X$ 

 $(a_0 \mathcal{R} X + a_1 \mathcal{H} a_2)$  is an eigen value of B and the corresponding eigen vector of B is X.

**Theorm 14:** Suppose that A and P be square matrices of order n such that P is non singular then A and P-1AP have the same eigen values.

Proof: Consider the characteristic equation of P-1AP

It is 
$$|(P^{-1}AP)-\lambda I| = |P^{-1}AP-\lambda P^{-1}IP|$$

$$= |P^{-1}(A-\lambda I)P| = |P^{-1}||A-\lambda I||P|$$

$$= |A-\lambda I| \text{ since } |P^{-1}| |P| = 1$$

Thus the characteristic polynomials of P-1AP and A are same. Hence the eigen values of P-1AP and A are same.

**Corollary:** If A and B are square matrices such that A is non-singular, then A<sup>-1</sup>B and BA<sup>-1</sup> have the same eigen values.

Proof: In the previous theorm take BA<sup>-1</sup> in place of A and A in place of B.

We deduce that A-1(BA-1)A and (BA-1) have the same eigen values.

i.e, (A<sup>-1</sup>B) (A<sup>-1</sup>A) and BA<sup>-1</sup> have the same eigen values.

i.e, (A-1B)I and BA-1 have the same eigen values

i.e, A-1B and BA-1 have the same eigen values

**Corollary2**: If A and B are non-singular matrices of the same order, then AB and BA have the same eigen values.

Proof: Notice that  $AB=IAB = (B^{-1}B)(AB) = B^{-1}(BA)B$ 

Using the theorm above BA and B-1 (BA)B have the same eigen values.

i.e, BA and AB have the same eigen values.

**Theorm 15:** The eigen values of a triangular matrix are just the diagonal elements of the matrix.

Proof: Let A = 
$$\begin{bmatrix} a_{11} & a_{12} \dots \dots & a_{1n} \\ 0 & a_{22-\lambda} \dots & a_{2n} \\ \dots & \dots & \dots \\ 0 & 0 \dots \dots & a_{nn} \end{bmatrix}$$
 be a triangular matrix of order n



The characteristic equation of A is |A - I| = 0

i.e., 
$$\begin{vmatrix} a_{11-\lambda} & a_{12} & \dots & a_{1n} \\ 0 & a_{22-\lambda} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn-\lambda} \end{vmatrix} = 0$$

i.e, 
$$(a_{11}-\lambda)(a_{22}-\lambda)....(a_{nn}-\lambda)=0$$

$$\Rightarrow \lambda = a_{11}, a_{22}, \dots a_{nn}$$

Hence the eigen values of A are  $a_{11}$ ,  $a_{22}$ ,....  $a_{nn}$  which are just the diagonal elements of A.

Note: lly we can show that the eigen values of a diagonal matrix are just the diagonal elements of the matrix.

Theorm 16: The eigen values of a real symmetric matrix are always real.

Proof: Let  $\lambda$  be an eigen value of a real symmetric matrix A and Let X be the corresponding eigen

vector then 
$$AX = \lambda X - - - - (1)$$

Take the conjugate  $\bar{A}\bar{X} = \lambda \bar{X}$ 

Taking the transpose  $\bar{X}^T(\bar{A})^T = \bar{\lambda} \bar{X}^T$ 

Since 
$$\bar{A} = A$$
 and  $A^T = A$ , we have  $\bar{X}^T A = \bar{\lambda} \bar{X}^T$ 

Post multiplying by X, we get  $\bar{X}^T AX = \bar{\lambda} \bar{X}^T X$ ----- (2)

Premultiplying (1) with  $\overline{X}^T$ , we get  $\overline{X}^T AX = \lambda \overline{X}^T X$ -----(3)

(1) – (3) gives 
$$(\lambda - \overline{\lambda})\overline{X}^T X = 0$$
 but  $\overline{X}^T X \neq 0 \Rightarrow \lambda - \overline{\lambda} = 0$ 

 $\Rightarrow \lambda - \overline{\lambda} \Rightarrow \lambda$  is real. Hence the result follows

<u>Theorm 17</u>: For a real symmetric matrix, the eigen vectors corresponding to two distinct eigen values are orthogonal.

Proof: Let  $\lambda_1$ ,  $\lambda_2$  be eigen values of a symmetric matrix A and let  $X_1$ ,  $X_2$  be the corresponding eigen vectors.

