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Outline 
● Role of lexical analyzer 
● Specification of tokens 
● Recognition of tokens 
● Lexical analyzer generator 
● Finite automata 
● Design of lexical analyzer generator 
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WhytoseparateLexicalanalysis 
and parsing 
1. Simplicity of design 
2. Improving compiler efficiency 
3. Enhancing compiler portability 

 
 
 
 
 
 
 

 



 
Tokens,PatternsandLexemes 
● A token is a pair a token name and an optional 

token value 
● A pattern is a description of the form that the 

lexemes of a token may take 
● A lexeme is a sequence of characters in the 

source program that matches the pattern for a 
token 

 
 
 

 



 
Example 

 
 

Token 

if 
else 

comparison 

id 

number 

literal 

Informaldescription 

Charactersi,f 

Characterse,l,s,e 

< or > or <= or >= or == or != 

Letterfollowedbyletteranddigits 

Anynumeric constant 

Anythingbut“sorroundedby“ 

Samplelexemes 

if 

else 

<=,!= 

pi,score,D2 

3.14159,0,6.02e23 

“coredumped” 

 
printf(“total=%d\n”,score); 



 
Attributesfortokens 
● E=M*C**2 

●  <id,pointertosymboltableentryforE> 
●  <assign-op> 
●  <id,pointertosymboltableentryforM> 
●  <mult-op> 
●  <id,pointertosymboltableentryforC> 
●  <exp-op> 
●  <number,integervalue2> 

 
 
 
 

 
 



 
Lexicalerrors 
● Someerrorsareoutofpoweroflexicalanalyzerto 

recognize: 
●  fi(a==f(x))… 

● Howeveritmaybeabletorecognizeerrorslike: 
●  d=2r 

● Sucherrorsarerecognizedwhennopatternfortokens 
matches acharactersequence 

 
 

 



 
Error recovery 
● Panic mode:successive characters a reignoreduntilwe 

reach to a well formed token 
● Delete one character from the remaining input 
● Insert a missing character into there main ing input 
● Replace a character by another character 
● Transpose  two adjacent characters 

 
 
 

 



 
Input buffering 
● Sometimes lexical analyzer need to look ahead some 

symbols to decide about the token toreturn 
●  In C language: we need to look after-,=or<todecide 

what token to return 

●  In Fortran:DO5I=1.25 

● We need to introduce at wo buffers cheme to 
handle large look-aheads safely 

 
 
 

 

           E  = M * C * * 2 eof           

 



 
Sentinels 

 

           E  = M eof * C * * 2 eof         eof 

Switch(*forward++){ 
Case of: 

if(forwardisatendoffirstbuffer){ reload 
second buffer; 
forward=beginningofsecondbuffer; 

} 
Elseif {forward is at end of secondbuffer){ 

reload first buffer;\ 

forward=beginning offirst buffer; 
} 
else/*eof  within a buffermarks the end of input*/ 

terminate  lexical analysis; 
break; 

cases  for the other characters; 



 
Specification of tokens 
● In theory of compilation regular expressions are 

used to formalize the specification of tokens 
● Regular expressions are means for specifying 

regular languages 
● Example: 

●  Letter_(letter_|digit)* 

● Each regular expression is a pattern specifying 
the form of strings 

 

 



 
Regular expressions 
● Ɛ is a regular expression,L(Ɛ)={Ɛ} 

● If a is a symbol in ∑ the naisa regular expression,L(a) 
={a} 

● (r)|(s)is a regular expression denoting the language 
L(r) ∪ L(s) 

●  (r)(s)is a regular expression denoting the 
language L(r)L(s) 

● (r)*is a regular expression denoting(L9r))* 
● (r)is a regular expression dentingL(r) 

 



 
Regulardefinitions 
d1 -> r1 
d2->r2 
… 
dn->rn 

 
● Example: 

letter_->A|B|…|Z|a|b|…|Z|_ digit -> 
0 | 1 | … | 9 

id ->letter_(letter_|digit)* 



 
Extensions 
● One or more instances:(r)+ 
● Zero of one instances:r? 
● Character classes:[abc] 

 
● Example: 

●  letter_->[A-Za-z_] 
●  digit 
●  id 

->[0-9] 
->letter_(letter|digit)* 

 
 



 
Recognition of tokens 
● Starting point is the language grammar to 

understand the tokens: 
stmt->if expr then stmt 

|if expr then stmt else stmt 
|Ɛ 

expr->term relop term 
|term 

term ->id 
|number 

 



 
Recognition of tokens(cont.) 
● The next step is to formalize the patterns: 

digit ->[0-9] 
Digits ->digit+ 
number->digit(.digits)?(E[+-]?Digit)? 
letter->[A-Za-z_] 
id ->letter(letter|digit)* 
If ->if 
Then ->then 
Else ->else 
Relop ->< |>|<=|>=| =|<> 

● We also need to handle whitespaces: 
ws->(blank|tab|newline )+ 



Transition diagrams 
● Transition diagram for relop 
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Transition diagrams(cont.) 
● Transition diagram for reserved words and identifiers 

 
 

 

 
 
 
 
 
 
 

 



 
Transition diagrams(cont.) 
● Transition diagram for unsigned numbers 

 
 

 

 
 
 



 
Transition diagrams(cont.) 
● Transition diagram for whitespace 

 
 

 

 
 
 
 
 
 
 

 



Architecture of a transition- 
diagram-based lexical 
analyzer 

TOKENgetRelop() 
{ 

TOKENretToken=new(RELOP) 
while(1){ /*repeatcharacterprocessinguntila 

returnorfailureoccurs*/ 
switch(state){ 

case0:c=nextchar(); 
if(c==‘<‘)state=1; 
else if (c==‘=‘)state=5; 
else if (c==‘>’)state=6; 
else fail();/*lexemeisnotarelop*/ break; 

case1:… 
… 
case8:retract(); 

retToken.attribute=GT; 
return(retToken); 



} 
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Lexical Analyzer Generator-Lex 

 
 

 

LexSourceprogram 
lex.l 

Lexical 
Compiler 

lex.yy.c 

 

 
lex.yy.c a.out 

 

 
Input stream Sequence 
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Structure of Lex programs 

 
 
 
 

 

declarations 
%% 
Translation rules 
%% 
Auxiliary 
functions 

 

 
Pattern {Action} 

 
 
 
 
 
 

 



 

Example 
%{ 

/*definitions of manifest constants 
LT,LE, EQ, NE, GT,GE, 
IF,THEN,ELSE,ID,NUMBER,RELOP*/ 

%} 

 
/*regular definitions 

 
 
 

 
Int install ID(){/*funtiont oinstallthe 

lexeme, whose first character is 
pointed to by yy text, and whose 
length is yy leng, into the symbol 
tableand return apointer thereto 
*/ 

} 

delim 
ws 
letter 
digit 

[\t\n] 
{delim}+ 
[A-Za-z] 
[0-9] 

 
Int install Num() { /* similar to install 

ID, but puts numerical constants 
into a separatetable*/ 

id 
number 

} 
{letter}({letter}|{digit})* 
{digit}+(\.{digit}+)?(E[+-]?{digit}+)? 

 
%% 
{ws} {/*no action and no return*/} 
if {return(IF);} 
then {return(THEN);} 
else {return(ELSE);} 
{id} {yylval=(int)install ID();return(ID);} 
{number} {yylval=(int)install Num();return(NUMBER);} 
…  

 



 
Finite Automata 
● Regular expressions=specification 
● Finite automata=implementation 

 
● Afinite automata consistsof 

●  An input alphabet 
●  A set of states S 
●  A starts taten 
●  A set of accepting states FS 
●  A set of transitions stateinputstate 

 



 
Finite Automata 
● Transition 

 
● Is 

read 

s1as2 
 
 

Instates1oninput“a”gotostates2 



● If end of input 
●  If in accepting state=>accept,othewise=>reject 

● If no transition possible=>reject 
 
 

Finite Automata State Graphs 
● A state 

 
• The start state 

 
• An accepting state 

 
a 



• A transition 
 
 
 



1 

 
A Simple Example 
● A finite automaton that accepts only“1” 

 

 

 
● A finite automaton accepts a string if we can 

follow transitions labeled with the characters in 
the string from the start to some accepting state 

 
 
 

 



1 

0 

Another Simple Example 
● A finite automaton accepting any number of1’s 

Followed by a single0 
● Alphabet:{0,1} 

 

 
● Checkthat“1110”isacceptedbut“110…”is not 
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0 0 
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And Another Example 
● Alphabet{0,1} 
● What language does this recognize? 

