
23IT601: Automata theory and compiler design
UNIT-I

Topic: Introduction to finite automata

 M. Rajitha
Assistant Professor

Outline
● Role of lexical analyzer
● Specification of tokens
● Recognition of tokens
● Lexical analyzer generator
● Finite automata
● Design of lexical analyzer generator

Theroleoflexicalanalyzer

Source
program

Lexical
Analyzer

token

getNextToken

Parser

Tosemantic
analysis

Symbol

table

WhytoseparateLexicalanalysis
and parsing
1. Simplicity of design
2. Improving compiler efficiency
3. Enhancing compiler portability

Tokens,PatternsandLexemes
● A token is a pair a token name and an optional

token value
● A pattern is a description of the form that the

lexemes of a token may take
● A lexeme is a sequence of characters in the

source program that matches the pattern for a
token

Example

Token

if
else

comparison

id

number

literal

Informaldescription

Charactersi,f

Characterse,l,s,e

< or > or <= or >= or == or !=

Letterfollowedbyletteranddigits

Anynumeric constant

Anythingbut“sorroundedby“

Samplelexemes

if

else

<=,!=

pi,score,D2

3.14159,0,6.02e23

“coredumped”

printf(“total=%d\n”,score);

Attributesfortokens
● E=M*C**2

● <id,pointertosymboltableentryforE>
● <assign-op>
● <id,pointertosymboltableentryforM>
● <mult-op>
● <id,pointertosymboltableentryforC>
● <exp-op>
● <number,integervalue2>

Lexicalerrors
● Someerrorsareoutofpoweroflexicalanalyzerto

recognize:
● fi(a==f(x))…

● Howeveritmaybeabletorecognizeerrorslike:
● d=2r

● Sucherrorsarerecognizedwhennopatternfortokens
matches acharactersequence

Error recovery
● Panic mode:successive characters a reignoreduntilwe

reach to a well formed token
● Delete one character from the remaining input
● Insert a missing character into there main ing input
● Replace a character by another character
● Transpose two adjacent characters

Input buffering
● Sometimes lexical analyzer need to look ahead some

symbols to decide about the token toreturn
● In C language: we need to look after-,=or<todecide

what token to return

● In Fortran:DO5I=1.25

● We need to introduce at wo buffers cheme to
handle large look-aheads safely

 E = M * C * * 2 eof

Sentinels

 E = M eof * C * * 2 eof eof

Switch(*forward++){
Case of:

if(forwardisatendoffirstbuffer){ reload
second buffer;
forward=beginningofsecondbuffer;

}
Elseif {forward is at end of secondbuffer){

reload first buffer;\

forward=beginning offirst buffer;
}
else/*eof within a buffermarks the end of input*/

terminate lexical analysis;
break;

cases for the other characters;

Specification of tokens
● In theory of compilation regular expressions are

used to formalize the specification of tokens
● Regular expressions are means for specifying

regular languages
● Example:

● Letter_(letter_|digit)*

● Each regular expression is a pattern specifying
the form of strings

Regular expressions
● Ɛ is a regular expression,L(Ɛ)={Ɛ}

● If a is a symbol in ∑ the naisa regular expression,L(a)
={a}

● (r)|(s)is a regular expression denoting the language
L(r) ∪ L(s)

● (r)(s)is a regular expression denoting the
language L(r)L(s)

● (r)*is a regular expression denoting(L9r))*
● (r)is a regular expression dentingL(r)

Regulardefinitions
d1 -> r1
d2->r2
…
dn->rn

● Example:

letter_->A|B|…|Z|a|b|…|Z|_ digit ->
0 | 1 | … | 9

id ->letter_(letter_|digit)*

Extensions
● One or more instances:(r)+
● Zero of one instances:r?
● Character classes:[abc]

● Example:

● letter_->[A-Za-z_]
● digit
● id

->[0-9]
->letter_(letter|digit)*

Recognition of tokens
● Starting point is the language grammar to

understand the tokens:
stmt->if expr then stmt

|if expr then stmt else stmt
|Ɛ

expr->term relop term
|term

term ->id
|number

Recognition of tokens(cont.)
● The next step is to formalize the patterns:

digit ->[0-9]
Digits ->digit+
number->digit(.digits)?(E[+-]?Digit)?
letter->[A-Za-z_]
id ->letter(letter|digit)*
If ->if
Then ->then
Else ->else
Relop ->< |>|<=|>=| =|<>

● We also need to handle whitespaces:
ws->(blank|tab|newline)+

Transition diagrams
● Transition diagram for relop

ComputerScienceand

Engineering

Transition diagrams(cont.)
● Transition diagram for reserved words and identifiers

Transition diagrams(cont.)
● Transition diagram for unsigned numbers

Transition diagrams(cont.)
● Transition diagram for whitespace

Architecture of a transition-
diagram-based lexical
analyzer

TOKENgetRelop()
{

TOKENretToken=new(RELOP)
while(1){ /*repeatcharacterprocessinguntila

returnorfailureoccurs*/
switch(state){

case0:c=nextchar();
if(c==‘<‘)state=1;
else if (c==‘=‘)state=5;
else if (c==‘>’)state=6;
else fail();/*lexemeisnotarelop*/ break;

case1:…
…
case8:retract();

retToken.attribute=GT;
return(retToken);

}

C
compiler

a.out

Lexical Analyzer Generator-Lex

LexSourceprogram
lex.l

Lexical
Compiler

lex.yy.c

lex.yy.c a.out

Input stream Sequence

Of tokens

Structure of Lex programs

declarations
%%
Translation rules
%%
Auxiliary
functions

Pattern {Action}

Example
%{

/*definitions of manifest constants
LT,LE, EQ, NE, GT,GE,
IF,THEN,ELSE,ID,NUMBER,RELOP*/

%}

/*regular definitions

Int install ID(){/*funtiont oinstallthe

lexeme, whose first character is
pointed to by yy text, and whose
length is yy leng, into the symbol
tableand return apointer thereto
*/

}

delim
ws
letter
digit

[\t\n]
{delim}+
[A-Za-z]
[0-9]

Int install Num() { /* similar to install

ID, but puts numerical constants
into a separatetable*/

id
number

}
{letter}({letter}|{digit})*
{digit}+(\.{digit}+)?(E[+-]?{digit}+)?

%%
{ws} {/*no action and no return*/}
if {return(IF);}
then {return(THEN);}
else {return(ELSE);}
{id} {yylval=(int)install ID();return(ID);}
{number} {yylval=(int)install Num();return(NUMBER);}
…

Finite Automata
● Regular expressions=specification
● Finite automata=implementation

● Afinite automata consistsof

● An input alphabet 
● A set of states S
● A starts taten
● A set of accepting states FS
● A set of transitions stateinputstate

Finite Automata
● Transition

● Is

read

s1as2

Instates1oninput“a”gotostates2

● If end of input
● If in accepting state=>accept,othewise=>reject

● If no transition possible=>reject

Finite Automata State Graphs
● A state

• The start state

• An accepting state

a

• A transition

1

A Simple Example
● A finite automaton that accepts only“1”

● A finite automaton accepts a string if we can

follow transitions labeled with the characters in
the string from the start to some accepting state

1

0

Another Simple Example
● A finite automaton accepting any number of1’s

Followed by a single0
● Alphabet:{0,1}

● Checkthat“1110”isacceptedbut“110…”is not

1 0

0 0

1
1

And Another Example
● Alphabet{0,1}
● What language does this recognize?

