L7
AT {4
Al
NRCM
231T601: Automata theory and compiler ucsigni ™

UNIT-1

Topic: Introduction to finite automata

M. Rajitha
Assistant Professor

Accredited by NBA & NAAC with ‘A’ Grade

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

{7 NARSIMHA REDDY ENGINEERING COLLEGE < e

vour 1ot o success.. Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

Ottline

® Role of lexical analyzer

® Specification of tokens

® Recognition of tokens

® Lexical analyzer generator

® Finite automata

® Design of lexical analyzer generator

Theroleoflexicalanalyzer

token
Source

program
getNextToken

Tosemantic
analysis

1. Simplicity of design
>. Improving compiler efficiency

5. Enhancing compiler portability

Tokens, PatternsandLexemes ™

® A token is a pair a token name and an optional
token value

® A pattern is a description of the form that the
lexemes of a token may take

® A lexeme is a sequence of characters in the
source program that matches the pattern for a
token

W,/
¢\:t'-r_,

Y

NRCM
YOUT TOOtS 10 SUCCESS...
Token Informaldescription Samplelexemes
if Charactersi,f if
else Characterse,l,s.e else
COInpal'iSOIl < or>or <=0r>=0r=—=o0r !: <=9!:
id Letterfollowedbyletteranddigits pi,score,D2

number Anynumeric constant

literal Anythingbut“sorroundedby*

printf(*“total=%d\n”,score);

3.14159,0,6.02¢23

“coredumped”

AEtrik utesfortokn

O E=M*(C**2
® <id,pointertosymboltableentryforE>
® <assign-op>
® <id,pointertosymboltableentryforM>
® <mult-op>
® <id,pointertosymboltableentryforC>
® <exp-op>
® <number,integervalue2>

Lexicalerrors

® Someerrorsareoutofpoweroflexicalanalyzerto
recognize:

® fi(a==f(x))...
® Howeveritmaybeabletorecognizeerrorslike:
® d=2r

® Sucherrorsarerecognizedwhennopatternfortokens
matches acharactersequence

W,/
¢\:t'-r_,

_Y
NRCM

Erfor recovery

® Panic mode:successive characters a reignoreduntilwe
reach to a well formed token

® Delete one character from the remaining input

® Insert a missing character into there main ing input
® Replace a character by another character

® Transpose two adjacent characters

YOUur roots 1o SICCess...,

LY
. \:t'-;

_Y
NRCM

Input buffering

® Sometimes lexical analyzer need to look ahead some
symbols to decide about the token toreturn

® In C language: we need to look after-,=or<todecide
what token to return

® In Fortran:DO5l=1.25

® We need to introduce at wo buffers cheme to
handle large look-aheads safely

E 1= M* C**2 eof

YOUur roots 1o SICCess...,

e
NRCM

YOUur roots 1o SICCess...,

Sentinels

E o= 1_/Ie:of>x< >X<>X<260f eof]

Switch(*forward++){
Case of:
if(forwardisatendoffirstbuffer){ reload
second buffer;
forward=beginningofsecondbuffer;

}

Elseif {forward is at end of secondbuffer){
reload first buffer;\
forward=beginning offirst buffer;

}

else/*eof within a buffermarks the end of input*/
terminate lexical analysis;

break;
cases for the other characters;

cification of tokens

® In theory of compilation regular expressions are
used to formalize the specification of tokens

® Regular expressions are means for specifying
regular languages

® Example:
o Letter_(letter_|digit)*

® Each regular expression is a pattern speciftying
the form of strings

W,/
¢\:t'-_,

.

YOur roots Lo SIcCess

Régular expressions

e ¢is a regular expression,L(¢)={¢}

®Ifaisasymbolin 2 the naisa regular expression,L(a)
={a}

® (r)|(s)is a regular expression denoting the language
L(r) U L(s)

® (r)(s)is a regular expression denoting the
language L(r)L(s)

® (r)*is a regular expression denoting(Lor))*

® (r)is a regular expression dentingL(r)

—

Réegu ardefinitions

di->n

d2->r2

dn->rn

® Example:
letter_->A|B|...|Z|a|b|...|Z|_ digit ->
o|1]..]|9

id ->letter_(letter_|digit)*

Extensions

® One or more instances:(r)+

® Zero of one instances:r?
® Character classes:|[abc]

® Example:
® letter ->[A-Za-z_|]
o digit ->[o0-9]
®id ->letter_(letter|digit)*

Récognition of tokens

® Starting point is the language grammar to
understand the tokens:

stmt->if expr then stmt
|lif expr then stmt else stmt
E

expr->term relop term
|term

term ->id

|Inumber

R&cognition of tokens(cont.)