 

 

 
 
 



1 

1 

 
And Another Example 
● Alphabet still{0,1 } 

 
● The operation of the automaton is not 

completely defined by the input 
●  Oninput“11”theautomatoncouldbeineitherstate 

 




A B 

 
Epsilon Moves 
● Another kind of transition:-moves 

 

• Machine can move from stateA to state B 
without reading input 

 
 
 
 
 

 



Deterministic and 
Nondeterministic Automata 
● Deterministic Finite Automata(DFA) 

●  One transition per input per state 
●  No-moves 

● Non deterministic Finite Automata(NFA) 
●  Can have multiple transitions for one input in a 

given state 
●  Can have-moves 

● Finite automata have finite memory 
●  Need only to encode the current state 

 



 
Execution of Finite Automata 
● A DFA can take only one path through the state graph 

●  Completely determined by input 

 
● NFAs can choose 

●  Whether to make-moves 
●  Which of multiple transitions for a single input to take 

 
 
 

 



 
Acceptance of NFAs 
● An NFA can get into multiple states 

 

 

• Input: 1 0 1 

1 

0 1 



• Rule:NFA accepts if it can get in a finalstate 
 

NFAvs.DFA(1) 
● NFAs and DFAs recognize the same set of 

languages (regular languages) 
 

 
● DFA sare easier to implement 

●  There are no choices to consider 
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NFAvs.DFA(2) 
● For a given language the NFA can be simpler than the 

DFA 

NFA 
 
 

0 

DFA 

1 

• DFA can be exponentially larger than NFA 

1 
0 0 



Regular Expressions to Finite 
Automata 
● High-level sketch 

 

 

 
Regular 

expressions 

NFA  

 

DFA 
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Regular Expressions to NFA(1) 
● For each kind of rexp,defineanNFA 

●  Notation :NFA for rexpA 
 

• For


• For input a 
 
 
 
 



a 



B 

 B 






A 

 
Regular Expressions to NFA(2) 
● For AB 

A    

 
• For A|B 

 

 
 



 A 

Regular Expressions to NFA(3) 
● For A* 

















 
NFA to DFA.The Trick 
● Simulate the NFA 
● Each state of resulting DFA 

=anon-empty subset of states of theNFA 

● Start state 
=the set of NFA states reachable through-movesfrom 

NFA start state 

● Add a transitionSaS’toDFAiff 
●  S’is the set of NFA states reachable from the states in S 

After seeing the inputa 
● considering-moves as well 
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NFA->DFA Example 




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x=*p 
LDR1,p //R1=p 

LDR2,0(R1) //R2= 

contents(0+contents(R1)) 

STx,R2 //x=R2 
 
 
 
 
 



 

 
conditional-jump three-address instruction 
If x<y goto L 

 



LD R1,x 

LD R2,y 

SUBR1,R1,R2 BLTZ R1, M 



//R1=x 

//R2=y 

//R1= R1-R2 

//ifR1<0jumptoM 
 
 
 

 

 
costs associated with the addressing modes 

 
 

 

● LD R0,R1 ● LD R0,M 



● LD R1,*100(R2) cost=1 

cost=2 

cost=3 
 
 
 
 

 



 
Addresses in the Target Code 
● A statically determined area Code 

● A statically determined data area Static 

● A dynamically managed area Heap 

● A dynamically managed area Stack 
 
 
 

 



Procedure calls and returns 
● Call callee 

● Return 

● Halt 

● action 
 
 
 

 



 

 
Target program for a sample call and return 
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Stack Allocation 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Return to caller 
In 
Callee: 

in caller: 

 

 
Branch tocalledprocedure 



 
BR*0(SP) 
SUCoBmSpuPt,eSrSPc,i#enccaellae
nrd.recordsize  



Target code for stack allocation 
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Basic blocks and flow graphs 
● Partition the intermediate code into basic blocks 

● The flow of control can only enter the basic block 
through the first instruction in the block.That is,there 
are no jumps into the middle of the block. 

● Control will leave the block without halting or 
branching,except possibly at the last instruction in 
the block. 

● The basic blocks become the nodes of a flowgraph 

 



 
rules for finding leaders 
● The first three-address instruction in the 

intermediate code is a leader. 

● Any instruction that is the target of a conditional 
or unconditional jump is a leader. 

● Any instruction that immediately follows a 
conditional o run conditional jump is a leader. 

 
 

 



x 
 

Intermediatecodetoseta10*10matri to 
an identity matrix 

 

 

 
 

 



 
 
 
 
 
 
 

 

Flowgraph based on BasicBlocks 



 
liveness andnext-use information 
● We wish to determine for each three address 

statement x=y+z what the next uses of x,yandzare. 

● Algorithm: 
● Attach to statement the information currently found in 

the symbol table regarding then extuse and livenessof 
x, y,and z. 

● In the symbol table,set x to"not live"and"non extuse.“ 

● In the symbol table,set y and zto"live"and the next 
uses of yand z to i. 



DAG representation of basic 
blocks 
● There is a node in the DAG for each of the initial 

values of the variables appearing in the basic 
block. 

● There is a node N associated with each statements 
within the block.The children of N are those 
nodes corresponding to statements that are the 
last definitions,prior to s,of the operands used 
bys. 

● Node N is labeled by the operator applied at s,and 
also attached to N is  the list of variables for which it 
is the last definition within the block. 

● Certain nodes are designated output nodes.These 
are the nodes whose variables are live on exit from 



the block. 



 
Code improving transformations 
● We can eliminate local common subexpressions,that 

is,instructions that compute a value that has 
already been computed. 

● We  can eliminate deadcode,thatis,instructions that 
compute a value that is never used. 

● We can reorder statements that do not depend on 
one another;such reordering may reduce the timea 
temporary value needs to be preserved in a register. 

● We can apply algebraic law store or deroper and s 
of three-address instructions,and sometimes 
thereby simplify t he computation. 



 
DAG for basicblock 
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DAG for basicblock 
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array accesses in a DAG 
● An assignment from an array,like x=a[i],isrepresentedby 

creating anodewithoperator=[]andtwochildrenrepresenting 
theinitialvalueof thearray,a0inthiscase,andtheindexi. 
Variablex becomesalabelof thisnewnode. 

● Anassignmenttoanarray,likea[j]=y,isrepresentedbyanew 
nodewithoperator[]=andthreechildrenrepresentinga0,jand 
y.Thereisnovariablelabelingthisnode.Whatisdifferentisthat 
thecreationof thisnodekillsallcurrentlyconstructednodes 
whosevaluedependsona0.Anodethathasbeenkilledcannot 
receiveanymorelabels;thatis, itcannotbecomeacommon 
subexpression. 
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DAG for a sequence of array assignments 

 
 
 
 

 

 
 
 



 
Rules for reconstructing thebasicblock 
from a DAG 
● TheorderofinstructionsmustrespecttheorderofnodesintheDAG. 

Thatis,wecannotcomputeanode'svalueuntilwehavecomputed a value 
foreach of itschildren. 

● Assignmentstoanarraymustfollowallpreviousassignmentsto,or 
evaluationsfrom,thesamearray,accordingtotheorderofthese 
instructions inthe original basic block. 

● Evaluationsofarrayelementsmustfollowanyprevious(accordingto 
theoriginalblock)assignmentstothesamearray.Theonly 
permutationallowedisthattwoevaluationsfromthesamearraymay 
bedoneineitherorder,aslongasneithercrossesoveranassignmentto that 
array. 

● Anyuseofavariablemustfollowallprevious(accordingtotheoriginal 
block)procedurecallsorindirectassignmentsthroughapointer. 

● Anyprocedurecallorindirectassignmentthroughapointermust 
followallprevious(accordingtotheoriginalblock)evaluationsofany 
variable. 

 



 
principal uses of registers 
● Inmostmachinearchitectures, someorallof the 

operandsofanoperationmustbeinregistersinorder to 
perform the operation. 

● Registersmakegoodtemporaries-placestoholdthe 
resultofasubexpressionwhilealargerexpressionis 
beingevaluated,ormoregenerally,aplacetoholda 
variablethatisusedonlywithinasinglebasicblock. 

● Registersareoftenusedtohelpwithrun-timestorage 
management,forexample,tomanagetherun-time 
stack,includingthemaintenanceofstackpointersand 
possiblythetopelementsof thestackitself. 



 
Descriptors for datastructure 
● Foreachavailableregister,aregisterdescriptorkeepstrackof the 

variablenameswhosecurrentvalueisinthatregister.Sincewe 
shalluseonlythoseregistersthatareavailableforlocaluse 
withinabasicblock,weassumethatinitially,allregister 
descriptorsareempty.Asthecodegenerationprogresses,each 
registerwill hold thevalueof zeroormorenames. 

● Foreachprogramvariable,anaddressdescriptorkeepstrackof 
thelocationorlocationswherethecurrentvalueof thatvariable 
canbefound.Thelocationmightbearegister,amemory 
address,astacklocation,orsomesetof morethanoneof these. 
Theinformationcanbestoredinthesymbol-tableentryforthat 
variable name. 