1

1

And Another Example
● Alphabet still{0,1 }

● The operation of the automaton is not

completely defined by the input
● Oninput“11”theautomatoncouldbeineitherstate


A B

Epsilon Moves
● Another kind of transition:-moves

• Machine can move from stateA to state B
without reading input

Deterministic and
Nondeterministic Automata
● Deterministic Finite Automata(DFA)

● One transition per input per state
● No-moves

● Non deterministic Finite Automata(NFA)
● Can have multiple transitions for one input in a

given state
● Can have-moves

● Finite automata have finite memory
● Need only to encode the current state

Execution of Finite Automata
● A DFA can take only one path through the state graph

● Completely determined by input

● NFAs can choose

● Whether to make-moves
● Which of multiple transitions for a single input to take

Acceptance of NFAs
● An NFA can get into multiple states

• Input: 1 0 1

1

0 1

• Rule:NFA accepts if it can get in a finalstate

NFAvs.DFA(1)
● NFAs and DFAs recognize the same set of

languages (regular languages)

● DFA sare easier to implement

● There are no choices to consider

1
0 0

1

NFAvs.DFA(2)
● For a given language the NFA can be simpler than the

DFA

NFA

0

DFA

1

• DFA can be exponentially larger than NFA

1
0 0

Regular Expressions to Finite
Automata
● High-level sketch

Regular

expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of
DFA

A

Regular Expressions to NFA(1)
● For each kind of rexp,defineanNFA

● Notation :NFA for rexpA

• For


• For input a



a

B

 B






A

Regular Expressions to NFA(2)
● For AB

A 

• For A|B

 A

Regular Expressions to NFA(3)
● For A*















NFA to DFA.The Trick
● Simulate the NFA
● Each state of resulting DFA

=anon-empty subset of states of theNFA

● Start state
=the set of NFA states reachable through-movesfrom

NFA start state

● Add a transitionSaS’toDFAiff
● S’is the set of NFA states reachable from the states in S

After seeing the inputa
● considering-moves as well

0
0

ABCDHI 0
1

FGABCDHI

1
EJGABCDHI

1

NFA->DFA Example






A  B




C

D



1

0
E

F




G H I

1
J

Engineering

x=*p
LDR1,p //R1=p

LDR2,0(R1) //R2=

contents(0+contents(R1))

STx,R2 //x=R2

conditional-jump three-address instruction
If x<y goto L

LD R1,x

LD R2,y

SUBR1,R1,R2 BLTZ R1, M

//R1=x

//R2=y

//R1= R1-R2

//ifR1<0jumptoM

costs associated with the addressing modes

● LD R0,R1 ● LD R0,M

● LD R1,*100(R2) cost=1

cost=2

cost=3

Addresses in the Target Code
● A statically determined area Code

● A statically determined data area Static

● A dynamically managed area Heap

● A dynamically managed area Stack

Procedure calls and returns
● Call callee

● Return

● Halt

● action

Target program for a sample call and return

Engineering

Stack Allocation

Return to caller
In
Callee:

in caller:

Branch tocalledprocedure

BR*0(SP)
SUCoBmSpuPt,eSrSPc,i#enccaellae
nrd.recordsize

Target code for stack allocation

ComputerScienceand

Engineering

Basic blocks and flow graphs
● Partition the intermediate code into basic blocks

● The flow of control can only enter the basic block
through the first instruction in the block.That is,there
are no jumps into the middle of the block.

● Control will leave the block without halting or
branching,except possibly at the last instruction in
the block.

● The basic blocks become the nodes of a flowgraph

rules for finding leaders
● The first three-address instruction in the

intermediate code is a leader.

● Any instruction that is the target of a conditional
or unconditional jump is a leader.

● Any instruction that immediately follows a
conditional o run conditional jump is a leader.

x

Intermediatecodetoseta10*10matri to
an identity matrix

Flowgraph based on BasicBlocks

liveness andnext-use information
● We wish to determine for each three address

statement x=y+z what the next uses of x,yandzare.

● Algorithm:
● Attach to statement the information currently found in

the symbol table regarding then extuse and livenessof
x, y,and z.

● In the symbol table,set x to"not live"and"non extuse.“

● In the symbol table,set y and zto"live"and the next
uses of yand z to i.

DAG representation of basic
blocks
● There is a node in the DAG for each of the initial

values of the variables appearing in the basic
block.

● There is a node N associated with each statements
within the block.The children of N are those
nodes corresponding to statements that are the
last definitions,prior to s,of the operands used
bys.

● Node N is labeled by the operator applied at s,and
also attached to N is the list of variables for which it
is the last definition within the block.

● Certain nodes are designated output nodes.These
are the nodes whose variables are live on exit from

the block.

Code improving transformations
● We can eliminate local common subexpressions,that

is,instructions that compute a value that has
already been computed.

● We can eliminate deadcode,thatis,instructions that
compute a value that is never used.

● We can reorder statements that do not depend on
one another;such reordering may reduce the timea
temporary value needs to be preserved in a register.

● We can apply algebraic law store or deroper and s
of three-address instructions,and sometimes
thereby simplify t he computation.

DAG for basicblock

ComputerScienceand
Engineering

DAG for basicblock

ComputerScienceand

Engineering

array accesses in a DAG
● An assignment from an array,like x=a[i],isrepresentedby

creating anodewithoperator=[]andtwochildrenrepresenting
theinitialvalueof thearray,a0inthiscase,andtheindexi.
Variablex becomesalabelof thisnewnode.

● Anassignmenttoanarray,likea[j]=y,isrepresentedbyanew
nodewithoperator[]=andthreechildrenrepresentinga0,jand
y.Thereisnovariablelabelingthisnode.Whatisdifferentisthat
thecreationof thisnodekillsallcurrentlyconstructednodes
whosevaluedependsona0.Anodethathasbeenkilledcannot
receiveanymorelabels;thatis, itcannotbecomeacommon
subexpression.

ComputerScienceand

Engineering

DAG for a sequence of array assignments

Rules for reconstructing thebasicblock
from a DAG
● TheorderofinstructionsmustrespecttheorderofnodesintheDAG.

Thatis,wecannotcomputeanode'svalueuntilwehavecomputed a value
foreach of itschildren.

● Assignmentstoanarraymustfollowallpreviousassignmentsto,or
evaluationsfrom,thesamearray,accordingtotheorderofthese
instructions inthe original basic block.

● Evaluationsofarrayelementsmustfollowanyprevious(accordingto
theoriginalblock)assignmentstothesamearray.Theonly
permutationallowedisthattwoevaluationsfromthesamearraymay
bedoneineitherorder,aslongasneithercrossesoveranassignmentto that
array.

● Anyuseofavariablemustfollowallprevious(accordingtotheoriginal
block)procedurecallsorindirectassignmentsthroughapointer.

● Anyprocedurecallorindirectassignmentthroughapointermust
followallprevious(accordingtotheoriginalblock)evaluationsofany
variable.

principal uses of registers
● Inmostmachinearchitectures, someorallof the

operandsofanoperationmustbeinregistersinorder to
perform the operation.

● Registersmakegoodtemporaries-placestoholdthe
resultofasubexpressionwhilealargerexpressionis
beingevaluated,ormoregenerally,aplacetoholda
variablethatisusedonlywithinasinglebasicblock.

● Registersareoftenusedtohelpwithrun-timestorage
management,forexample,tomanagetherun-time
stack,includingthemaintenanceofstackpointersand
possiblythetopelementsof thestackitself.

Descriptors for datastructure
● Foreachavailableregister,aregisterdescriptorkeepstrackof the

variablenameswhosecurrentvalueisinthatregister.Sincewe
shalluseonlythoseregistersthatareavailableforlocaluse
withinabasicblock,weassumethatinitially,allregister
descriptorsareempty.Asthecodegenerationprogresses,each
registerwill hold thevalueof zeroormorenames.