® The next step is to formalize the patterns:
digit ->[0-9]

Digits ->digit+
number->digit(.digits)?(E[+-]?Digit)?
letter->[A-Za-z_|

id ->letter(letter|digit)*
If ->if

Then ->then

Else ->else

Relop ->< |>|<=|>=| =|<>

® We also need to handle whitespaces:

ws->(blank|tab|newline)+

YOUur roots 1o SICCess...,

Your roots

Transition diagrams

® Transition diagram for relop

start @ < @ O turn (relop, LE)
» return (relo
./ = g
@ return (relop, NE)

; __other Q return (relop, LT)
return (relop, EQ)
4.@ = O return (relop, GE)

e other
ComputerSme eturn (relop, GT)

Engineering

e
NRCM

YOur roots Lo SICCess.

Transition diagrasont.

® Transition diagram for reserved words and identifiers

Iett%L or digit

| *
,@ letter =® SLiCl ;@ return (getToken(), installlD())

Transition diagrasont.

® Transition diagram for unsigned numbers

digit digit

digit

@

Transition diagrasont.

® Transition diagram for whitespace

delim

start . delim ﬂther*

e
NRGM

Your roots 1o SWCCess...,

agram-based lexical
analyzer

TOKENgetRelop()
{
TOKENTretToken=new(RELOP)
while(1){ /*repeatcharacterprocessinguntila
returnorfailureoccurs*/
switch(state){

caseo:c=nextchar();
if(c=='<")state=1;
else if (c=='=")state=5;
else if (c==">")state=6;
else fail();/*lexemeisnotarelop*/ break;

caseil....

case8:retract();
retToken.attribute=GT;
return(retToken);

e
NRCM

' roots U0 SICCEess...

Lexical Analyzer Generator-Léx

LexSourceprogram

. lex.yy.c
I -
lex.yy.c . a.out
Input stream = Sequence
- =

Structure of Lex rra ms

declarations

%%

Translation rules Pattern {Action}
%%

Auxiliary

functions

E

at

/* ¢ __,ﬂ'-’-’

itions of manifest constants

LT,LE, EQ, NE, GT,GE,
IF, THEN,ELSE,ID,NUMBER,RELOP*/

%}

/*regular definitions

delim
WS
letter
digit
id

number

%%
{ws}
if
then
else
{id}

{number}

[\t\n]

{delim}+

[A-Za-z]

[0-9]

{letter}({letter}| {digit})*
{digit}+(\.{digit}+) ?(E[+-] ?{digit}+)?

{/*no action and no return*/}

{return(IF);}

{return(THEN);}

{return(ELSE);}

{yylval=(int)install ID();return(ID);}
{yylval=(int)install Num();return(NUMBER);}

LY,
¢|:¢'5;

Y

v NRCM

Int install ID(){/*funtiont o your reots te success...
lexeme, whose first character is
pointed to by yy text, and whose
length is yy leng, into the symbol
tableand return apointer thereto

o

Int install Num() { /* similar to install
ID, but puts numerical constants
into a separatetable*/

}

e
NRCM

Finite Automata _

® Regular expressions=specification

® Finite automata=implementation

® Afinite automata consistsof
® An input alphabet X
® A set of states S
® A starts taten
® A set of accepting states FCS
® A set of transitions state—»inputgtate

YOUur roots 1o SICCess...,

-::::-:.
k.
NRCM
Finite Automata -
® Transition
Sl—)aSZ
Ols

read Instates,oninput“a’gotostates,

o -*/.a"-

@ It no transition possible=>reject

® A state

* The start state

+ An accepting state

accepting state=>accept,othev

() — (

V=1

()

_
-

W,
sf‘:‘?