 

 
Machine Instructions for Operations 
● UsegetReg(x=y+z)toselectregistersforx,y,andz. Call 

these Rx, Ryand Rz. 
● IfyisnotinRy(accordingtotheregisterdescriptorfor 

Ry),thenissueaninstructionLD Ry,y',wherey'isone 
ofthememorylocationsfory(according tothe address 
descriptor fory). 

● Similarly,ifzisnotinRz,issueandinstructionLDRz, 
z',wherez' isalocationfor x . 

● IssuetheinstructionADDRx,Ry,Rz. 

 



 

 
Rules for updating the register and address descriptors 
● FortheinstructionLDR,x 

● ChangetheregisterdescriptorforregisterRsoitholdsonlyx. 
● ChangetheaddressdescriptorforxbyaddingregisterRasan 

additional location. 
● FortheinstructionSTx,R,changetheaddressdescriptorforxto 

includeitsownmemorylocation. 
● ForanoperationsuchasADDRx,Ry,Rzimplementingathree- 

addressinstructionx=y+x 
● ChangetheregisterdescriptorforRxsothatitholdsonlyx. 
● ChangetheaddressdescriptorforxsothatitsonlylocationisRx. 

Notethatthememorylocationforxisnot nowintheaddress 
descriptor for x. 

● RemoveRxfromtheaddressdescriptorofanyvariableotherthanx. 
● Whenweprocessacopystatementx=y,aftergeneratingtheload 

foryintoregisterRy,ifneeded,andaftermanagingdescriptorsas 
forall load statements(perrule I): 

● AddxtotheregisterdescriptorforRy. 

● ChangetheaddressdCeosmcrpiputteorrSfocriexnscoetahnadtitsonlylocationisRy. 
 



 
Instructions generated and the changes in the 
register and address descriptors 

 

 



 
Rules for picking register Ryfor y 
● Ifyiscurrentlyinaregister,pickaregisteralready 

containingyasRy.Donotissueamachineinstruction 
toloadthisregister,asnoneisneeded. 

● Ifyisnotinaregister,butthereisaregisterthatis 
currentlyempty,pickonesuchregisterasRy. 

● Thedifficultcaseoccurswhenyisnotinaregister,and 
thereisnoregisterthatiscurrentlyempty.Weneedto 
pickoneoftheallowableregistersanyway,andwe need 
tomakeitsafetoreuse. 

 



 
Possibilities for value of R 
● IftheaddressdescriptorforvsaysthatvissomewherebesidesR, then 

we are OK. 
● Ifvisx,thevaluebeingcomputedbyinstructionI,andxisnot 

alsooneof theotheroperandsof instructionI (zinthis 
example),thenweareOK.Thereasonisthatinthiscase,we 
knowthisvalueof xisneveragaingoingtobeused,soweare free to 
ignore it. 

● Otherwise,ifvisnotused later(thatis,aftertheinstructionI, 
therearenofurtherusesofv,andifvisliveonexitfromthe 
block,thenvisrecomputedwithintheblock),thenweareOK. 

● IfwearenotOKbyoneofthefirsttwocases,thenweneedto 
generatethestoreinstructionSTv,Rtoplaceacopyofvinits 
ownmemorylocation.Thisoperationiscalledaspill. 



 
Selection of the register Rx 
1. Sinceanewvalueofxisbeingcomputed,aregister 

thatholdsonlyxisalwaysanacceptablechoicefor Rx. 
2. IfyisnotusedafterinstructionI,andRyholdsonlyy 

afterbeing loaded, RycanalsobeusedasRx.A 
similaroptionholdsregarding zand Rx. 

 
 
 

 



 
Possibilities for value of R 
● IftheaddressdescriptorforvsaysthatvissomewherebesidesR, then 

we are OK. 
● Ifvisx,thevaluebeingcomputedbyinstructionI,andxisnot 

alsooneof theotheroperandsof instructionI (zinthis 
example),thenweareOK.Thereasonisthatinthiscase,we 
knowthisvalueof xisneveragaingoingtobeused,soweare free to 
ignore it. 

● Otherwise,ifvisnotused later(thatis,aftertheinstructionI, 
therearenofurtherusesofv,andifvisliveonexitfromthe 
block,thenvisrecomputedwithintheblock),thenweareOK. 

● IfwearenotOKbyoneofthefirsttwocases,thenweneedto 
generatethestoreinstructionSTv,Rtoplaceacopyofvinits 
ownmemorylocation.Thisoperationiscalledaspill. 



 

 
Characteristic of peephole optimizations 

 
● Redundant-instructionelimination 

● Flow-of-controloptimizations 

● Algebraicsimplifications 

● Useofmachineidioms 
 
 



 
Redundant-instruction elimination 
● LDa,R0 

ST R0, a 
● ifdebug==1gotoL1 

gotoL2 
LI:printdebugginginformation 
L2: 

 
 

 



 
Flow-of-control optimizations 

 

gotoL1 
... 
Ll:gotoL2 

 
Canbereplacedby: 

goto L2 
... 
Ll:gotoL2 

ifa<bgotoL1 
... 
Ll:gotoL2 

 
Canbereplacedby: if 

a<b goto L2 
... 
Ll:gotoL2 

 



 
Global register allocation 
● Previouslyexplainedalgorithmdoeslocal(blockbased) 

registerallocation 
● Thisresultedthatalllivevariablesbestoredattheendof 

block 
● Tosavesomeofthesestoresandtheircorrespondingloads, 

wemightarrangetoassignregisterstofrequentlyused 
variablesandkeeptheseregistersconsistentacrossblock 
boundaries (globally) 

● Someoptionsare: 
●  Keepvaluesofvariablesusedinloopsinsideregisters 
●  Usegraphcoloringapproachformoregloballyallocation 

 



 
Usage counts 
● Fortheloopswecanapproximatethesavingby 

register allocation as: 
●  Sumoverallblocks(B)inaloop(L) 
●  Foreachusesofxbeforeanydefinitionintheblockwe 

addoneunitof saving 
●  IfxisliveonexitfromBandisassignedavalueinB, 

thenweass 2 unitsof saving 
 
 
 
 



 
Flowgraph of an innerloop 
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Code sequence using global register 
assignment 



Register allocation by 
Graph coloring 
● Twopassesareused 

●  Target-machineinstructionsareselectedasthough 
therearean infinitenumberof symbolicregisters 

●  Assignphysicalregisterstosymbolicones 
● Createaregister-interferencegraph 
● Nodesaresymbolicregistersandedgesconnectstwonodesif 

oneisliveatapointwheretheotherisdefined. 
● Forexampleinthepreviousexampleanedgeconnectsaandd 

inthegraph 
● Useagraphcoloringalgorithmtoassignregisters. 

 



 
Intermediate-code tree for a[i]=b+1 

 
 
 

 



Tree-rewriting rules 
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Syntax-directed translation scheme 
 

 

 



 
 

An instruction set for tree matching 
 
 
 
 
 
 

 

 
 
 
 



 
Ershov Numbers 
● Labelanyleaf1. 
● Thelabelofaninteriornodewithonechildisthelabel of 

its child. 
● Thelabelofaninteriornodewithtwochildrenis 

● Thelargerofthelabelsof itschildren,ifthoselabelsare 
different. 

● Oneplusthelabelofitschildrenifthelabelsarethe 
same. 

 

 



 
 

A tree labeled with Ershov numbers 
 
 
 
 
 

 

 



 
Generating code from a labeled expression tree 

● Togeneratemachinecodeforaninteriornodewithlabelkandtwo 
childrenwithequal labels(which must bek - l)dothefollowing: 

● Recursivelygeneratecodefortherightchild,usingbaseb+1.Theresultof 
therightchildappearsinregisterRb+k. 

● Recursivelygeneratecodefortheleftchild,using baseb;theresultappears in 
Rb+k-1. 

● GeneratetheinstructionOPRb+k,Rb+k-1,Rb+k,whereOPistheappropriate 
operationfortheinteriornodeinquestion. 

● Supposewehaveaninteriornodewithlabel kandchildrenwithunequal 
labels.Thenoneofthechildren,whichwe'llcallthe"big"child,haslabelk 
,andtheotherchild,the"little"child,hassomelabelm<k.Dothe 
followingtogeneratecodeforthisinteriornode,usingbaseb: 

● Recursivelygeneratecodeforthebigchild,using baseb;theresultappears in 
register Rb+k-l. 

● Recursivelygeneratecodeforthesmallchild,usingbaseb;theresult 
appearsinregisterRb+m-l.Notethatsincem<k,neitherRb+k-lnorany 
higher-numbered register is used. 