Let  $\lambda_1 \neq \lambda_2$  we want to show that  $X_1$  is orthogonal to X2 (i.e.,  $X_1^T X_2 = 0$ )

Sice  $X_1$ ,  $X_2$  are eigen values of A corresponding to the eigen values  $\lambda_1$ ,  $\lambda_2$  we have

$$AX_1 = \lambda_1 X_1 - \dots (1)$$
  $AX_2 = \lambda_2 X_2 - \dots (2)$ 

Premultiply (1) by  $X_2^T$ 

$$\implies X_2^T A X_1 = \lambda_1 X_2^T X_1$$

Taking transpose to above, we have

$$\Rightarrow X_1^T A^T (X_2^T)^T = \lambda_1 X_1^T A^T (X_2^T)^T$$

$$i.e, X_1^T A X_2 = \lambda_1 X_1^T X_2$$
 (3)

Premultiplying (2) by  $X_1^T$ , we get  $X_1^T A X_2 = \lambda_2 X_1^T X_2 - - - - - (4)$ Hence from (3) and (4) we get

$$(\lambda_1 - \lambda_2) X_1^T X_2 = 0$$

$$\Rightarrow X_1^T X_2 = 0$$

$$(Q \lambda_1 \neq \lambda_2)$$

a) 1,2

 $X_1$  is orthogonal to  $X_2$ 

Note: If  $\lambda$  is an eigen value of A and f(A) is any polynomial in A, then the eigen value of f(A) is f( $\lambda$ )

# **Objective type questions**

- 1. The Eigen values of  $\begin{bmatrix} 6 & 3 \\ -2 & I \end{bmatrix}$  are
- 2. If the determinant of matrix of order 3 is 12. And two eigen values are 1 and 3, then the third eigen value is

d) 1, 5

a) 2 b) 3 c) 1 d) 4 I - I 2

b) 2,4 c) 3, 4

- 3. If  $A = \begin{bmatrix} 0 & 2 & 4 \end{bmatrix}$  then the eigen values of A are  $\begin{bmatrix} 0 & 0 & 3 \end{bmatrix}$ a) 1, 1, 2 b) 1, 2, 3 c) 1,  $\frac{1}{2}$ ,  $\frac{1}{3}$  d) 1, 2,  $\frac{1}{2}$
- 4. The sum of Eigen values of A =  $\begin{bmatrix} 1 & -2 & 2 \\ [0 & 1 & 3] \\ 3 & -1 & 2 \end{bmatrix}$  is a) 2 b) 3 c) 4 d) 5
- 5. If the Eigen values of A are (1,-1,2) then the Eogen values of Adj A are

  a) (-2,2,-1) b) (1,1,-2) c) (1,-1,1/2) d) (-1,1,4)
- 6. If the Eigen values of A are (2,3,4) then the Eigen values of 3A are

  a) 2,3,4

  b) ½, 1/3, ¼ c) -2,3,2

  d) 6,9,12
- 7. If the Eigen values of A are (2,3,-2) then the Eigen value of A-3I are
  a) -1,0,-5 b) 2,3,-2 c) -2,-3,2 d) 1,2,2
- 8. If A is a singular matrix then the product of the Eigen values of A is

  a) 1

  b) -1

  c) can't be decided

  d) 0

- $1 \ 2 \ -1$ 9. The Eigen vector corresponding to  $\times = 2 \square \square [0 \ 2 \ 2]$  is ]
- 10. If two Eigen vectors of a symmetric matrix of order 3 are [-1] and [2] then the third eigen vector is
  - a)  $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 \end{bmatrix}$  b)  $\begin{bmatrix} 2 \end{bmatrix}$  c)  $\begin{bmatrix} 2 \end{bmatrix}$  d)  $\begin{bmatrix} 2 \end{bmatrix}$  -1 3
- 1
- 12. If the trace of A (2x2 matrix) is 5 and the determinant is 4, then the eigen values are [ a) 2, 2 b) -2, 2c) -1, -4 d) 1, 4
- 13. Sum of the eigen values of matrix A is equal to the Γ 1
- a) Principal diagonal elements of A b) Trace of matrix A c) A&B d) None 14. If A = [then A<sup>-1</sup> 1 a)  $\frac{1}{6}$  [7  $\Box$  -  $\Box$ ] b)  $\frac{1}{4}$  [5  $\Box$  -  $\Box$ ] c)  $\frac{1}{2}$  [7  $\Box$  -  $\Box$ ] d)  $\frac{1}{18}$  [7  $\Box$  -  $\Box$ ]
- 15. If  $A = \begin{bmatrix} 6 & 2 \\ 1 & -1 \end{bmatrix}$  then  $2A^2-8A-16I =$ ] c) A-I d) 5I a) I
- 16. Similar matrices have same Γ ]
  - a) Characteristic Polynomial b) Characteristic equation
    - c) Eigen values d) All the above