« A transition Q/\@

ASimple Example

® A finite automaton that accepts only1”

1

=

®A finite automaton accepts a string if we can
follow transitions labeled with the characters in
the string from the start to some accepting state

- A
. NRCM
Another Simple Example =

A finite automaton accepting any number ofi’s
Followed by a singleo

Alphabet:{o,1}

— O

Checkthat"1110”isacceptedbut®no...”is not

A%nother Example '

® Alphabet{o,1}
® What language does this recognize?

NRCM

uuuuu roots Lo SUCCess...

AAd Another Example

® Alphabet still{o,1 }

® The operation of the automaton is not
completely defined by the input

® Oninput“11"theautomatoncouldbeineitherstate

E;&on Moves =

® Another kind of transition:e-moves

g
A B

- Machine can mo@from stateA to state B

without reading input

D .
Nendeterministic Automata

® Deterministic Finite Automata(DFA)

® One transition per input per state

® Noes-moves
® Non deterministic Finite Automata(NFA)

® Can have multiple transitions for one input in a
given state

® Can havee-moves
® Finite automata have finite memory

® Need only to encode the current state

e
NRCM

Execution of Finite Automatad
® A DFA can take only one path through the state graph

® Completely determined by input

® NFAs can choose

® Whether to makee-moves
® Which of multiple transitions for a single input to take

ur roots 1o sUCccess...

N
Acceptance of NFAs
® An NFA can get into multiple states
1
1

-+ Input: QO 1

NFAvs.DFA(1) -

©® NFAs and DFAs recognize the same set of
languages (regular languages)

® DFA sare easier to implement
® There are no choices to consider

W,/
¢\:t'-r_,

M na

® For a given language the NFA can be simpler than the
DFA

= %/\O/\@
1 0 0

DFA 1)

+ DFA can be exponen‘nally larger than NFA

N,/
N W
AT {44

Regular Expressions to Finite . o

Automata
® High-level sketch

NFA
Regular /
expressions DF
Le.x.ical | Table-driven J
Specification Implementation of

DFA

Régular Expressions tol

® For each kind of rexp,defineanNFA
® Notation :NFA for rexpA

- Fore
€
+ For input a - O

\

A

@ For AB

.ForAIQ e o
4@\@

~ 0%

X
N

Regular Expressions to NFA(L =
® For A*

e

R,

NFA to DFA.The Trick

® Simulate the NFA
® Each state of resulting DFA
=anon-empty subset of states of theNFA

©® Start state

=the set of NFA states reachable throughe-movesfrom
NFA start state

® Add a transitionS—aS’toDFAIff

® S’is the set of NFA states reachable from the states in S
After seeing the inputa

e consideringe-moves as well

ABCDHI 0

EJGABCDHI | Q

Engineering

X=*p
LDRy,p //R1=p
LDR2,0(R1) //R2=

contents(o+contents(R1))

STx,R2 //x=R2

=]

5

& z
(s

- !
=

i L)
A

=

m

wm

i.".

conditional-jump three-address instruction

If x<y goto L

SUBR1,R1,R2 BLTZ R, M

//R1=x
//E
//RiI=Ri1-R2

/ [ifRi<ojumptoM

YOUr ro

costs associated with the addressing modes

oLD RO,RI OoLD RO,M

LD Rl,*lOO(RZ) CcoSt=1

cost=2

cost=3

resses in the Target Code

® A statically determined area Code

® A statically determined data area Static
® A dynamically managed area Heap

® A dynamically managed area Stack

Procedure calls and returns

® Call callee
® Return

® Halt

® action

e
NRCM

YOUur roots 1o SICCess...,

Target program for a sample call and return

actiong
call p
actionsg
halt

actions
return

J// code for ¢

// code for p

100:
120:
132:
140:
160:

200:
220:

S00:
304:

364:
J68:

ACTION,

ST 364, #140
BR 200
ACTION,

HALT

ACTION;
BR *364

Engineering

// code for ¢

// code for action;

// save return address 140 in location 364
// call p

// return to operating system

// code for p

// return to address saved in location 364
// 300-363 hold activation record for ¢

J/ return address

// local data for ¢

// 364-451 hold activation record for p

// return address
// local data for p

Stack Allocation

LD 8P, #stackStart // initialize the stack
code for the first procedure
HALT J// terminate execution
ADD SP, SP, #caller.recordSize // increment stack pe
BT, (8P, #have t 16 Brarch S50 RSP 8dGRE*
BR callee.codedrea // return to caller
Return to caller in caller:
In