● GeneratetheinstructionOPRb+k-l,Rb+m-l,Rb+k-1ortheinstructionOPRb+k-l, Rb+k-
l, Rb+m+l,depending onwhetherthebigchild istherightorleftchild, 
respectively. 

● Foraleafrepresentingoperandx,ifthebaseisbgeneratetheinstruction LD 
Rb, x. 

 



 
Optimal three-register code 

 

 



r r r-1 r r-1 r 

 
Evaluating Expressions with an 
Insufficient Supply of Registers 
● NodeN hasatleastonechildwithlabelrorgreater.Pickthelarger 

child(oreitheriftheirlabelsarethesame)tobethe"big"childandlet 
theotherchild bethe "little" child. 

● Recursivelygeneratecodeforthebigchild,usingbaseb=1.Theresult of 
thisevaluationwillappear inregisterRr 

● GeneratethemachineinstructionSTtk,Rr,wheretkisatemporary 
variableusedfortemporaryresultsusedtohelpevaluatenodeswith 
label k. 

● Generatecodeforthelittlechildasfollows.Ifthelittlechildhaslabelr 
orgreater,pickbaseb=1.If thelabelof thelittlechildisj<r,thenpick b=r-
j.Thenrecursivelyapplythisalgorithmtothelittlechild;theresult appears 
in Rr. 

● GeneratetheinstructionLDRr-l,tk. 
● IfthebigchildistherightchildofN,thengeneratetheinstructionOP 

R,R,R .Ifthebigchildistheleftchild,generateOPR,R ,R. 
ComputerScienceand 

Engineering 



Optimal three-register code 
using only two registers 
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Dynamic Programming Algorithm 
● Computebottom-upforeachnodenoftheexpressiontreeTan 

arrayCofcosts, inwhichtheithcomponentC[i]istheoptimal 
costofcomputingthesubtreeS rootedatnintoaregister, 
assumingiregistersareavailableforthecom1putiatiorn,for 

● TraverseT,usingthecostvectorstodeterminewhichsubtreesof 
Tmust becomputed intomemory. 

● Traverseeachtreeusingthecostvectorsandassociated 
instructionstogeneratethefinaltargetcode.Thecodeforthe 
subtreescomputedintomemorylocationsisgeneratedfirst. 

 
 
 



 
Syntax tree for(a-b)+c*(d/e)with 
cost vector at each node 

 
 
 

 

 

 



sequencehascost5+2+1=E8ng.ineering 

minimum cost of evaluating the 
root with two registers available 
● Computetheleftsubtreewithtworegistersavailableinto 

registerR0,computetherightsubtreewithoneregister 
availableintoregisterR1,andusetheinstructionADDR0, 
R0,R1tocomputetheroot.Thissequencehascost 2+5+1=8. 

● Computetherightsubtreewithtworegistersavailableinto R l 
,computetheleftsubtreewithoneregisteravailable 
intoR0,andusetheinstruction ADD R0,R0, R1.This 
sequence hascost 4+2+1=7. 

● Computetherightsubtreeintomemorylocation M, 
computetheleftsubtreewithtworegistersavailableinto 
registerRO,anduseDDR0,R0,M.This 
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Syntax-Directed Translation 
 
 



 
Outline 
● Syntax Directed Definitions 
● Evaluation Orders of SDD’s 
● Applications of Syntax Directed Translation 
● Syntax Directed Translation Schemes 

 
 
 
 
 

 



 
Introduction 
● Wecanassociateinformationwitha language 

constructbyattachingattributestothegrammar 
symbols. 

● Asyntaxdirecteddefinitionspecifiesthevaluesof 
attributesbyassociating semanticruleswith the 
grammar productions. 

Production 

E->E1+T 

Semantic Rule 

E.code=E1.code||T.code||’+’ 

• Wemayalternativelyinsertthesemanticactionsinsidethegrammar 

E } 
 



 
Syntax Directed Definitions 
● ASDDisacontextfreegrammarwithattributesand 

rules 
● Attributesareassociatedwithgrammarsymbolsand 

rules with productions 
● Attributesmaybeofmanykinds:numbers,types, 

table references, strings, etc. 
● Synthesizedattributes 

●  AsynthesizedattributeatnodeNisdefinedonlyin 
termsofattributevaluesofchildrenofNandatNit 

● Inheritedattributes 
●  AninheritedattributeatnodeNisdefinedonlyinterms 

ofattributevaluesatN’sparent,NitselfandN’ssiblings 



 
Example of S-attributed SDD 

 

 



Production 

1) L->En 
2) E->E1 +T 
3) E->T 
4) T->T1* F 
5) T->F 
6) F->(E) 
7) F->digit 



Semantic Rules L.val = E.val 
E.val=E1.val+T.val 
E.val=T.val 
T.val=T1.val*F.val T.val = F.val 
F.val=E.val 
F.val=digit.lexval 

 
 

 

 
Example of mixed attributes 

 

 

Production 

1) T->FT’ 

 
2) T’->*FT’1 

 



3) T’->ε 
4) F->digit 

SemanticRules 

T’.inh=F.val 
T.val=T’.syn 
T’1.inh=T’.inh*F.val 
T’.syn = T’1.syn 
T’.syn = T’.inh 
F.val=F.val=digit.lexval 

 
 
 
 



 
Evaluation orders for SDD’s 
● Adependencygraphisusedtodeterminetheorderof 

computation of attributes 
● Dependencygraph 

●  Foreachparsetreenode,theparsetreehasanodefor 
eachattributeassociatedwiththatnode 

●  Ifasemanticruledefinesthevalueofsynthesized 
attributeA.bintermsofthevalueofX.cthenthe 
dependencygraphhasanedgefromX.ctoA.b 

●  Ifasemanticruledefinesthevalueofinheritedattribute 
B.cintermsofthevalueofX.athenthedependency 
graphhasanedge fromX.ctoB.c 



Ordering the evaluation of 
attributes 
● IfdependencygraphhasanedgefromMtoNthenM 

mustbeevaluatedbeforetheattributeof N 
● Thustheonlyallowableordersofevaluationarethose 

sequenceofnodesN1,N2,…,Nksuchthatifthereisan 
edgefrom Ni toNj then i<j 

● Suchanorderingiscalledatopologicalsortofagraph 
● Example! 

 
 

 



 
S-Attributed definitions 
● AnSDDisS-attributedifeveryattributeissynthesized 
● Wecanhaveapost-ordertraversalofparse-treeto 

evaluateattributesin S-attributeddefinitions 

 
postorder(N){ 

for(eachchildCof N,fromtheleft)postorder(C); 
evaluatetheattributesassociatedwithnodeN; 

} 

● S-Attributeddefinitionscan be implementedduring 
bottom-upparsingwithouttheneedtoexplicitlycreate 
parse trees 



 
L-Attributed definitions 
● ASDDisL-Attributediftheedgesindependencygraph 

goesfromLefttoRightbutnotfromRighttoLeft. 
● Moreprecisely,eachattributemustbeeither 

●  Synthesized 

●  Inherited,butifthereusaproductionA->X1X2…Xnandthere 
isaninheritedattributeXi.acomputed byaruleassociated 
withthisproduction,thentherulemayonlyuse: 
● InheritedattributesassociatedwiththeheadA 
● Eitherinheritedorsynthesizedattributesassociatedwiththe 

occurrencesofsymbolsX1,X2,…,Xi-1locatedtotheleftofXi 
● Inheritedorsynthesizedattributesassociatedwiththisoccurrence of 

Xiitself, butinsuchawaythatthereisnocycleinthegraph 



Application of Syntax Directed 
Translation 
● Typecheckingandintermediatecodegeneration 

(chapter6) 
● Constructionofsyntaxtrees 

●  Leafnodes: Leaf(op,val) 

●  Interiornode:Node(op,c1,c2,…,ck) 

● Example: 
Production SemanticRules 

1) E->E1+T 
2) E->E1-T 
3) E->T 
4) T->(E) 
5) T->id 
6) T->num 

E.node=new node(‘+’, E1.node,T.node) 
E.node=newnode(‘-’,E1.node,T.node) 
E.node = T.node 
T.node=E.node 
T.node=newLeaf(id,id.entry) 

ComputTer.nSocideenc=eannedwLeaf(num,num.val) 
Engineering 



Syntax tree for L-attributed 
definition 

Production SemanticRules+ 
1) E->TE’ 

 
2) E’->+TE1’ 

 
3) E’->-TE1’ 

 
4) E’->


5) T->(E) 

6) T->id 
7) T->num 

E.node=E’.syn 
E’.inh=T.node 
E1’.inh=newnode(‘+’,E’.inh,T.node) 
E’.syn=E1’.syn 
E1’.inh=newnode(‘+’,E’.inh,T.node) 
E’.syn=E1’.syn 
E’.syn= E’.inh 