● Foreachprogramvariable,anaddressdescriptorkeepstrackof
thelocationorlocationswherethecurrentvalueof thatvariable
canbefound.Thelocationmightbearegister,amemory
address,astacklocation,orsomesetof morethanoneof these.
Theinformationcanbestoredinthesymbol-tableentryforthat
variable name.

Machine Instructions for Operations
● UsegetReg(x=y+z)toselectregistersforx,y,andz. Call

these Rx, Ryand Rz.
● IfyisnotinRy(accordingtotheregisterdescriptorfor

Ry),thenissueaninstructionLD Ry,y',wherey'isone
ofthememorylocationsfory(according tothe address
descriptor fory).

● Similarly,ifzisnotinRz,issueandinstructionLDRz,
z',wherez' isalocationfor x .

● IssuetheinstructionADDRx,Ry,Rz.

Rules for updating the register and address descriptors
● FortheinstructionLDR,x

● ChangetheregisterdescriptorforregisterRsoitholdsonlyx.
● ChangetheaddressdescriptorforxbyaddingregisterRasan

additional location.
● FortheinstructionSTx,R,changetheaddressdescriptorforxto

includeitsownmemorylocation.
● ForanoperationsuchasADDRx,Ry,Rzimplementingathree-

addressinstructionx=y+x
● ChangetheregisterdescriptorforRxsothatitholdsonlyx.
● ChangetheaddressdescriptorforxsothatitsonlylocationisRx.

Notethatthememorylocationforxisnot nowintheaddress
descriptor for x.

● RemoveRxfromtheaddressdescriptorofanyvariableotherthanx.
● Whenweprocessacopystatementx=y,aftergeneratingtheload

foryintoregisterRy,ifneeded,andaftermanagingdescriptorsas
forall load statements(perrule I):

● AddxtotheregisterdescriptorforRy.

● ChangetheaddressdCeosmcrpiputteorrSfocriexnscoetahnadtitsonlylocationisRy.

Instructions generated and the changes in the
register and address descriptors

Rules for picking register Ryfor y
● Ifyiscurrentlyinaregister,pickaregisteralready

containingyasRy.Donotissueamachineinstruction
toloadthisregister,asnoneisneeded.

● Ifyisnotinaregister,butthereisaregisterthatis
currentlyempty,pickonesuchregisterasRy.

● Thedifficultcaseoccurswhenyisnotinaregister,and
thereisnoregisterthatiscurrentlyempty.Weneedto
pickoneoftheallowableregistersanyway,andwe need
tomakeitsafetoreuse.

Possibilities for value of R
● IftheaddressdescriptorforvsaysthatvissomewherebesidesR, then

we are OK.
● Ifvisx,thevaluebeingcomputedbyinstructionI,andxisnot

alsooneof theotheroperandsof instructionI (zinthis
example),thenweareOK.Thereasonisthatinthiscase,we
knowthisvalueof xisneveragaingoingtobeused,soweare free to
ignore it.

● Otherwise,ifvisnotused later(thatis,aftertheinstructionI,
therearenofurtherusesofv,andifvisliveonexitfromthe
block,thenvisrecomputedwithintheblock),thenweareOK.

● IfwearenotOKbyoneofthefirsttwocases,thenweneedto
generatethestoreinstructionSTv,Rtoplaceacopyofvinits
ownmemorylocation.Thisoperationiscalledaspill.

Selection of the register Rx
1. Sinceanewvalueofxisbeingcomputed,aregister

thatholdsonlyxisalwaysanacceptablechoicefor Rx.
2. IfyisnotusedafterinstructionI,andRyholdsonlyy

afterbeing loaded, RycanalsobeusedasRx.A
similaroptionholdsregarding zand Rx.

Possibilities for value of R
● IftheaddressdescriptorforvsaysthatvissomewherebesidesR, then

we are OK.
● Ifvisx,thevaluebeingcomputedbyinstructionI,andxisnot

alsooneof theotheroperandsof instructionI (zinthis
example),thenweareOK.Thereasonisthatinthiscase,we
knowthisvalueof xisneveragaingoingtobeused,soweare free to
ignore it.

● Otherwise,ifvisnotused later(thatis,aftertheinstructionI,
therearenofurtherusesofv,andifvisliveonexitfromthe
block,thenvisrecomputedwithintheblock),thenweareOK.

● IfwearenotOKbyoneofthefirsttwocases,thenweneedto
generatethestoreinstructionSTv,Rtoplaceacopyofvinits
ownmemorylocation.Thisoperationiscalledaspill.

Characteristic of peephole optimizations

● Redundant-instructionelimination

● Flow-of-controloptimizations

● Algebraicsimplifications

● Useofmachineidioms

Redundant-instruction elimination
● LDa,R0

ST R0, a
● ifdebug==1gotoL1

gotoL2
LI:printdebugginginformation
L2:

Flow-of-control optimizations

gotoL1
...
Ll:gotoL2

Canbereplacedby:

goto L2
...
Ll:gotoL2

ifa<bgotoL1
...
Ll:gotoL2

Canbereplacedby: if

a<b goto L2
...
Ll:gotoL2

Global register allocation
● Previouslyexplainedalgorithmdoeslocal(blockbased)

registerallocation
● Thisresultedthatalllivevariablesbestoredattheendof

block
● Tosavesomeofthesestoresandtheircorrespondingloads,

wemightarrangetoassignregisterstofrequentlyused
variablesandkeeptheseregistersconsistentacrossblock
boundaries (globally)

● Someoptionsare:
● Keepvaluesofvariablesusedinloopsinsideregisters
● Usegraphcoloringapproachformoregloballyallocation

Usage counts
● Fortheloopswecanapproximatethesavingby

register allocation as:
● Sumoverallblocks(B)inaloop(L)
● Foreachusesofxbeforeanydefinitionintheblockwe

addoneunitof saving
● IfxisliveonexitfromBandisassignedavalueinB,

thenweass 2 unitsof saving

Flowgraph of an innerloop

Engineering

Code sequence using global register
assignment

Register allocation by
Graph coloring
● Twopassesareused

● Target-machineinstructionsareselectedasthough
therearean infinitenumberof symbolicregisters

● Assignphysicalregisterstosymbolicones
● Createaregister-interferencegraph
● Nodesaresymbolicregistersandedgesconnectstwonodesif

oneisliveatapointwheretheotherisdefined.
● Forexampleinthepreviousexampleanedgeconnectsaandd

inthegraph
● Useagraphcoloringalgorithmtoassignregisters.

Intermediate-code tree for a[i]=b+1

Tree-rewriting rules

ComputerScienceand

Engineering

Syntax-directed translation scheme

An instruction set for tree matching

Ershov Numbers
● Labelanyleaf1.
● Thelabelofaninteriornodewithonechildisthelabel of

its child.
● Thelabelofaninteriornodewithtwochildrenis

● Thelargerofthelabelsof itschildren,ifthoselabelsare
different.

● Oneplusthelabelofitschildrenifthelabelsarethe
same.

A tree labeled with Ershov numbers

Generating code from a labeled expression tree

● Togeneratemachinecodeforaninteriornodewithlabelkandtwo
childrenwithequal labels(which must bek - l)dothefollowing:

● Recursivelygeneratecodefortherightchild,usingbaseb+1.Theresultof
therightchildappearsinregisterRb+k.

● Recursivelygeneratecodefortheleftchild,using baseb;theresultappears in
Rb+k-1.

● GeneratetheinstructionOPRb+k,Rb+k-1,Rb+k,whereOPistheappropriate
operationfortheinteriornodeinquestion.