Callee:

BR*0(SP)
S%%e%&:ig@@

rrecordsize

action;
call q
actions
halt

actiong
return

actiony
call p
actions
call g
actiong
call g
return

// code for m

180: HALT
[/ code for p
200: ACTIONs
220: BR *0(SP)
/{ code for g
300: ACTION,
336: BR 200
344: SUB 5P, SP, #gsize
352: ACTION;
372: ADD SFP, SP, #gsize
380: BR *SP, #396
388: BR 300
396: SUB SP, SP, #gsize
404: ACTION;
424: ADD SP, SP, #gsize
432: ST *SP, #440
440: BR 300
448: SUB SP, SP, #gsize
456: BR *0(SP)
CompyterScienceand

100: LD 8P, #800

108: ACTION;

128: ADD SP, SP, #msize
136: ST =*SP, #1562

144: BR 300

152: SUB SP, SP, #msize

160: ACTION;2

Engineering

// callp

// code for m

// initialize the stack
// code for actiom
// call sequence begins
// push return address
// call g

// restore SP

// code for p
// return

// code for q

%
h
-

Y¥Oour ro

// contains a conditional jum

turn address

// push return address

// call q

// push return address

// call g

// return

// stack starts here

Basic blocks and flow graphs

® Partition the intermediate code into basic blocks

® The flow of control can only enter the basic block
through the first instruction in the block.That is,there
are no jumps into the middle of the block.

® Control will leave the block without halting or
branching,except possibly at the last instruction in

the block.
® The basic blocks become the nodes of a flowgraph

rules for finding leaders

® The first three-address instruction in the

intermediate code is a leader.

® Any instruction that is the target of a conditional
or unconditional jump is a leader.

® Any instruction that immediately follows a
conditional o run conditional jump is a leader.

anldtity matrix

for i from 1 to 10 do
for j from 1 to 10 do
ali, 7] = 0.0;
for i from 1 to 10 do

alt, i] = 1.0;

()
SN EEEESISRR SRS

= e = e e
jﬂm#%m;—t

t3 - 88
aft4] = 0.0

J=.3 i1

if j <= 10 goto (3)
i=1i+1

if i <= 10 goto (2)

tb=1i~-1

t6 = B8 * tb

alté] = 1.0
i=3i+1

if i <= 10 goto (13)

B,

By

By

By

Bs

Y
i=1
y
Fo=1
t1 = 10 * i
ta =t + j
ty = 8 * &
ty = 53 - 88
i e
if j <= 10 goto B:
Y
i=1i+1
if i <= 10 goto B>

Y

ts=1-1

tg = 88 % tp
alte] = 1.0
i=41i+1

if i <= 10 goto Bs

Y

Ed

Y2
Y
NRCM

FOUr reots Lo SUCCess...

liveness andnext-use information

® We wish to determine for each three address
statement x=y+z what the next uses of x,yandzare.

® Algorithm:

® Attach to statement the information currently found in
the symbol table regarding then extuse and livenessof
X, Y,and z.

® In the symbol table,set x to"not live"and"non extuse.”

® In the symbol table,set y and zto"live"and the next
uses of yand z to i.

D
blocks

® There is a node in the DAG for each of the initial
values of the variables appearing in the basic

block.

® There is a node N associated with each statements
within the block.The children of N are those
nodes corresponding to statements that are the
last definitions,prior to s,of the operands used
bys.

® Node N is labeled by the operator applied at s,and
also attached to N is the list of variables for which it
is the last definition within the block.

® Certain nodes are designated output nodes.These
are the nodes whose variables are live on exit from

the block.

—

Code improving transformations

® We can eliminate local common subexpressions,that
is,instructions that compute a value that has
already been computed.

®We can eliminate deadcode,thatis,instructions that
compute a value that is never used.

® We can reorder statements that do not depend on
one another;such reordering may reduce the timea
temporary value needs to be preserved in a register.

® We can apply algebraic law store or deroper and s
of three-address instructions,and sometimes
thereby simplify t he computation.