 
T.node=E.node 

 
T.node=newLeaf(id,id.entry) 
T.node=newLeaf(num,num.val) 



Syntax directed translation 
schemes 
● AnSDTisaContextFreegrammarwithprogramfragments 

embedded within production bodies 
● Thoseprogramfragmentsarecalledsemanticactions 
● Theycanappearatanypositionwithinproductionbody 
● AnySDTcanbeimplementedbyfirstbuildingaparsetree and 

thenperformingtheactions inaleft-to-rightdepth first 
order 

● TypicallySDT’sareimplementedduringparsingwithout 
building a parse tree 

 
 
 
 



 
Postfix translation schemes 
● SimplestSDDsarethosethatwecanparsethegrammar 

bottom-upandtheSDDiss-attributed 
● ForsuchcaseswecanconstructSDTwhereeachactionis 

placedattheendoftheproductionandisexecutedalong 
withthereductionof thebodytotheheadof that 
production 

● SDT’swithallactionsattherightendsoftheproduction 
bodies arecalled postfix SDT’s 

 
 
 

 



 
Example of postfix SDT 

 
 
 
 

 

1) L->En 
2) E->E1 +T 
3) E->T 
4) T->T1* F 
5) T->F 
6) F->(E) 
7) F->digit 

{print(E.val);} 
{E.val=E1.val+T.val;} 
{E.val=T.val;} 
{T.val=T1.val*F.val;} 
{T.val=F.val;} 
{F.val=E.val;} 
{F.val=digit.lexval;} 

 
 

 



Parse-Stack implementation of 
postfix SDT’s 
● In a shift-reduce parser we can easily 

implement semantic action  using the parser 
stack 

● For each non terminal(or state) on the stack we 
can associate a record holding its attributes 

● Then in a reduction step we can execute the 
semantic action at the end of a production to 
evaluate the attribute(s)of then on-terminal at the 
left side of the production 

● And put the value on the stack in replace of 
the right side of production 



 
Example 

 
 

L->En 

E->E1+T E 

-> T 

{print(stack[top-1].val); 
top=top-1;} 

{stack[top-2].val=stack[top-2].val+stack.val; 
top=top-2;} 

T->T1* F {stack[top-2].val=stack[top-2].val+stack.val; 
top=top-2;} 

T->F 
F -> (E)  {stack[top-2].val=stack[top-1].val 

top=top-2;} 
F->digit 



SDT’s with actions inside 
productions 

● For a production B->X{a}Y 
● If the parse is bottom-up then we 

perform action “a”as soon as this 
occurrence of X appears on the top 
of the parser stack 

● If the parser is top down we 
perform “a” just before we 
expand 
Y 

● Sometimes we cant do things 
as easily as explained above 

● One example is when we are 

1) L->En 
2) E->{print(‘+’);}E1+ T 
3) E->T 

4) T->{print(‘*’);}T1*F 
5) T->F 
6) F->(E) 



Engineering parsing this SDT witChomapbuotetrtSocmien-ceand7) F->digit{print(digit.lexval);} 



T 

SDT’s with actions inside 
productions (cont) L 

● Any SDT can be 
implemented as follows E 

 

1. Ignore the actions 
and produce a parse 
tree 

2. Examine each interior 
Node N and add 
actions 

{print(‘+’);}  
E + T 

F 

As new children at 
the correct position 

3. Perform a postorder 

{print(‘*’);} T *F 
{print(4);} 

digit 
{print(5);} 

traversal and execute actions when their 



nodes F digit 
{print(3);} 

are 
visited 

  
digit  



 
SDT’s for L-Attributed definitions 
● We can convert an L-attributed SDD into an SDT 

using following two rules: 
● Embed the action that computes the inherited 

attributes for an on terminal A immediately before that 
occurrence of A. if several inherited attributes of A are 
dpendent on one another in anacyclic fashion, order 
them so that those needed first are computed first 

● Place the action of a synthesized attribute for the head 
Of a production at the end of the body of the production 
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Example 

S->while(C) S1 L1=new(); 
L2=new(); 
S1.next=L1; 
C.false=S.next; 
C.true=L2; 
S.code=label||L1||C.code||label||L2||S1.code 

 

 
S->while( {L1=new();L2=new();C.false=S.next;C.true=L2;} 
C) {S1.next=L1;} 
S1{S.code=label||L1||C.code||label||L2||S1.code;} 
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Syntax Analyzer 
 
 
 



 
Outline 
● Role of parser 
● Context free grammars 
● Top down parsing 
● Bottom up parsing 
● Parser generators 

 
 
 
 

 



 
The role of parser 

 
 
 

 

Source 
program 

Lexical 
Analyzer 

token 

 
getNext 
Token 

 
Parser Parsetree Restof 

FrontEnd 
Intermediate 
representation 



 

 
Symbol 

table 
 
 

 
Uses ofgrammars 
E->E+T|T 
T->T*F|F 
F->(E)| id 

 
 



E->TE’ 
E’->+TE’|Ɛ 
T->FT’ 
T’-> *FT’|Ɛ 
F->(E)| id 



 
Error handling 
● Common programming errors 

● Lexical errors 

● Syntactic errors 

● Semantic errors 

● Lexical errors 

● Error handler goals 
● Report the presence of errors clearly and accurately 

● Recover from each error quickly enough to 
detect subsequent errors 

● Add minimal over head to the processing of 
correct progrms  

 



 
Error-recover strategies 
● Panic mode recovery 

● Discard input symbol one at a time until one of 
designated set of synchronization tokens is 
found 

● Phrase level recovery 
● Replacing a prefix of remaining input by some string 

That allows the parser to continue 
● Error productions 

● Augment the grammar with productions that 
generate the erroneous constructs 

● Global correction 
● Choosing minimal sequence of changes to obtain 

a globally least-cost correction 



 
Context free grammars 
● Terminals 
● Non 

terminals 
● Start symbol 
● productions 

expression->expression+term 
expression -> expression – term 
expression -> term 
term->term*factor 
term -> term / factor 
term -> factor 
factor->(expression) 
factor->id 

 

 



 
Derivations 
● Productions are treatedasre writing rules to generate 

a string 
● Right most and left most derivations 

● E->E+E|E*E|-E|(E)| id 

● Derivations for–(id+id) 
● E =>-E=> -(E)=>-(E+E)=>-(id+E)=>-(id+id) 

 
 
 
 

 



 
Parse trees 
● -(id+id) 
● E =>-E=> -(E)=> -(E+E)=> -(id+E)=>-(id+id) 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
Ambiguity 
● For some strings there exist more than one parse tree 
● Or more than one left most derivation 
● Or more than one right most derivation 
● Example:id+id*id 

 

 



 
Elimination of ambiguity 

 

 

 

 



 
Elimination of ambiguity(cont.) 
● Idea: 

● A statement appearing between a then and an else 
Must be matched 

 

 

 
 

 
 

 



 
Elimination of left recursion 
● A grammar is left recursive if it has a non-terminal 

A such that there is a derivation A=+>Aα 
● Top down parsing methods cant handle left- 

recursive grammars 
● A simple rule for direct left recursion elimination: 

● For a rule like: 
● A->Aα|β 

● We may replace it with 
● A->βA’ 
● A’->αA’|ɛ 



 
Left recursion elimination (cont.) 
● There are cases like following 

● S->Aa|b 
● A->Ac|Sd|ɛ 

● Left recursion elimination algorithm: 
● ArrangethenonterminalsinsomeorderA1,A2,…,An. 
● For(eachifrom1ton){ 

● For(eachjfrom1toi-1){ 

● Replace each production of the form Ai->Ajγby the production 
Ai ->δ1 γ| δ2 γ| … |δkγ where Aj->δ1| δ2| … |δk are all 
current Aj productions 

● } 
● Eliminate left recursion among the Ai-productions 

● } 
 

 



 
Left factoring 
● Left factoring is a grammar transformation that is useful 

for producing a grammar suitable for predictive or top-
down parsing. 