● Supposewehaveaninteriornodewithlabel kandchildrenwithunequal
labels.Thenoneofthechildren,whichwe'llcallthe"big"child,haslabelk
,andtheotherchild,the"little"child,hassomelabelm<k.Dothe
followingtogeneratecodeforthisinteriornode,usingbaseb:

● Recursivelygeneratecodeforthebigchild,using baseb;theresultappears in
register Rb+k-l.

● Recursivelygeneratecodeforthesmallchild,usingbaseb;theresult
appearsinregisterRb+m-l.Notethatsincem<k,neitherRb+k-lnorany
higher-numbered register is used.

● GeneratetheinstructionOPRb+k-l,Rb+m-l,Rb+k-1ortheinstructionOPRb+k-l, Rb+k-
l, Rb+m+l,depending onwhetherthebigchild istherightorleftchild,
respectively.

● Foraleafrepresentingoperandx,ifthebaseisbgeneratetheinstruction LD
Rb, x.

Optimal three-register code

r r r-1 r r-1 r

Evaluating Expressions with an
Insufficient Supply of Registers
● NodeN hasatleastonechildwithlabelrorgreater.Pickthelarger

child(oreitheriftheirlabelsarethesame)tobethe"big"childandlet
theotherchild bethe "little" child.

● Recursivelygeneratecodeforthebigchild,usingbaseb=1.Theresult of
thisevaluationwillappear inregisterRr

● GeneratethemachineinstructionSTtk,Rr,wheretkisatemporary
variableusedfortemporaryresultsusedtohelpevaluatenodeswith
label k.

● Generatecodeforthelittlechildasfollows.Ifthelittlechildhaslabelr
orgreater,pickbaseb=1.If thelabelof thelittlechildisj<r,thenpick b=r-
j.Thenrecursivelyapplythisalgorithmtothelittlechild;theresult appears
in Rr.

● GeneratetheinstructionLDRr-l,tk.
● IfthebigchildistherightchildofN,thengeneratetheinstructionOP

R,R,R .Ifthebigchildistheleftchild,generateOPR,R ,R.
ComputerScienceand

Engineering

Optimal three-register code
using only two registers

ComputerScienceand

Engineering

Dynamic Programming Algorithm
● Computebottom-upforeachnodenoftheexpressiontreeTan

arrayCofcosts, inwhichtheithcomponentC[i]istheoptimal
costofcomputingthesubtreeS rootedatnintoaregister,
assumingiregistersareavailableforthecom1putiatiorn,for

● TraverseT,usingthecostvectorstodeterminewhichsubtreesof
Tmust becomputed intomemory.

● Traverseeachtreeusingthecostvectorsandassociated
instructionstogeneratethefinaltargetcode.Thecodeforthe
subtreescomputedintomemorylocationsisgeneratedfirst.

Syntax tree for(a-b)+c*(d/e)with
cost vector at each node

sequencehascost5+2+1=E8ng.ineering

minimum cost of evaluating the
root with two registers available
● Computetheleftsubtreewithtworegistersavailableinto

registerR0,computetherightsubtreewithoneregister
availableintoregisterR1,andusetheinstructionADDR0,
R0,R1tocomputetheroot.Thissequencehascost 2+5+1=8.

● Computetherightsubtreewithtworegistersavailableinto R l
,computetheleftsubtreewithoneregisteravailable
intoR0,andusetheinstruction ADD R0,R0, R1.This
sequence hascost 4+2+1=7.

● Computetherightsubtreeintomemorylocation M,
computetheleftsubtreewithtworegistersavailableinto
registerRO,anduseDDR0,R0,M.This

UNIT-III

Syntax-Directed Translation

Outline
● Syntax Directed Definitions
● Evaluation Orders of SDD’s
● Applications of Syntax Directed Translation
● Syntax Directed Translation Schemes

Introduction
● Wecanassociateinformationwitha language

constructbyattachingattributestothegrammar
symbols.

● Asyntaxdirecteddefinitionspecifiesthevaluesof
attributesbyassociating semanticruleswith the
grammar productions.

Production

E->E1+T

Semantic Rule

E.code=E1.code||T.code||’+’

• Wemayalternativelyinsertthesemanticactionsinsidethegrammar

E }

Syntax Directed Definitions
● ASDDisacontextfreegrammarwithattributesand

rules
● Attributesareassociatedwithgrammarsymbolsand

rules with productions
● Attributesmaybeofmanykinds:numbers,types,

table references, strings, etc.
● Synthesizedattributes

● AsynthesizedattributeatnodeNisdefinedonlyin
termsofattributevaluesofchildrenofNandatNit

● Inheritedattributes
● AninheritedattributeatnodeNisdefinedonlyinterms

ofattributevaluesatN’sparent,NitselfandN’ssiblings

Example of S-attributed SDD

Production

1) L->En
2) E->E1 +T
3) E->T
4) T->T1* F
5) T->F
6) F->(E)
7) F->digit

Semantic Rules L.val = E.val
E.val=E1.val+T.val
E.val=T.val
T.val=T1.val*F.val T.val = F.val
F.val=E.val
F.val=digit.lexval

Example of mixed attributes

Production

1) T->FT’

2) T’->*FT’1

3) T’->ε
4) F->digit

SemanticRules

T’.inh=F.val
T.val=T’.syn
T’1.inh=T’.inh*F.val
T’.syn = T’1.syn
T’.syn = T’.inh
F.val=F.val=digit.lexval

Evaluation orders for SDD’s
● Adependencygraphisusedtodeterminetheorderof

computation of attributes
● Dependencygraph

● Foreachparsetreenode,theparsetreehasanodefor
eachattributeassociatedwiththatnode

● Ifasemanticruledefinesthevalueofsynthesized
attributeA.bintermsofthevalueofX.cthenthe
dependencygraphhasanedgefromX.ctoA.b

● Ifasemanticruledefinesthevalueofinheritedattribute
B.cintermsofthevalueofX.athenthedependency
graphhasanedge fromX.ctoB.c

Ordering the evaluation of
attributes
● IfdependencygraphhasanedgefromMtoNthenM

mustbeevaluatedbeforetheattributeof N
● Thustheonlyallowableordersofevaluationarethose

sequenceofnodesN1,N2,…,Nksuchthatifthereisan
edgefrom Ni toNj then i<j

● Suchanorderingiscalledatopologicalsortofagraph
● Example!

S-Attributed definitions
● AnSDDisS-attributedifeveryattributeissynthesized
● Wecanhaveapost-ordertraversalofparse-treeto

evaluateattributesin S-attributeddefinitions

postorder(N){

for(eachchildCof N,fromtheleft)postorder(C);
evaluatetheattributesassociatedwithnodeN;

}

● S-Attributeddefinitionscan be implementedduring
bottom-upparsingwithouttheneedtoexplicitlycreate
parse trees

L-Attributed definitions
● ASDDisL-Attributediftheedgesindependencygraph

goesfromLefttoRightbutnotfromRighttoLeft.
● Moreprecisely,eachattributemustbeeither

● Synthesized

● Inherited,butifthereusaproductionA->X1X2…Xnandthere
isaninheritedattributeXi.acomputed byaruleassociated
withthisproduction,thentherulemayonlyuse:
● InheritedattributesassociatedwiththeheadA
● Eitherinheritedorsynthesizedattributesassociatedwiththe

occurrencesofsymbolsX1,X2,…,Xi-1locatedtotheleftofXi
● Inheritedorsynthesizedattributesassociatedwiththisoccurrence of

Xiitself, butinsuchawaythatthereisnocycleinthegraph

Application of Syntax Directed
Translation
● Typecheckingandintermediatecodegeneration

(chapter6)
● Constructionofsyntaxtrees

● Leafnodes: Leaf(op,val)

● Interiornode:Node(op,c1,c2,…,ck)