17. If 
$$A = \begin{bmatrix} 0 & -1 & 2 \end{bmatrix}$$
 then  $A^{-1} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \end{bmatrix}$  a)  $\frac{1}{2} \begin{bmatrix} \Box + \Box - \Box^2 \end{bmatrix}$  b)  $\frac{1}{2} \begin{bmatrix} \Box + \Box + \Box^2 \end{bmatrix}$  c)  $\frac{1}{2} \begin{bmatrix} \Box + 2\Box - \Box^2 \end{bmatrix}$  d)  $\frac{1}{2} \begin{bmatrix} \Box + 2\Box - \Box^2 \end{bmatrix}$ 

| your roots to success. Estd.2007  Accredited by NBA & NAAC with 'A' Grade                                                                                 |                                                                                                                           |                                                         |                                                                     |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|-----|
| 18. If A has eigen va                                                                                                                                     | lues (1,2) then the eige                                                                                                  | n values of 3A                                          | A+4A <sup>-1</sup> are                                              | [ ] |
| a) 3, 8                                                                                                                                                   | b) 7, 11                                                                                                                  | c) 7, 8                                                 | d) 3, 6                                                             |     |
| 1 2                                                                                                                                                       |                                                                                                                           |                                                         |                                                                     |     |
| 19. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Box h$                                                                                          | a = a = a                                                                                                                 |                                                         |                                                                     | [ ] |
| a) $2A^2 + 5A$                                                                                                                                            | b) $4A^2+5A$ c) $2A^2$                                                                                                    | <sup>2</sup> +4A d) 5A                                  | $\Lambda^2+2A$                                                      |     |
| 20. If $D = P^{-1}AP$ then                                                                                                                                | $A^2 =$                                                                                                                   |                                                         |                                                                     | [ ] |
| a) PDP <sup>-1</sup> b) P <sup>2</sup> D                                                                                                                  | $O^{2}(P^{-1})^{2}$ c) $(P^{-1})^{2}D^{2}$ (p <sup>2</sup>                                                                | <sup>2</sup> ) d) PI                                    | ) <sup>2</sup> P <sup>-1</sup>                                      |     |
| 21. The product of E                                                                                                                                      | igen values of $A = [I]$                                                                                                  |                                                         |                                                                     | [ ] |
|                                                                                                                                                           | b) -18 c) 36                                                                                                              |                                                         | 6                                                                   |     |
| a) Singular                                                                                                                                               | n values of A is zero th<br>b) Non-Singular                                                                               |                                                         | c d) Non-Symmetric                                                  | [ ] |
| 23. If A is a square matrix, D is a diagonal matrix whose elements are eigen values of A and P is the                                                     |                                                                                                                           |                                                         |                                                                     |     |
| matrix whose Co<br>a) PDP <sup>-1</sup> b) PD                                                                                                             | lumns are eigen vector<br><sup>4</sup> P <sup>-1</sup> c) P <sup>-1</sup> I                                               |                                                         | \frac{4}{2} =                                                       | [ ] |
| 24. $\frac{ \Box }{x}$ is an eigen va                                                                                                                     | lue of                                                                                                                    |                                                         |                                                                     | [ ] |
| a) Ac                                                                                                                                                     | dj A b) A.adj A                                                                                                           |                                                         | d) None                                                             | L J |
| 25. The characteristic                                                                                                                                    | c equation of $\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$                                                             | is                                                      |                                                                     | [ ] |
| a) $x^2 - 3 \times +5 = 0$ b) $x^2 + 3 \times +5 = 0$<br>c) $x^2 + 3 \times -5 = 0$ d) $x^2 - 3 \times -5 = 0$                                            |                                                                                                                           |                                                         |                                                                     |     |
| 26. If $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \Box h$                                                                                          | eigen values of A ar $ \begin{array}{ccc}  & & & & \\  & & & & \\  & & & & \\  & & & &$                                   | te 6 and 1 there $\begin{bmatrix} 1 & -1 \end{bmatrix}$ | the model matrix is $\begin{bmatrix} 2 & I \\ I & -I \end{bmatrix}$ | [ ] |
| 27. If $A = \begin{bmatrix} I & 0 \\ 0 & 1 \end{bmatrix}$                                                                                                 | then the model matrix i                                                                                                   | İs                                                      |                                                                     | [ ] |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                    | $\begin{bmatrix} I & 0 \\ I & I \end{bmatrix}  c) \begin{bmatrix} I & I \\ 2 & 0 \end{bmatrix}  d$                        | $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$         |                                                                     |     |
| $\Gamma_{I}$                                                                                                                                              | on the model matrix is $\begin{bmatrix} -2 \\ 1 \end{bmatrix}  b) \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ $I  -I  I$       |                                                         | d) $\begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$                 | [ ] |
| 30. If $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ the a) $\begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$ | on the spectral matrix is $ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad c) \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} $ | d) $\begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$      |                                                                     | [ ] |