● Consider following grammar: 
● Stmt->if expr then stmt else stmt 
⚫ |if expr then stmt 

● On seeing input if it is not clear for the parser 
which production to use 

● We can easily perform left factoring: 
● If we have A->αβ1|αβ2 

● A->αA’ 
● A’->β1|β2 

Then were place it with 



 
Left factoring(cont.) 
● Algorithm 

● For each non-terminal A, find the longest prefixα 
common to two or more of its alternatives. If α<>ɛ, 
then replace all of A-productions A->αβ1|αβ2|… 
|αβn|γby 
● A->αA’|γ 

● A’->β1|β2|…|βn 

● Example: 
● S->IEtS|iEtSeS|a 

● E->b 



lm 

 
Top-down parser 

● A Top-down parser tries to create a parse tree from 
the root towards the leaf canning input from 

● Left to right 
● It can be also viewed as finding a left most 

derivation for an input string 
● Example: 

E->TE’ 

id+id*id 

E 

 
 
 

E 

 
 
 

E 

 
 
 

E 

 
 
 

E E 

E’->+TE’|Ɛ 
T->FT’ 

T E’ T E’ T E’ T E’ T E’ 
 

 

T’->*FT’|Ɛ F T’ F T’ F T’ F T’ +T E’ 

F->(E)|id id id Ɛ id Ɛ 

lm lm lm lm 



 
Recursive descent parsing 
● Consists of a set of procedures, one for 

each non terminal 
● Execution begins with the procedure for start symbol 
● A typical procedure for anon-terminal 

voidA(){ 
chooseanA-production,A->X1X2..Xk for 
(i=1 to k) { 

if(Xiis anonterminal 
callprocedureXi(); 

else if (Xi equals the current input symbol a) 
advancetheinputtothenextsymbol; 

else/*anerrorhasoccurred*/ 
} 

}  
 



 
Recursive descentparsing(cont) 
● General recursive descent may require back tracking 
● The previous code needs to be modified to 

allow back tracking 
● In general form it cant choose an A-production easily. 
● So we need to try all alternatives 
● If one failed the input pointer needs to be reset 

and another alternative should be tried 
● Recursive descent parsers cant be used for 

left- recursive grammars 
 



 
Example 

S->cAd 

A->ab|a Input:cad 

 

 
S S S 

 

 

c A d c A d c A d 
 

 

a b a 
 
 

 



 
First and Follow 
● First()is set of terminals that begins strings derived from 
● If α=*>ɛ then is also in First(ɛ) 
● In predictive parsing when we haveA->α|β,ifFirst(α) 

and First(β) are disjoint sets then we can select 
appropriate A-production by looking at then extin put 

● Follow(A),for any non terminal A, is set of terminals a 
that can appear immediately after A in some sentential 
form 
● If we have S=*>α Aa β for some α and β then a 

is in Follow(A) 
● If A can be the right most symbol in some sentential 

form, then $ is in Follow(A) 

 



 
Computing First 
● To compute First(X)for all grammar symbols X, 

apply follow*ing rules until no more terminals or ɛ 
can be added to any First set: 
1. If X is a terminal then First(X)={X}. 
2. If X is a non terminal and X->Y1Y2…Yk is a 

production for some k>=1,then place a in First(X) if 
for some ia is in First(Yi) and ɛ is in all of 
First(Y1),…,First(Yi-1)that isY1…Yi-1=*>ɛ.if ɛis in 
First(Yj) for j=1,…,k then add ɛ to First(X). 

3. If X->ɛ is a production then add ɛ to First(X) 
⚫ Example! 



 
Computing follow 
● To compute First(A)for all non terminals A, 

apply following rules until nothing can be added 
to any follow set: 
1. Place $ in Follow(S)where S is the start symbol 
2. If there is a production A->αB β then everything 

in First(β)except ɛ is in Follow(B). 
3. If there is a production A->B or a production 

A->αBβ where First(β)contains ɛ, then everything 
In Follow (A)is inFollow(B) 

⚫ Example! 
 



 
LL(1)Grammars 
● Predictiveparsersarethoserecursivedescentparsersneedingno 

backtracking 
● Grammarsforwhichwecancreatepredictiveparsersarecalled 

LL(1) 
● ThefirstLmeansscanninginputfromlefttoright 
● ThesecondLmeansleftmostderivation 
● And1standsforusingoneinputsymbolforlookahead 

● AgrammarGisLL(1)ifandonlyifwheneverA->α|βaretwo 
distinctproductionsofG,thefollowingconditionshold: 

● Fornoterminaladoαandβ bothderivestringsbeginningwitha 
● Atmostoneofαorβcanderiveemptystring 

* 
● Ifα=>ɛthenβdoesnotderiveanystringbeginningwitha 

terminalinFollow(A). 



Constructionofpredictive 
parsing table 
● ForeachproductionA->αingrammardothe 

following: 
1. ForeachterminalainFirst(α)addA->inM[A,a] 
2. If ɛ isinFirst(α), thenforeachterminal bin 

Follow(A)addA->ɛtoM[A,b].Ifɛ isinFirst(α)and 
$isinFollow(A),addA->ɛtoM[A,$]aswell 

● Ifafterperformingtheabove,thereisnoproduction in 
M[A,a] thensetM[A,a] toerror 

 

 



 
 
 
 

Example First Follow 

E->TE’ 
E’->+TE’|Ɛ 
T->FT’ 
T’->*FT’|Ɛ 
F->(E) |id 

Non- 

F {(,id} 

T {(,id} 

E {(,id} 
E’ {+,ɛ} 

T’ {*,ɛ} 

InputSymbol 

{+,*,),$} 
{+,),$} 
{),$} 

{),$} 
{+,),$} 

terminal 
E 

E’ 

T 

id + * ( ) $ 
E->TE’ E->TE’ 

 
E’->+TE’ E’->Ɛ E’->Ɛ 

 
T->FT’ T->FT’ 

 

T’ T’->Ɛ T’->*FT’ T’->Ɛ T’->Ɛ 

F F->id  



 
Bottom-upParsing 

● Constructsparsetreeforaninputstringbeginningat 
theleaves(thebottom)andworkingtowardstheroot 
(the top) 

● Example:id*id 
 

 

E->E+T| T 
T->T*F|F 

id*id F*id 
 

 
 

T*id T*F F E 
 

     
 

F->(E) |id id F F id T*F F 

 

id id 
 
 

 

F idid 

T*F 

F id 

id 



 
Shift-reduceparser 
● Thegeneralideaistoshiftsomesymbolsofinputto 

thestackuntilareductioncan beapplied 
● Ateachreductionstep,aspecificsubstringmatching 

thebodyofaproduction isreplaced bythe 
nonterminal attheheadof theproduction 

● Thekeydecisionsduringbottom-upparsingareabout 
whentoreduceandaboutwhatproductiontoapply 

● Areductionisareverseofastepinaderivation 
● Thegoalofabottom-upparseristoconstructa 

derivation in reverse: 
● E=>T=>T*F=>T*iCdo=m>pFu*teidrS=c>ieidnc*eidand 

Engineering 



 
Shiftreduceparsing 
● Astackisusedtoholdgrammarsymbols 
● Handlealwaysappearontopofthestack 
● Initialconfiguration: 

 

Stack 
$ 

Input 
w$ 

● Acceptanceconfiguration 
 

Stack 
$S 

Input 
$ 

 
 
 



 
Reduce/reduceconflict 
stmt->id(parameter_list) 
stmt -> expr:=expr 
parameter_list->parameter_list, parameter 
parameter_list->parameter 
parameter->id 
expr->id(expr_list) 
expr->id 
expr_list->expr_list,expr 
expr_list->expr Stack 

… id(id 

Input 

,id) …$ 
 

 



 
LRParsing 
● Themostprevalenttypeofbottom-upparsers 
● LR(k),mostlyinterestedonparserswithk<=1 
● WhyLRparsers? 

● Tabledriven 

● Canbeconstructedtorecognizeallprogramminglanguage 
constructs 

● Mostgeneralnon-backtrackingshift-reduceparsingmethod 

● Candetectasyntacticerrorassoonasitispossibletodoso 

● ClassofgrammarsforwhichwecanconstructLRparsersare 
supersetof thosewhichwecanconstructLLparsers 

 



 
StatesofanLRparser 
● Statesrepresentsetofitems 
● AnLR(0)itemofGisaproductionofGwiththedotat some 

positionof the body: 
● ForA->XYZwehavefollowingitems 

● A->.XYZ 

● A->X.YZ 

● A->XY.Z 

● A->XYZ. 

● InastatehavingA->.XYZwehopetoseeastring 
derivablefromXYZnextontheinput. 

● WhataboutA->X.YZ? 