DAG for basicblock

AN oW
|

P TR O
+ 1

= T S = T

by

ComputerScienceand
Engineering

DAG for basicblock

a=>b + c; H
b=5b -4

bl 20OEoPoR
e =pb + ¢

bp cn dqg

ComputerScienceand
Engineering

array accesses in a DAG

® An assignment from an array,like x=a|i],isrepresentedby
creating anodewithoperator=[]andtwochildrenrepresenting
theinitialvalueof thearray,aointhiscase,andtheindexi.
Variablex becomesalabelof thisnewnode.

® Anassignmenttoanarray,likealj]|=y,isrepresentedbyanew
nodewithoperator||=andthreechildrenrepresentingao,jand
y.Thereisnovariablelabelingthisnode.Whatisdifferentisthat
thecreationof thisnodekillsallcurrentlyconstructednodes
whosevaluedependsonao.Anodethathasbeenkilledcannot
receiveanymorelabels;thatis, itcannotbecomeacommon
subexpression.

ComputerScienceand
Engineering

—

® TheorderofinstructionsmustrespecttheorderofnodesintheDAG.
Thatis,wecannotcomputeanode'svalueuntilwehavecomputed a value
foreach of itschildren.

® Assignmentstoanarraymustfollowallpreviousassignmentsto,or
evaluationsfrom,thesamearray,accordingtotheorderofthese
instructions inthe original basic block.

® Evaluationsofarrayelementsmustfollowanyprevious(accordingto
theoriginalblock)assignmentstothesamearray.Theonly
permutationallowedisthattwoevaluationsfromthesamearraymay
bedoneineitherorder,aslongasneithercrossesoveranassignmentto that
array.

® Anyuseofavariablemustfollowallprevious(accordingtotheoriginal
block)procedurecallsorindirectassignmentsthroughapointer.

® Anyprocedurecallorindirectassignmentthroughapointermust
followallprevious(accordingtotheoriginalblock)evaluationsofany
variable.

principal uses of registers

® Inmostmachinearchitectures, someorallof the
operandsofanoperationmustbeinregistersinorder to
perform the operation.

® Registersmakegoodtemporaries-placestoholdthe
resultofasubexpressionwhilealargerexpressionis
beingevaluated,ormoregenerally,aplacetoholda
variablethatisusedonlywithinasinglebasicblock.

® Registersareoftenusedtohelpwithrun-timestorage
management,forexample,tomanagetherun-time
stack,includingthemaintenanceofstackpointersand
possiblythetopelementsof thestackitself.

D

® Foreachavailableregister,aregisterdescriptorkeepstrackof the
variablenameswhosecurrentvalueisinthatregister.Sincewe
shalluseonlythoseregistersthatareavailableforlocaluse
withinabasicblock,weassumethatinitially,allregister
descriptorsareempty.Asthecodegenerationprogresses,each
registerwill hold thevalueof zeroormorenames.

® Foreachprogramvariable,anaddressdescriptorkeepstrackof
thelocationorlocationswherethecurrentvalueof thatvariable
canbefound.Thelocationmightbearegister,amemory
address,astacklocation,orsomesetof morethanoneof these.

Theinformationcanbestoredinthesymbol-tableentryforthat
variable name.

scriptors for datastructure

Vit
QY
NRCM

¥OUur roots Lo suUccess

Machine Instructions for Operations

® UsegetReg(x=y+z)toselectregistersforx,y,andz. Call
these R,, Ryand R;.

® IfyisnotinR,(accordingtotheregisterdescriptorfor
R,),thenissueaninstructionLD R,,y',wherey'isone
ofthememorylocationsfory(according tothe address
descriptor fory).

® Similarly,ifzisnotinR,,issueandinstructionLDR,,
z' wherez' isalocationfor x .

®IssuetheinstructionADDR,,Ry,R;.

® FortheinstructionLDR,x
® ChangetheregisterdescriptorforregisterRsoitholdsonlyx.
® ChangetheaddressdescriptorforxbyaddingregisterRasan
additional location.
® FortheinstructionSTx,R,changetheaddressdescriptorforxto
includeitsownmemorylocation.
® ForanoperationsuchasADDR,R,R,implementingathree-
addressinstructionx=y-+x

® ChangetheregisterdescriptorforR,sothatitholdsonlyx.

® ChangetheaddressdescriptorforxsothatitsonlylocationisR,.

Notethatthememorylocationforxisnot nowintheaddress
descriptor for x.