● Example:
Production SemanticRules

1) E->E1+T
2) E->E1-T
3) E->T
4) T->(E)
5) T->id
6) T->num

E.node=new node(‘+’, E1.node,T.node)
E.node=newnode(‘-’,E1.node,T.node)
E.node = T.node
T.node=E.node
T.node=newLeaf(id,id.entry)

ComputTer.nSocideenc=eannedwLeaf(num,num.val)
Engineering

Syntax tree for L-attributed
definition

Production SemanticRules+
1) E->TE’

2) E’->+TE1’

3) E’->-TE1’

4) E’->


5) T->(E)

6) T->id
7) T->num

E.node=E’.syn
E’.inh=T.node
E1’.inh=newnode(‘+’,E’.inh,T.node)
E’.syn=E1’.syn
E1’.inh=newnode(‘+’,E’.inh,T.node)
E’.syn=E1’.syn
E’.syn= E’.inh

T.node=E.node

T.node=newLeaf(id,id.entry)
T.node=newLeaf(num,num.val)

Syntax directed translation
schemes
● AnSDTisaContextFreegrammarwithprogramfragments

embedded within production bodies
● Thoseprogramfragmentsarecalledsemanticactions
● Theycanappearatanypositionwithinproductionbody
● AnySDTcanbeimplementedbyfirstbuildingaparsetree and

thenperformingtheactions inaleft-to-rightdepth first
order

● TypicallySDT’sareimplementedduringparsingwithout
building a parse tree

Postfix translation schemes
● SimplestSDDsarethosethatwecanparsethegrammar

bottom-upandtheSDDiss-attributed
● ForsuchcaseswecanconstructSDTwhereeachactionis

placedattheendoftheproductionandisexecutedalong
withthereductionof thebodytotheheadof that
production

● SDT’swithallactionsattherightendsoftheproduction
bodies arecalled postfix SDT’s

Example of postfix SDT

1) L->En
2) E->E1 +T
3) E->T
4) T->T1* F
5) T->F
6) F->(E)
7) F->digit

{print(E.val);}
{E.val=E1.val+T.val;}
{E.val=T.val;}
{T.val=T1.val*F.val;}
{T.val=F.val;}
{F.val=E.val;}
{F.val=digit.lexval;}

Parse-Stack implementation of
postfix SDT’s
● In a shift-reduce parser we can easily

implement semantic action using the parser
stack

● For each non terminal(or state) on the stack we
can associate a record holding its attributes

● Then in a reduction step we can execute the
semantic action at the end of a production to
evaluate the attribute(s)of then on-terminal at the
left side of the production

● And put the value on the stack in replace of
the right side of production

Example

L->En

E->E1+T E

-> T

{print(stack[top-1].val);
top=top-1;}

{stack[top-2].val=stack[top-2].val+stack.val;
top=top-2;}

T->T1* F {stack[top-2].val=stack[top-2].val+stack.val;
top=top-2;}

T->F
F -> (E) {stack[top-2].val=stack[top-1].val

top=top-2;}
F->digit

SDT’s with actions inside
productions

● For a production B->X{a}Y
● If the parse is bottom-up then we

perform action “a”as soon as this
occurrence of X appears on the top
of the parser stack

● If the parser is top down we
perform “a” just before we
expand
Y

● Sometimes we cant do things
as easily as explained above

● One example is when we are

1) L->En
2) E->{print(‘+’);}E1+ T
3) E->T

4) T->{print(‘*’);}T1*F
5) T->F
6) F->(E)

Engineering parsing this SDT witChomapbuotetrtSocmien-ceand7) F->digit{print(digit.lexval);}

T

SDT’s with actions inside
productions (cont) L

● Any SDT can be
implemented as follows E

1. Ignore the actions
and produce a parse
tree

2. Examine each interior
Node N and add
actions

{print(‘+’);}
E + T

F

As new children at
the correct position

3. Perform a postorder

{print(‘*’);} T *F
{print(4);}

digit
{print(5);}

traversal and execute actions when their

nodes F digit
{print(3);}

are
visited

digit

SDT’s for L-Attributed definitions
● We can convert an L-attributed SDD into an SDT

using following two rules:
● Embed the action that computes the inherited

attributes for an on terminal A immediately before that
occurrence of A. if several inherited attributes of A are
dpendent on one another in anacyclic fashion, order
them so that those needed first are computed first

● Place the action of a synthesized attribute for the head
Of a production at the end of the body of the production

ComputerScienceand

Engineering

Example

S->while(C) S1 L1=new();
L2=new();
S1.next=L1;
C.false=S.next;
C.true=L2;
S.code=label||L1||C.code||label||L2||S1.code

S->while({L1=new();L2=new();C.false=S.next;C.true=L2;}
C) {S1.next=L1;}
S1{S.code=label||L1||C.code||label||L2||S1.code;}

UNIT-II

Syntax Analyzer

Outline
● Role of parser
● Context free grammars
● Top down parsing
● Bottom up parsing
● Parser generators

The role of parser

Source
program

Lexical
Analyzer

token

getNext
Token

Parser Parsetree Restof

FrontEnd
Intermediate
representation

Symbol

table

Uses ofgrammars
E->E+T|T
T->T*F|F
F->(E)| id

E->TE’
E’->+TE’|Ɛ
T->FT’
T’-> *FT’|Ɛ
F->(E)| id

Error handling
● Common programming errors

● Lexical errors

● Syntactic errors

● Semantic errors

● Lexical errors

● Error handler goals
● Report the presence of errors clearly and accurately

● Recover from each error quickly enough to
detect subsequent errors

● Add minimal over head to the processing of
correct progrms

Error-recover strategies
● Panic mode recovery

● Discard input symbol one at a time until one of
designated set of synchronization tokens is
found

● Phrase level recovery
● Replacing a prefix of remaining input by some string

That allows the parser to continue
● Error productions

● Augment the grammar with productions that
generate the erroneous constructs

● Global correction
● Choosing minimal sequence of changes to obtain

a globally least-cost correction

Context free grammars
● Terminals
● Non

terminals
● Start symbol
● productions

expression->expression+term
expression -> expression – term
expression -> term
term->term*factor
term -> term / factor
term -> factor
factor->(expression)
factor->id

Derivations
● Productions are treatedasre writing rules to generate

a string
● Right most and left most derivations

● E->E+E|E*E|-E|(E)| id

● Derivations for–(id+id)
● E =>-E=> -(E)=>-(E+E)=>-(id+E)=>-(id+id)

Parse trees
● -(id+id)
● E =>-E=> -(E)=> -(E+E)=> -(id+E)=>-(id+id)

Ambiguity
● For some strings there exist more than one parse tree
● Or more than one left most derivation
● Or more than one right most derivation
● Example:id+id*id

Elimination of ambiguity

Elimination of ambiguity(cont.)
● Idea:

● A statement appearing between a then and an else
Must be matched

Elimination of left recursion
● A grammar is left recursive if it has a non-terminal

A such that there is a derivation A=+>Aα
● Top down parsing methods cant handle left-

recursive grammars
● A simple rule for direct left recursion elimination:

● For a rule like:
● A->Aα|β

● We may replace it with
● A->βA’
● A’->αA’|ɛ

Left recursion elimination (cont.)
● There are cases like following

● S->Aa|b
● A->Ac|Sd|ɛ

● Left recursion elimination algorithm:
● ArrangethenonterminalsinsomeorderA1,A2,…,An.
● For(eachifrom1ton){

● For(eachjfrom1toi-1){

● Replace each production of the form Ai->Ajγby the production
Ai ->δ1 γ| δ2 γ| … |δkγ where Aj->δ1| δ2| … |δk are all
current Aj productions

● }
● Eliminate left recursion among the Ai-productions

● }

Left factoring
● Left factoring is a grammar transformation that is useful

for producing a grammar suitable for predictive or top-
down parsing.