ConstructingcanonicalLR(0) 
item sets 
● Augmentedgrammar: 

● Gwithadditionofaproduction:S’->S 

● Closureofitemsets: 
● IfIisasetofitems,closure(I)isasetof itemsconstructedfromIby the 

following rules: 
● AddeveryiteminItoclosure(I) 

● IfA->α.Bβisinclosure(I)andB->γisaproductionthenaddthe 

itemB->.γtoclsoure(I). 
● Example: E’->E 

E->E+T| T 
T->T*F |F 
F->(E) |id 

I0=closure({[E’->.E]} 
E’->.E 
E->.E+T 
E->.T 
T->.T*F 
T->.F 
->.id 



E 

I2 
E’->T. 
T->T.*F 

I0=closure({[E’->.E]} 
E’->.E 
E->.E+T 
E->.T 
T->.T*F 
T->.F 
F->.(E) 
F->.id 

I1 
E’->E. 
E->E.+T 

ConstructingcanonicalLR(0) 
item sets (cont.) 
● Goto(I,X)whereI isanitemsetandXisagrammar 

symbolisclosureofsetofallitems[A->αX.β]where [A-> 
α.X β] is in I 

● Example 

 
T 

 
 
 

I4 

( F->(.E) 
E->.E+T 
E->.T 
T->.T*F 
T->.F 
F->.(E) 



 
CanonicalLR(0)items 
Voiditems(G’){ 

C=CLOSURE({[S’->.S]}); 
repeat 

for(eachsetof itemsI in C) 
for(eachgrammarsymbolX) 

if(GOTO(I,X)isnotemptyandnotinC) add 
GOTO(I,X) to C; 

untilnonewsetofitemsareaddedtoConaround; 
} 



E’->E 
E->E+T|T Example T->T*F|F 

acc 
$ 

I1 

F->(E)|id 
I6

E->E+.T 

+ T->.T*F 

I9 

E->E+T. 
E’->E. 

E E->E.+T 

T I2 
E’->T. 
T->T.*F 

id 

( 
I4

F->(.E) 
E->.E+T 
E->.T 
T->.T*F 
T->.F 
F->.(E) 
F->.id 

T->.F 
F->.(E) 
F->.id 

 
I7

T->T*.F 
F->.(E) 

id F->.id 
 
 
 
 
 
 

I8 
E->E.+T 
F->(E.) 

T->T.*F 

 

F I10 

T->T*F. 
 

 

+ 

 
) I11 

F->(E). 

 
 
 

I0=closure({[E’->.E]} 
E’->.E 
E->.E+T 
E->.T 
T->.T*F 
T->.F 
F->.(E) 
F->.id 

I5 
F->id. 

E 

T 

* 



 
UseofLR(0)automaton 
● Example:id*id 

 

Line Stack Symbols Input Action 

(1) 0 $ id*id$ Shiftto5 

(2) 05 $id *id$ ReducebyF->id 

(3) 03 $F *id$ ReducebyT->F 

(4) 02 $T *id$ Shiftto7 

(5) 027 $T* id$ Shiftto5 

(6) 0275 $T*id $ ReducebyF->id 

(7) 02710 $T*F $ ReducebyT->T*F 

(8) 02 $T $ ReducebyE->T 

(9) 01 $E $ accept 



LR-Parsingmodel
 

INPUT 
 
 
 

 
 

 

 
 
 
 

a1 … 

 

 

Sm 
 

 
Sm-1 

…  
$ 

 ACTION

Parsingmodel 
 ai … an $ 

LRParsing 
Program 

 

 

ACTION GOTO  

Output 



 
LRparsingalgorithm 
letabethefirstsymbolofw$; 
while(1){/*repeatforever*/ 

letsbethestateontopofthestack; if 
(ACTION[s,a] = shiftt) { 

pushtontothestack; 
letabethenextinputsymbol; 

}elseif(ACTION[s,a]=reduceA->β){ 
pop |β| symbols of thestack; 
letstatetnowbeontopofthestack; 
push GOTO[t,A] ontothe stack; 
output the production A->β; 

}elseif(ACTION[s,a]=accept)break;/*parsingisdone*/ else 
call error-recoveryroutine; 

} 



 

(0)E’->E 
(1) E->E+T 
(2) E->T 
(3) T->T*F 
(4) T->F 
(5) F ->(E) 
(6) F->id 

 
 

 
id*id+id? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 
STATE ACTON GOTO 

 id + * ( ) $ E T F 

0 S5   S4   1 2 3 

1  S6    Acc    

2  R2 S7  R2 R2    

3  R 
4 

R7  R4 R4    

4 S5   S4   8 2 3 

5  R 
6 

R 
6 

 R6 R6    

6 S5   S4    9 3 

7 S5   S4     10 

8  S6   S11     

9  R1 S7  R1 R1    

10  R3 R3  R3 R3    

11  R5 R5  R5 R5    

 



 
ConstructingSLRparsingtable 
●  Method 

●  ConstructC={I0,I1,…,In},thecollectionofLR(0)itemsforG’ 
●  StateiisconstructedfromstateIi: 

● If[A->α.aβ]isinIiandGoto(Ii,a)=Ij,thensetACTION[i,a]to“shiftj” 
● If[A->α.]isinIi,thensetACTION[i,a]to“reduceA->α”forallain 

follow(A) 
● If{S’->.S]isinIi,thensetACTION[I,$]to“Accept” 

●  Ifanyconflictsappearsthenwesaythatthegrammarisnot 
SLR(1). 

●  IfGOTO(Ii,A)=IjthenGOTO[i,A]=j 
●  Allentriesnotdefinedbyaboverulesaremade“error” 
●  Theinitialstateoftheparseristheoneconstructedfromthe 

setof itemscontaining [S’->.S] 

 



Examplegrammarwhichisnot 
SLR(1) S -> L=R | R 

L->*R|id 
R->L 

 

I0 
S’->.S 
S->.L=R 
S->.R 
L->.*R| 
L->.id 
R->.L 

I1 
S’->S. 

I3 
S->R. 

I4 
L->*.R 
R->.L 
L->.*R 
L->.id 

 
Action 

I5 
L-> id. 

I6 
S->L=.R 
R->.L 
L->.*R 
L->.id 

I7 
L-> *R. 

 
I8 
R->L. 

I9 
S->L=R. 

 =  

2 
Shift6 

RedCuocmeRpu-> 

I2 
S->L.=R 
R ->L. 

Engineering 



 
MorepowerfulLRparsers 
●  Canonical-LRorjustLRmethod 

●  Uselookaheadsymbolsforitems:LR(1)items 

●  Resultsinalargecollectionofitems 

●  LALR:lookaheadsareintroducedinLR(0)items 
 
 
 
 
 

 



rm 

 
Canonical LR(1)items 
●  InLR(1)itemseachitemisintheform:[A->α.β,a] 
●  AnLR(1)item[A->α.β,a]isvalidforaviableprefixγif 

thereisaderivationS=*>δAw=>δαβw,where 
●  Γ=δα 

●  Eitheraisthefirstsymbolofw,orwisεandais$ 

●  Example: 
●  S->BB 

●  B->aB|b 

S=*>aaBab=>aaaBab 
rm 

Item[B->a.B,a]isvalidforγ=aaa and 
w=ab 

 



ConstructingLR(1)setsofitems 
SetOfItemsClosure(I){ 

repeat 
for(eachitem[A->α.Bβ,a]inI) 

for(eachproductionB->γinG’) 
for(eachterminalbinFirst(βa)) 

add[B->.γ,b]tosetI; 
untilnomoreitemsareaddedtoI; 
returnI; 

} 

SetOfItemsGoto(I,X){ 
initializeJtobetheemptyset; 
for(eachitem[A->α.Xβ,a]inI) 

additem[A->αX.β,a]tosetJ; 
returnclosure(J); 

} 

voiditems(G’){ 
initializeCtoClosure({[S’->.S,$]}); 
repeat 

for(eachsetofitemsIinC) 
for(eachgrammarsymbolX) 

if(Goto(I,X)isnotemptyandnotinC) 
addGoto(I,X)toC; 

untilnonewsetsofitemsareaddedtoC; 

}  
 



 
Example 
S’->S 
S->CC 
C->cC 
C->d 

 
 
 
 
 
 
 
 
 



 
CanonicalLR(1)parsingtable 
●  Method 

● ConstructC={I0,I1,…,In},thecollectionofLR(1)itemsforG’ 
● StateiisconstructedfromstateIi: 

● If[A->α.aβ,b]isinIiandGoto(Ii,a)=Ij,thensetACTION[i,a]to 
“shift j” 

● If[A->α.,a]isinIi,thensetACTION[i,a]to“reduceA->α” 
● If{S’->.S,$]isinIi,thensetACTION[I,$]to“Accept” 

● Ifanyconflictsappearsthenwesaythatthegrammarisnot 
LR(1). 

● IfGOTO(Ii,A)=IjthenGOTO[i,A]=j 
● Allentriesnotdefinedbyaboverulesaremade“error” 
● Theinitialstateoftheparseristheoneconstructedfromthe 

setof itemscontaining [S’->.S,$] 

 



 
Example 
S’->S 
S->CC 
C->cC 
C->d 
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LALRParsingTable 
●  Forthepreviousexamplewehad: 

 

 

I4 
C->d. , c/d 

 
 

I7 
C->d. , $ 

 

 
C->d. 

 
I47 

, c/d/$ 

 
● StatemergescantproduceShift-Reduceconflicts. 