® RemoveR,fromtheaddressdescriptorofanyvariableotherthanx.

® Whenweprocessacopystatementx=y,aftergeneratingtheload
foryintoregisterR,,ifneeded,andaftermanagingdescriptorsas
forall load statements(perrule I):

o AddxtotheregisterdescriptorforR,
® Changetheaddressdeseriptor foraxsethatitsonlylocationisR,.

a=4d
LD R2, d

d=v +u
ADD R1, R3, Rl

axit
ST a, R2
ST 4, R1

ALy na3, HL, K1

Tionsgenerated and the
register and address descriptors

-
'—-—-——.&“.I..—___

e p i ——

Rl R2 R3 a b c d t u v
u |ad| v R2 | b c |d,R2 R1
d [a v] [R2]® [c [R 1
d {a | v a,R2| b | ¢ |d,R1 |

BE (a [b [c [d [E2]R1 [R3

Rufes for picking regist R, fory

O Ifyiscurrentlyinaregister,pickaregisteralready
containingyasR,.Donotissueamachineinstruction
toloadthisregister,asnoneisneeded.

@ Ifyisnotinaregister,butthereisaregisterthatis
currentlyempty,pickonesuchregisterasR,.

® Thedifficultcaseoccurswhenyisnotinaregister,and
thereisnoregisterthatiscurrentlyempty.Weneedto
pickoneoftheallowableregistersanyway,andwe need
tomakeitsafetoreuse.

Pa&ssibilities for vI of R

® IftheaddressdescriptorforvsaysthatvissomewherebesidesR, then
we are OK.

® Ifvisx,thevaluebeingcomputedbyinstructionl,andxisnot
alsooneof theotheroperandsof instructionl (zinthis
example),thenweareOK.Thereasonisthatinthiscase,we
knowthisvalueof xisneveragaingoingtobeused,soweare free to
ignore it.

® Otherwise,ifvisnotused later(thatis,aftertheinstructionl,
therearenofurtherusesofv,andifvisliveonexitfromthe
block,thenvisrecomputedwithintheblock),thenweareOK.

® IfwearenotOKbyoneofthefirsttwocases,thenweneedto
generatethestoreinstructionSTv,Rtoplaceacopyofvinits
ownmemorylocation.Thisoperationiscalledaspill.

Setection of the rgter RX

1. Sinceanewvalueofxisbeingcomputed,aregister
thatholdsonlyxisalwaysanacceptablechoicefor Rx.

>. Ifyisnotusedafterinstructionl,andRyholdsonlyy
afterbeing loaded, RycanalsobeusedasRx.A
similaroptionholdsregarding zand Rx.

Pa&ssibilities for vI of R

® IftheaddressdescriptorforvsaysthatvissomewherebesidesR, then
we are OK.

® Ifvisx,thevaluebeingcomputedbyinstructionl,andxisnot
alsooneof theotheroperandsof instructionl (zinthis
example),thenweareOK.Thereasonisthatinthiscase,we
knowthisvalueof xisneveragaingoingtobeused,soweare free to
ignore it.

® Otherwise,ifvisnotused later(thatis,aftertheinstructionl,
therearenofurtherusesofv,andifvisliveonexitfromthe
block,thenvisrecomputedwithintheblock),thenweareOK.

® IfwearenotOKbyoneofthefirsttwocases,thenweneedto
generatethestoreinstructionSTv,Rtoplaceacopyofvinits
ownmemorylocation.Thisoperationiscalledaspill.

Characteristic of peephole optimizations

® Redundant-instructionelimination
® Flow-of-controloptimizations
® Algebraicsimplifications

® Useofmachineidioms

R!undant-instruction elimination

®LDa,Ro
ST Ro, a

®ifdebug==1gotolLa

gotoL.2
LI:printdebugginginformation
Ea:

FIow-of-control optimizations
gotoL1 ifa<bgotol1
Ll:gotoL2 Ll:gotoL2
Canbereplacedby: Canbereplacedby: if
goto L2 a<b goto L2

Ll:gotoL2 Ll:gotoL2

Global register allocation

® Previouslyexplainedalgorithmdoeslocal(blockbased)
registerallocation

® Thisresultedthatalllivevariablesbestoredattheendof
block

® Tosavesomeofthesestoresandtheircorrespondingloads,
wemightarrangetoassignregisterstofrequentlyused
variablesandkeeptheseregistersconsistentacrossblock
boundaries (globally)