● Consider following grammar:
● Stmt->if expr then stmt else stmt
⚫ |if expr then stmt

● On seeing input if it is not clear for the parser
which production to use

● We can easily perform left factoring:
● If we have A->αβ1|αβ2

● A->αA’
● A’->β1|β2

Then were place it with

Left factoring(cont.)
● Algorithm

● For each non-terminal A, find the longest prefixα
common to two or more of its alternatives. If α<>ɛ,
then replace all of A-productions A->αβ1|αβ2|…
|αβn|γby
● A->αA’|γ

● A’->β1|β2|…|βn

● Example:
● S->IEtS|iEtSeS|a

● E->b

lm

Top-down parser

● A Top-down parser tries to create a parse tree from
the root towards the leaf canning input from

● Left to right
● It can be also viewed as finding a left most

derivation for an input string
● Example:

E->TE’

id+id*id

E

E

E

E

E E

E’->+TE’|Ɛ
T->FT’

T E’ T E’ T E’ T E’ T E’

T’->*FT’|Ɛ F T’ F T’ F T’ F T’ +T E’

F->(E)|id id id Ɛ id Ɛ

lm lm lm lm

Recursive descent parsing
● Consists of a set of procedures, one for

each non terminal
● Execution begins with the procedure for start symbol
● A typical procedure for anon-terminal

voidA(){
chooseanA-production,A->X1X2..Xk for
(i=1 to k) {

if(Xiis anonterminal
callprocedureXi();

else if (Xi equals the current input symbol a)
advancetheinputtothenextsymbol;

else/*anerrorhasoccurred*/
}

}

Recursive descentparsing(cont)
● General recursive descent may require back tracking
● The previous code needs to be modified to

allow back tracking
● In general form it cant choose an A-production easily.
● So we need to try all alternatives
● If one failed the input pointer needs to be reset

and another alternative should be tried
● Recursive descent parsers cant be used for

left- recursive grammars

Example

S->cAd

A->ab|a Input:cad

S S S

c A d c A d c A d

a b a

First and Follow
● First()is set of terminals that begins strings derived from
● If α=*>ɛ then is also in First(ɛ)
● In predictive parsing when we haveA->α|β,ifFirst(α)

and First(β) are disjoint sets then we can select
appropriate A-production by looking at then extin put

● Follow(A),for any non terminal A, is set of terminals a
that can appear immediately after A in some sentential
form
● If we have S=*>α Aa β for some α and β then a

is in Follow(A)
● If A can be the right most symbol in some sentential

form, then $ is in Follow(A)

Computing First
● To compute First(X)for all grammar symbols X,

apply follow*ing rules until no more terminals or ɛ
can be added to any First set:
1. If X is a terminal then First(X)={X}.
2. If X is a non terminal and X->Y1Y2…Yk is a

production for some k>=1,then place a in First(X) if
for some ia is in First(Yi) and ɛ is in all of
First(Y1),…,First(Yi-1)that isY1…Yi-1=*>ɛ.if ɛis in
First(Yj) for j=1,…,k then add ɛ to First(X).

3. If X->ɛ is a production then add ɛ to First(X)
⚫ Example!

Computing follow
● To compute First(A)for all non terminals A,

apply following rules until nothing can be added
to any follow set:
1. Place $ in Follow(S)where S is the start symbol
2. If there is a production A->αB β then everything

in First(β)except ɛ is in Follow(B).
3. If there is a production A->B or a production

A->αBβ where First(β)contains ɛ, then everything
In Follow (A)is inFollow(B)

⚫ Example!

LL(1)Grammars
● Predictiveparsersarethoserecursivedescentparsersneedingno

backtracking
● Grammarsforwhichwecancreatepredictiveparsersarecalled

LL(1)
● ThefirstLmeansscanninginputfromlefttoright
● ThesecondLmeansleftmostderivation
● And1standsforusingoneinputsymbolforlookahead

● AgrammarGisLL(1)ifandonlyifwheneverA->α|βaretwo
distinctproductionsofG,thefollowingconditionshold:

● Fornoterminaladoαandβ bothderivestringsbeginningwitha
● Atmostoneofαorβcanderiveemptystring

*
● Ifα=>ɛthenβdoesnotderiveanystringbeginningwitha

terminalinFollow(A).

Constructionofpredictive
parsing table
● ForeachproductionA->αingrammardothe

following:
1. ForeachterminalainFirst(α)addA->inM[A,a]
2. If ɛ isinFirst(α), thenforeachterminal bin

Follow(A)addA->ɛtoM[A,b].Ifɛ isinFirst(α)and
$isinFollow(A),addA->ɛtoM[A,$]aswell

● Ifafterperformingtheabove,thereisnoproduction in
M[A,a] thensetM[A,a] toerror

Example First Follow

E->TE’
E’->+TE’|Ɛ
T->FT’
T’->*FT’|Ɛ
F->(E) |id

Non-

F {(,id}

T {(,id}

E {(,id}
E’ {+,ɛ}

T’ {*,ɛ}

InputSymbol

{+,*,),$}
{+,),$}
{),$}

{),$}
{+,),$}

terminal
E

E’

T

id + * () $
E->TE’ E->TE’

E’->+TE’ E’->Ɛ E’->Ɛ

T->FT’ T->FT’

T’ T’->Ɛ T’->*FT’ T’->Ɛ T’->Ɛ

F F->id

Bottom-upParsing

● Constructsparsetreeforaninputstringbeginningat
theleaves(thebottom)andworkingtowardstheroot
(the top)

● Example:id*id

E->E+T| T
T->T*F|F

id*id F*id

T*id T*F F E

F->(E) |id id F F id T*F F

id id

F idid

T*F

F id

id

Shift-reduceparser
● Thegeneralideaistoshiftsomesymbolsofinputto

thestackuntilareductioncan beapplied
● Ateachreductionstep,aspecificsubstringmatching

thebodyofaproduction isreplaced bythe
nonterminal attheheadof theproduction

● Thekeydecisionsduringbottom-upparsingareabout
whentoreduceandaboutwhatproductiontoapply

● Areductionisareverseofastepinaderivation
● Thegoalofabottom-upparseristoconstructa

derivation in reverse:
● E=>T=>T*F=>T*iCdo=m>pFu*teidrS=c>ieidnc*eidand

Engineering

Shiftreduceparsing
● Astackisusedtoholdgrammarsymbols
● Handlealwaysappearontopofthestack
● Initialconfiguration:

Stack
$

Input
w$

● Acceptanceconfiguration

Stack
$S

Input
$

Reduce/reduceconflict
stmt->id(parameter_list)
stmt -> expr:=expr
parameter_list->parameter_list, parameter
parameter_list->parameter
parameter->id
expr->id(expr_list)
expr->id
expr_list->expr_list,expr
expr_list->expr Stack

… id(id

Input

,id) …$

LRParsing
● Themostprevalenttypeofbottom-upparsers
● LR(k),mostlyinterestedonparserswithk<=1
● WhyLRparsers?

● Tabledriven

● Canbeconstructedtorecognizeallprogramminglanguage
constructs

● Mostgeneralnon-backtrackingshift-reduceparsingmethod

● Candetectasyntacticerrorassoonasitispossibletodoso

● ClassofgrammarsforwhichwecanconstructLRparsersare
supersetof thosewhichwecanconstructLLparsers

StatesofanLRparser
● Statesrepresentsetofitems
● AnLR(0)itemofGisaproductionofGwiththedotat some

positionof the body:
● ForA->XYZwehavefollowingitems

● A->.XYZ

● A->X.YZ

● A->XY.Z

● A->XYZ.