Why? 
● ButitmayproducerCeodmupucteer-rSecidenucceeancdonflict 



E->.E+E 

EngiEn-e>eE.r*inEg 

Usingambiguousgrammars 
E->E+E 
E->E*E 
E->(E) 
E->id 

 
 
 

 

I0:E’->.E I1:E’->E. I2:E->(.E) 
E->.E+E E->E.+E E->.E+E 
E->.E*E E->E.*E E->.E*E 
E->.(E)  E->.(E) 
E->.id  E->.id 

 

I3: E->.id 
I4:E->E+.E 

E->.E*E 
E->.(E) 
E->.id 

I5:E->E*.E 
E->(.E) 
E->.E+E 
E->.E*E 
E->.(E) 

I6:E->(E.) 
E->E.+E 
E->E.*E 

I8:E->E*E. 

I7:E->E+E. 
E->E.+E 
E->E.*E 

I9:E->(E). 

E->.CidomputerES->cEie.+nEceand 

STATE ACTON GO 
TO 

 id + * ( ) $ E 

0 S3   S2   1 

1  S4 S5   Acc  

2 S3  S2    6 

3  R4 R4  R4 R4  

4 S3   S2   7 

5 S3   S2   8 

6  S4 S5     

7  R1 S5  R1 R1  

8  R2 R2  R2 R2  

9  R3 R3  R3 R3  

 



UNIT-IV 
 
 
 

Run-TimeEnvironments 
 
 
 



Outline 
● Compilermustdothestorageallocationandprovide 

accesstovariables and data 
● Memorymanagement 

●  Stackallocation 
●  Heapmanagement 
●  Garbagecollection 

 
 
 

 



 
StorageOrganization 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



 
Staticvs.DynamicAllocation 
● Static:Compiletime,Dynamic:Runtimeallocation 
● Manycompilersusesomecombinationoffollowing 

●  Stackstorage:forlocalvariables,parametersandsoon 
●  Heapstorage:Datathatmayoutlivethecalltothe 

procedure that created it 

● Stackallocationisavalidallocationforprocedures 
sinceprocedurecallsare nested 

 
 

 



Sketchofaquicksortprogram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
ActivationforQuicksort 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



 
Activationtreerepresentingcallsduring an 
execution of quicksort 

 
 
 
 

 

 



 
Activationrecords 
● Procedurecallsandreturnsareusaullymanagedbya 

run-timestackcalled thecontrol stack. 
● Eachliveactivationhasanactivationrecord 

(sometimes called a frame) 
● Therootofactivationtreeisatthebottomofthestack 
● Thecurrentexecutionpathspecifiesthecontentofthe 

stackwiththelastactivationhasrecord inthetopof the 
stack. 

 

 



 
AGeneralActivationRecord 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



 
ActivationRecord 
● Temporaryvalues 
● Localdata 
● Asavedmachinestatus 
● An“accesslink” 
● Acontrollink 
● Spaceforthereturnvalueofthecalledfunction 
● Theactualparametersusedbythecallingprocedure 

 

 



Accesstodynamicallyallocatedarrays 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
\ 
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MemoryManager 
● Twobasicfunctions: 

● Allocation 

● Deallocation 

● Propertiesofmemorymanagers: 
● Spaceefficiency 

● Programefficiency 

● Lowoverhead 
 
 

 



 
Part of a Heap 

 
 
 
 
 
 
 
 
 
 

 

 
 
 

 



Code 
Generator Codeoptimizer Front 

end 

 
Introduction 
● Thefinalphaseofacompileriscodegenerator 
● Itreceivesanintermediaterepresentation(IR)with 

supplementary information insymbol table 
● Producesasemanticallyequivalenttargetprogram 
● Codegeneratormaintasks: 

● Instructionselection 
● Registerallocationandassignment 
● Insrtuctionordering 

 
 
 

 

 



IssuesintheDesignofCode 
Generator 
● Themostimportantcriterionisthatitproducescorrect 

code 
● Inputtothecodegenerator 

● IR+Symboltable 
● Weassumefrontendproduceslow-levelIR,i.e.valuesof 

namesin itcanbedirectly manipulatedbythemachine 
instructions. 

● Syntacticandsemanticerrorshavebeenalreadydetected 
● Thetargetprogram 

● Commontargetarchitecturesare:RISC,CISCandStack 
basedmachines 

● InthischapterweuseaverysimpleRISC-likecomputerwith 
additionof someCISC-likeaddressing modes 

 



 
complexityofmapping 
● theleveloftheIR 

● thenatureoftheinstruction-setarchitecture 

● thedesiredqualityofthegeneratedcode. 
 

x=y+z 
 a=b+c 

d=a+e 

LD R0,y LD R0,b 
ADD R0,R0,z ADD R0,R0,c 
ST x,R0 ST a, R0 
  LD R0,a 
  ADD R0,R0,e 
   d, R0 

 



ST R1,t 

 
Register allocation 
● Two sub problems 

● Register allocation: selecting the setoff variables that will reside 
in register sat each point in the program 

● Resister assignment: selecting specific register that a variable reside 
in 

● Complications imposed by the hardware architecture 
● Example: register pairs for multiplication and division 

 

t=a+b 
t=t*c 
T=t/d 

L 
A 
M 
D 
ST 

 
 
 
 
R1, a 
R1,b 
R0, c 
R0,d 
R1, t 

t=a+b 
t=t+c 
T=t/d 

L R0,a 
A R0,b 
M R0,c 
SRDA R0,32 
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A simple target machine model 
● Load operations:LDr,xandLDr1,r2 

● Store operations: STx,r 

● Computation operations:OPdst,src1,src2 

● Unconditional jumps: BRL 

● Conditional jumps: Bcondr,LlikeBLTZr,L 
 
 

 



 
Addressing Modes 
● Variable name: x 

● Indexed address: a(r)likeLDR1,a(R2)means 

R1=contents(a+ contents (R2)) 

● Integer indexed by a register:likeLDR1,100(R2) 

● Indirect addressing mode:*rand*100(r) 

● Immediate constant addressing mode: like LDR1,#100 
 
 



 
b=a[i] 
LDR1,i //R1=i 

MUL R1, R1, 8 //R1=Rl*8 

LD R2, a(R1) 

//R2=contents(a+contents(R1)) 

STb,R2 //b=R2 
 
 

 



 
a[j]=c 
LDR1,c //R1=c 

LDR2,j //R2=j 

MUL R2, R2, 8 //R2=R2*8 

STa(R2), R1 

//contents(a+contents(R2))=R1 
 
 

 



 
UNIT-V 

 

 
Machine-Independent Optimization 

 
 
 
 
 



 
Machine independent optimization attempts to 
improve the intermediate code to get a better target 
code. The part of the code which is transformed here 
does not involve any absolute memory location or 
any CPU registers. 
Code Optimization can perform in the following 
different ways: 
(1) Compile Time Evaluation: 
(a) z = 5*(45.0/5.0)*r 

Perform 5*(45.0/5.0)*rat compile time. 
(b) x= 5.7 

y= x/3.6 
Evaluate x/3.6as5.7/3.6atcompiletime. 

 



 
(2) Variable Propagation: 
Before Optimization the code is: 
c = a * b 
x=a 
till 
d=x*b+4 

After Optimization the code is: 
c = a * b 
x=a 
till 

d=a*b+4 
 

 



 
(3) Dead code elimination: 
Before elimination the code is: 
c = a * b 
x=b 
till 
d=a*b+4 
After elimination the code is: 
c = a * b 
till 
d=a*b+4 

 
 
 

 



 
(4) Code Motion: 
It reduces the evaluation frequency of expression. 
It brings loop in variant statements out of the 
loop. do 
{ 

Item =10; 
value value=value+ item; 

} while (value<100); 
 
 
 
 
 

 



 

//This code can be further optimized as 

item = 10; 
do 
{ 

Value value=value+ item; 
} while (value<100); 
(5) Induction Variable and Strength Reduction: Streng 
th reduction is used to replace the high strength 
operator by the low strength. 
An induction variable is used in loop for thefollowing 
kind of assignment like i = i + constant. 
Before reduction the codeis: 

 



 
After Reduction the codeis: 
i = 1 
t=4 
{ 

while(t<40) 
y = t; 
t =t +4; 

} 
 
 
 
 
 
 
 
 
 
 



 
Data Flow Analysis 

 
To efficiently   optimize the code compiler collects all 
the information about the program and distribute this 
information to each block of the flow graph. This 
process is known as data-flow graph analysis. 

Certain optimization can only be achieved by 
examining the entire program. It can't be achieve by 
examining just a portion of the program. 

 
 
 

 



 
consider the following code: 
x = a + b; 

x =6 *3 

Some optimization needs more global information. For 
example, consider the following code: 
a=1; 

b=2; 
c=3; 
if (....)x=a+ 5; 
else x=b+4; c 
= x + 1; 

 

 
 