® Someoptionsare:
® Keepvaluesofvariablesusedinloopsinsideregisters
® Usegraphcoloringapproachformoregloballyallocation

USage counts

® Fortheloopswecanapproximatethesavingby
register allocation as:

® Sumoverallblocks(B)inaloop(L)

® Foreachusesofxbeforeanydefinitionintheblockwe
addoneunitof saving

® IfxisliveonexitfromBandisassignedavalueinB,
thenweass 2 unitsof saving

1111111111111111111111

FlIéwgraph of an inrloop

1

LD Ri, b
LD R2, d

Y

LD R3, c
ADD RO, R1, R3
SUB R2, R2, R1

W,
S

YOUr roots Lo sUCCess...

LD R3, £ By
ADD R3, RO, R3
ST e, R3
LD R3, f
ST £, R3 2 LD R3, ¢ Bs
' SUB R3, RO, R3
ST a, R3
W RS,.L B ST b, R1
| ADD R1, R2, B3 | ° ST a, R2
Engi erng—

ST b, Ri
ST d, R2

R
GrFaph coloring

® Twopassesareused

® Target-machineinstructionsareselectedasthough
therearean infinitenumberof symbolicregisters

® Assignphysicalregisterstosymbolicones
e Createaregister-interferencegraph

e Nodesaresymbolicregistersandedgesconnectstwonodesif
oneisliveatapointwheretheotherisdefined.

e Forexampleinthepreviousexampleanedgeconnectsaandd
inthegraph
e Useagraphcoloringalgorithmtoassignregisters.

1) R + s { LD HRi, #a }
2) R 4= M, {1 Ri, z}
3) M + = { 8T =z, Ri}
7
Ma i
4) M + = { 8T =+Ri, Rj }
e
mld R;
B;
3) R + inld { LD BRi, a(Rj) }
+
TN
Ca £
6} R o+ + { ADD Ri, Ri. a(Rj) }
LN
i ind
|
+
7\
o R;
7) R+ + { ADD Ri, Ri, Rj }
ComputerScigpéeang
s FHYREEY { e mi
2N
R; (8}

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)

FIIIZIID
bbb b ddbd bl

oy

S

Ca

M,

= M, R;

= ind R,, Rj

ind + ¢, R,;

+ R; ind + ¢, R;
+ H; B;

-+ Rg, C1

Sp

i

—

Syr tax-directed translation scheme

{LD Ri, #a}

{1LD Ri, z}

{ST =z, Ri}

{ ST =*Ri, Ry }

{LD Ri, a(Rj)}

{ ADD Ri, Ri, a(Rj) }
{ ADD Ri, Ri, Rj }

{ INC Ri }

—

E :
— Ee

® The!

ov Numbers

® Labelanyleaf.

abelofaninteriornodewithonechildisthelabel of

its child.

® The!

abelofaninteriornodewithtwochildrenis

® Thelargerofthelabelsof itschildren,ifthoselabelsare
different.

® Oneplusthelabelofitschildrenifthelabelsarethe
same.

N,/
LN DY,
"ﬂ.l{,

-

NRCM

<

® Recursivelygeneratecodefortherightchild,usingbaseb+1. Theresultof
therightchildappearsinregisterRy,.

® Recursivelygeneratecodefortheleftchild,using baseb;theresultappears in
b+k-1
® GeneratetheinstructionOPRy,, Ry, Ry, WhereOPistheappropriate
operationfortheinteriornodeinquestion.

® Supposewehaveaninteriornodewithlabel kandchildrenwithunequal

labels. Thenoneofthechildren,whichwe'llcallthe"big"child,haslabelk
,andtheotherchild,the"little"child,hassomelabelm<k.Dothe

followingtogeneratecodeforthisinteriornode,usingbaseb:
® Recursivelygeneratecodeforthebigchild,using baseb;theresultappears in
register Ry, .

® Recursivelygeneratecodeforthesmallchild,usingbaseb;theresult
appearsinregisterRy,m..Notethatsincem<k,neitherRy, . norany
higher-numbered register is used.