● InastatehavingA->.XYZwehopetoseeastring
derivablefromXYZnextontheinput.

● WhataboutA->X.YZ?

ConstructingcanonicalLR(0)
item sets
● Augmentedgrammar:

● Gwithadditionofaproduction:S’->S

● Closureofitemsets:
● IfIisasetofitems,closure(I)isasetof itemsconstructedfromIby the

following rules:
● AddeveryiteminItoclosure(I)

● IfA->α.Bβisinclosure(I)andB->γisaproductionthenaddthe

itemB->.γtoclsoure(I).
● Example: E’->E

E->E+T| T
T->T*F |F
F->(E) |id

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
->.id

E

I2
E’->T.
T->T.*F

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

I1
E’->E.
E->E.+T

ConstructingcanonicalLR(0)
item sets (cont.)
● Goto(I,X)whereI isanitemsetandXisagrammar

symbolisclosureofsetofallitems[A->αX.β]where [A->
α.X β] is in I

● Example

T

I4

(F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)

CanonicalLR(0)items
Voiditems(G’){

C=CLOSURE({[S’->.S]});
repeat

for(eachsetof itemsI in C)
for(eachgrammarsymbolX)

if(GOTO(I,X)isnotemptyandnotinC) add
GOTO(I,X) to C;

untilnonewsetofitemsareaddedtoConaround;
}

E’->E
E->E+T|T Example T->T*F|F

acc
$

I1

F->(E)|id
I6

E->E+.T

+ T->.T*F

I9

E->E+T.
E’->E.

E E->E.+T

T I2
E’->T.
T->T.*F

id

(
I4

F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

T->.F
F->.(E)
F->.id

I7

T->T*.F
F->.(E)

id F->.id

I8
E->E.+T
F->(E.)

T->T.*F

F I10

T->T*F.

+

) I11

F->(E).

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

I5
F->id.

E

T

*

UseofLR(0)automaton
● Example:id*id

Line Stack Symbols Input Action

(1) 0 $ id*id$ Shiftto5

(2) 05 $id *id$ ReducebyF->id

(3) 03 $F *id$ ReducebyT->F

(4) 02 $T *id$ Shiftto7

(5) 027 $T* id$ Shiftto5

(6) 0275 $T*id $ ReducebyF->id

(7) 02710 $T*F $ ReducebyT->T*F

(8) 02 $T $ ReducebyE->T

(9) 01 $E $ accept

LR-Parsingmodel

INPUT

a1 …

Sm

Sm-1

…
$

 ACTION

Parsingmodel
 ai … an $

LRParsing
Program

ACTION GOTO

Output

LRparsingalgorithm
letabethefirstsymbolofw$;
while(1){/*repeatforever*/

letsbethestateontopofthestack; if
(ACTION[s,a] = shiftt) {

pushtontothestack;
letabethenextinputsymbol;

}elseif(ACTION[s,a]=reduceA->β){
pop |β| symbols of thestack;
letstatetnowbeontopofthestack;
push GOTO[t,A] ontothe stack;
output the production A->β;

}elseif(ACTION[s,a]=accept)break;/*parsingisdone*/ else
call error-recoveryroutine;

}

(0)E’->E
(1) E->E+T
(2) E->T
(3) T->T*F
(4) T->F
(5) F ->(E)
(6) F->id

id*id+id?

Example
STATE ACTON GOTO

 id + * () $ E T F

0 S5 S4 1 2 3

1 S6 Acc

2 R2 S7 R2 R2

3 R
4

R7 R4 R4

4 S5 S4 8 2 3

5 R
6

R
6

 R6 R6

6 S5 S4 9 3

7 S5 S4 10

8 S6 S11

9 R1 S7 R1 R1

10 R3 R3 R3 R3

11 R5 R5 R5 R5

ConstructingSLRparsingtable
● Method

● ConstructC={I0,I1,…,In},thecollectionofLR(0)itemsforG’
● StateiisconstructedfromstateIi:

● If[A->α.aβ]isinIiandGoto(Ii,a)=Ij,thensetACTION[i,a]to“shiftj”
● If[A->α.]isinIi,thensetACTION[i,a]to“reduceA->α”forallain

follow(A)
● If{S’->.S]isinIi,thensetACTION[I,$]to“Accept”

● Ifanyconflictsappearsthenwesaythatthegrammarisnot
SLR(1).

● IfGOTO(Ii,A)=IjthenGOTO[i,A]=j
● Allentriesnotdefinedbyaboverulesaremade“error”
● Theinitialstateoftheparseristheoneconstructedfromthe

setof itemscontaining [S’->.S]

Examplegrammarwhichisnot
SLR(1) S -> L=R | R

L->*R|id
R->L

I0
S’->.S
S->.L=R
S->.R
L->.*R|
L->.id
R->.L

I1
S’->S.

I3
S->R.

I4
L->*.R
R->.L
L->.*R
L->.id

Action

I5
L-> id.

I6
S->L=.R
R->.L
L->.*R
L->.id

I7
L-> *R.

I8
R->L.

I9
S->L=R.

 =

2
Shift6

RedCuocmeRpu->

I2
S->L.=R
R ->L.

Engineering

MorepowerfulLRparsers
● Canonical-LRorjustLRmethod

● Uselookaheadsymbolsforitems:LR(1)items

● Resultsinalargecollectionofitems

● LALR:lookaheadsareintroducedinLR(0)items

rm

Canonical LR(1)items
● InLR(1)itemseachitemisintheform:[A->α.β,a]
● AnLR(1)item[A->α.β,a]isvalidforaviableprefixγif

thereisaderivationS=*>δAw=>δαβw,where
● Γ=δα

● Eitheraisthefirstsymbolofw,orwisεandais$

● Example:
● S->BB

● B->aB|b

S=*>aaBab=>aaaBab
rm

Item[B->a.B,a]isvalidforγ=aaa and
w=ab

ConstructingLR(1)setsofitems
SetOfItemsClosure(I){

repeat
for(eachitem[A->α.Bβ,a]inI)

for(eachproductionB->γinG’)
for(eachterminalbinFirst(βa))

add[B->.γ,b]tosetI;
untilnomoreitemsareaddedtoI;
returnI;

}

SetOfItemsGoto(I,X){
initializeJtobetheemptyset;
for(eachitem[A->α.Xβ,a]inI)

additem[A->αX.β,a]tosetJ;
returnclosure(J);

}

voiditems(G’){
initializeCtoClosure({[S’->.S,$]});
repeat

for(eachsetofitemsIinC)
for(eachgrammarsymbolX)

if(Goto(I,X)isnotemptyandnotinC)
addGoto(I,X)toC;

untilnonewsetsofitemsareaddedtoC;

}

Example
S’->S
S->CC
C->cC
C->d

CanonicalLR(1)parsingtable
● Method

● ConstructC={I0,I1,…,In},thecollectionofLR(1)itemsforG’
● StateiisconstructedfromstateIi:

● If[A->α.aβ,b]isinIiandGoto(Ii,a)=Ij,thensetACTION[i,a]to
“shift j”

● If[A->α.,a]isinIi,thensetACTION[i,a]to“reduceA->α”
● If{S’->.S,$]isinIi,thensetACTION[I,$]to“Accept”

● Ifanyconflictsappearsthenwesaythatthegrammarisnot
LR(1).

● IfGOTO(Ii,A)=IjthenGOTO[i,A]=j
● Allentriesnotdefinedbyaboverulesaremade“error”
● Theinitialstateoftheparseristheoneconstructedfromthe

setof itemscontaining [S’->.S,$]

Example
S’->S
S->CC
C->cC
C->d

Engineering

LALRParsingTable
● Forthepreviousexamplewehad:

I4
C->d. , c/d

I7
C->d. , $

C->d.