[ ]

a) 
$$\begin{bmatrix} -5 & 0 \\ 0 & \end{bmatrix}$$
 b)  $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$  c)  $\begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$ 

c) 
$$\begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$$

d) 
$$\begin{bmatrix} 4 & 0 \\ 0 & -4 \end{bmatrix}$$

- 31. If the eigen values of A are 0, 3, 15 then the index and signature of  $X^{T}AX$  are

- a) 2, 1 b) 2,2 c) 3,3 d) 1,1
- 32. If two eigen vectors of a symmetric matrix are  $\begin{bmatrix} -1 \end{bmatrix} \square \square \square \begin{bmatrix} 0 \end{bmatrix}$  then the third eigen vector is

i. a) 
$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ -1 \end{bmatrix}$$
 b)  $\begin{bmatrix} -2 \end{bmatrix}$  c)  $\begin{bmatrix} 1 \end{bmatrix}$  d)  $\begin{bmatrix} 2 \end{bmatrix}$ 

b) 
$$\begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

33. Product of eigen values of matrix A is equal to

[ ] d) None

a) determinant of A b) Trace of A c) Principal diagonal of A

- 34. If A and B are square matrices such that A is non-singular then A-1B and BA-1 have [
  - a) different eigen values
- b) same eigen values
- c) reciprocal eigen values
- d) None

35. The eigen values of 
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$
  $\square \square \square$ 

[ ]

[ ]

36. If 
$$A = \begin{bmatrix} 0 & -4 & 7 \end{bmatrix}$$
 then  $A^3-12A = \begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$ 

]

37. If 
$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
 then  $6A^2 - A^3 + A =$ 

d) 8I

a) 5I b) 10I c) 6I  
38. If 
$$A = \begin{bmatrix} 4 & -2 \\ I & I \end{bmatrix}$$
 then  $A^3-4A^2+A+6I =$ 

1 ſ

]

39. If 
$$A = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix}$$
 and  $x = 2 a \square \square 3$  then the modal matrix is
$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \qquad b) \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \qquad c) \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix} \qquad d) \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

40. If 
$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
 then  $D =$ 

$$(a) \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \quad b) \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix} \quad c) \begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix} \quad d) \begin{bmatrix} 6 & 0 \\ 0 & 7 \end{bmatrix}$$



41. If 
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$$
 then  $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$  b)  $\begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix}$  c)  $\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$  d)  $\begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$ 

42. If 
$$\lambda$$
 is an eigen value of A then  $\lambda^m$  is eigen value of [ ]

$$a)\,A\quad b)\,A^{\text{-}1}\,\,c)\,A^{\text{m}}\qquad d)\,A^{\text{-}m}$$

44. If 
$$\lambda$$
 is the eigen value of A then the eigen values of  $A^{-1}$  are

a) 
$$\frac{|A|}{\lambda}$$
 b)  $\frac{1}{\lambda}$  c)  $-\lambda$  d)  $\lambda$ 

45. If the eigen values of A are 1, 3, 0 then 
$$|A| =$$

46. The characteristic equation of 
$$\begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}$$
 is

a) 
$$\lambda^2 + 6 \lambda + 1 = 0$$
 b)  $\lambda^2 - 6 \lambda - 1 = 0$   
c)  $\lambda^2 + 6 \lambda - 1 = 0$  d)  $\lambda^2 - 6 \lambda + 1 = 0$ 

47. If 
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$
 then  $p^{-1}A^2P =$ 

$$a) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 b)  $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$  c)  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}$  d)  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$ 

48. If 
$$A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$
 the eigen values of A are  $(2, 2, -2)$  then  $p^{-1}A^{3}P = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$  b)  $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -21 \end{bmatrix}$  c)  $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$  d)  $\begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & -8 \end{bmatrix}$ 

49. If the eigen values of a matrix are (-2, 3, 6) and the corresponding eigen vectors are  $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ 

$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \text{ then the spectral matrix is}$$

$$\begin{bmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

$$b) \begin{bmatrix} -1 & 1 & 1 \\ 0 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

$$c) \begin{bmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 36 \end{bmatrix}$$

$$d) \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \\ 0 & -1/\sqrt{3} & 2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{bmatrix}$$