I47

, c/d/$

● StatemergescantproduceShift-Reduceconflicts.

Why?
● ButitmayproducerCeodmupucteer-rSecidenucceeancdonflict

E->.E+E

EngiEn-e>eE.r*inEg

Usingambiguousgrammars
E->E+E
E->E*E
E->(E)
E->id

I0:E’->.E I1:E’->E. I2:E->(.E)
E->.E+E E->E.+E E->.E+E
E->.E*E E->E.*E E->.E*E
E->.(E) E->.(E)
E->.id E->.id

I3: E->.id
I4:E->E+.E

E->.E*E
E->.(E)
E->.id

I5:E->E*.E
E->(.E)
E->.E+E
E->.E*E
E->.(E)

I6:E->(E.)
E->E.+E
E->E.*E

I8:E->E*E.

I7:E->E+E.
E->E.+E
E->E.*E

I9:E->(E).

E->.CidomputerES->cEie.+nEceand

STATE ACTON GO
TO

 id + * () $ E

0 S3 S2 1

1 S4 S5 Acc

2 S3 S2 6

3 R4 R4 R4 R4

4 S3 S2 7

5 S3 S2 8

6 S4 S5

7 R1 S5 R1 R1

8 R2 R2 R2 R2

9 R3 R3 R3 R3

UNIT-IV

Run-TimeEnvironments

Outline
● Compilermustdothestorageallocationandprovide

accesstovariables and data
● Memorymanagement

● Stackallocation
● Heapmanagement
● Garbagecollection

StorageOrganization

Staticvs.DynamicAllocation
● Static:Compiletime,Dynamic:Runtimeallocation
● Manycompilersusesomecombinationoffollowing

● Stackstorage:forlocalvariables,parametersandsoon
● Heapstorage:Datathatmayoutlivethecalltothe

procedure that created it

● Stackallocationisavalidallocationforprocedures
sinceprocedurecallsare nested

Sketchofaquicksortprogram

ActivationforQuicksort

Activationtreerepresentingcallsduring an
execution of quicksort

Activationrecords
● Procedurecallsandreturnsareusaullymanagedbya

run-timestackcalled thecontrol stack.
● Eachliveactivationhasanactivationrecord

(sometimes called a frame)
● Therootofactivationtreeisatthebottomofthestack
● Thecurrentexecutionpathspecifiesthecontentofthe

stackwiththelastactivationhasrecord inthetopof the
stack.

AGeneralActivationRecord

ActivationRecord
● Temporaryvalues
● Localdata
● Asavedmachinestatus
● An“accesslink”
● Acontrollink
● Spaceforthereturnvalueofthecalledfunction
● Theactualparametersusedbythecallingprocedure

Accesstodynamicallyallocatedarrays

\

Engineering

MemoryManager
● Twobasicfunctions:

● Allocation

● Deallocation

● Propertiesofmemorymanagers:
● Spaceefficiency

● Programefficiency

● Lowoverhead

Part of a Heap

Code
Generator Codeoptimizer Front

end

Introduction
● Thefinalphaseofacompileriscodegenerator
● Itreceivesanintermediaterepresentation(IR)with

supplementary information insymbol table
● Producesasemanticallyequivalenttargetprogram
● Codegeneratormaintasks:

● Instructionselection
● Registerallocationandassignment
● Insrtuctionordering

IssuesintheDesignofCode
Generator
● Themostimportantcriterionisthatitproducescorrect

code
● Inputtothecodegenerator

● IR+Symboltable
● Weassumefrontendproduceslow-levelIR,i.e.valuesof

namesin itcanbedirectly manipulatedbythemachine
instructions.

● Syntacticandsemanticerrorshavebeenalreadydetected
● Thetargetprogram

● Commontargetarchitecturesare:RISC,CISCandStack
basedmachines

● InthischapterweuseaverysimpleRISC-likecomputerwith
additionof someCISC-likeaddressing modes

complexityofmapping
● theleveloftheIR

● thenatureoftheinstruction-setarchitecture

● thedesiredqualityofthegeneratedcode.

x=y+z
 a=b+c

d=a+e

LD R0,y LD R0,b
ADD R0,R0,z ADD R0,R0,c
ST x,R0 ST a, R0
 LD R0,a
 ADD R0,R0,e
 d, R0

ST R1,t

Register allocation
● Two sub problems

● Register allocation: selecting the setoff variables that will reside
in register sat each point in the program

● Resister assignment: selecting specific register that a variable reside
in

● Complications imposed by the hardware architecture
● Example: register pairs for multiplication and division

t=a+b
t=t*c
T=t/d

L
A
M
D
ST

R1, a
R1,b
R0, c
R0,d
R1, t

t=a+b
t=t+c
T=t/d

L R0,a
A R0,b
M R0,c
SRDA R0,32

Engineering

A simple target machine model
● Load operations:LDr,xandLDr1,r2

● Store operations: STx,r

● Computation operations:OPdst,src1,src2

● Unconditional jumps: BRL

● Conditional jumps: Bcondr,LlikeBLTZr,L

Addressing Modes
● Variable name: x

● Indexed address: a(r)likeLDR1,a(R2)means

R1=contents(a+ contents (R2))

● Integer indexed by a register:likeLDR1,100(R2)

● Indirect addressing mode:*rand*100(r)

● Immediate constant addressing mode: like LDR1,#100

b=a[i]
LDR1,i //R1=i

MUL R1, R1, 8 //R1=Rl*8

LD R2, a(R1)

//R2=contents(a+contents(R1))

STb,R2 //b=R2

a[j]=c
LDR1,c //R1=c

LDR2,j //R2=j

MUL R2, R2, 8 //R2=R2*8

STa(R2), R1

//contents(a+contents(R2))=R1

UNIT-V

Machine-Independent Optimization

Machine independent optimization attempts to
improve the intermediate code to get a better target
code. The part of the code which is transformed here
does not involve any absolute memory location or
any CPU registers.
Code Optimization can perform in the following
different ways:
(1) Compile Time Evaluation:
(a) z = 5*(45.0/5.0)*r

Perform 5*(45.0/5.0)*rat compile time.
(b) x= 5.7

y= x/3.6
Evaluate x/3.6as5.7/3.6atcompiletime.

(2) Variable Propagation:
Before Optimization the code is:
c = a * b
x=a
till
d=x*b+4

After Optimization the code is:
c = a * b
x=a
till

d=a*b+4

(3) Dead code elimination:
Before elimination the code is:
c = a * b
x=b
till
d=a*b+4
After elimination the code is:
c = a * b
till
d=a*b+4

(4) Code Motion:
It reduces the evaluation frequency of expression.
It brings loop in variant statements out of the
loop. do
{

Item =10;
value value=value+ item;

} while (value<100);

//This code can be further optimized as

item = 10;
do
{

Value value=value+ item;
} while (value<100);
(5) Induction Variable and Strength Reduction: Streng
th reduction is used to replace the high strength
operator by the low strength.
An induction variable is used in loop for thefollowing
kind of assignment like i = i + constant.
Before reduction the codeis:

After Reduction the codeis:
i = 1
t=4
{

while(t<40)
y = t;
t =t +4;

}

Data Flow Analysis

To efficiently optimize the code compiler collects all
the information about the program and distribute this
information to each block of the flow graph. This
process is known as data-flow graph analysis.

Certain optimization can only be achieved by
examining the entire program. It can't be achieve by
examining just a portion of the program.

consider the following code:
x = a + b;

x =6 *3

Some optimization needs more global information. For
example, consider the following code:
a=1;

b=2;
c=3;
if (....)x=a+ 5;
else x=b+4; c
= x + 1;