® GeneratetheinstructionOPRy.1, Rpim-1,Rpsk0rtheinstructionOPRy 1, Rp.ke
I, Rbsms,depending onwhetherthebigchild istherightorleftchild,
respectively.

® Foraleafrepresentingoperandx,ifthebaseisbgeneratetheinstruction LD
Rb’ X.

YOUr roots Lo sUCCess...

Optimal three-register code

LD R3, d
LD R2, c
ADD R3, R2, R3
LD R2, e
MUL R3, R2, R3
LD BR2, b
LD Ri, a
SUB R2, R1, R2
ADD R3, R2, R3

Insuff|C|ent Supply of Reglsters

® NodeN hasatleastonechildwithlabelrorgreater.Pickthelarger
child(oreitheriftheirlabelsarethesame)tobethe"big"childandlet
theotherchild bethe "little" child.

® Recursivelygeneratecodeforthebigchild,usingbaseb=1.Theresult of
thisevaluationwillappear inregisterR,

® GeneratethemachineinstructionSTt,R,,wheret,isatemporary
variableusedfortemporaryresultsusedtohelpevaluatenodeswith

label k.

® Generatecodeforthelittlechildasfollows.Ifthelittlechildhaslabelr
orgreater,pickbaseb=1.If thelabelof thelittlechildisj<r,thenpick b=r-

j.Thenrecursivelyapplythisalgorithmtothelittlechild;theresult appears
in R,.
® GeneratetheinstructionLDR,-1,t;.

® IfthebigchildistherightchildofN,thengeneratetheinstructionOP

RRR Iftheblgchlld1stheleftch11d generateOPR R R.
; ComputerScienceand A

Engineering

r

LD R2, d

LD Ri, c

ADD R2, R1, R2
LD Ri, e

MUL R2, R1, R2
ST. t3, R2

LD R2, b

LD R1l, a

SUB R2, R1, R2
LD R1, t3

ADD, R2.6 R R1

Engineering

==y

Dyhamic Programming Algorithm

® Computebottom-upforeachnodenoftheexpressiontreeTan
arrayCofcosts, inwhichtheithcomponentC[i]istheoptimal
costofcomputingthesubtreeS rootedatnintoaregister,

assumingiregistersareavailableforthecomlp<utiatSormjfor

® TraverseT,usingthecostvectorstodeterminewhichsubtreesof
Tmust becomputed intomemory.

® Traverseeachtreeusingthecostvectorsandassociated
instructionstogeneratethefinaltargetcode. Thecodeforthe
subtreescomputedintomemorylocationsisgeneratedfirst.

® Computetheleftsubtreewithtworegistersavailableinto
registerRo,computetherightsubtreewithoneregister
availableintoregisterRi,andusetheinstructionADDRo,
Ro,Ritocomputetheroot.Thissequencehascost 2+5+1=8.

® Computetherightsubtreewithtworegistersavailableinto R 1
,computetheleftsubtreewithoneregisteravailable
intoRo,andusetheinstruction ADD Ro,Ro, R1.This
sequence hascost 4+2+1=7.

® Computetherightsubtreeintomemorylocation M,
computetheleftsubtreewithtworegistersavailableinto
registerRO,anduseDDRo,Ro,M.This

sequencehascosts+2+1:8.cering

—

UNIT-I1II

Syntax-Directed Translation

Ottline

® Syntax Directed Definitions

® Evaluation Orders of SDD'’s

® Applications of Syntax Directed Translation
® Syntax Directed Translation Schemes

Introduction

® Wecanassociateinformationwitha language
constructbyattachingattributestothegrammar
symbols.

® Asyntaxdirecteddefinitionspecifiesthevaluesof
attributesbyassociating semanticruleswith the
grammar productions.

Production Semantic Rule

E->E1+T E.code=El.code|/T.code|’+’

* Wemayalternativelyinsertthesemanticactionsinsidethegrammar
Ej

ax Directed Definitions

® ASDDisacontextfreegrammarwithattributesand
rules

® Attributesareassociatedwithgrammarsymbolsand
rules with productions

® Attributesmaybeofmanykinds:numbers,types,
table references, strings, etc.

® Synthesizedattributes

® AsynthesizedattributeatnodeNisdefinedonlyin
termsofattributevaluesofchildrenofNandatNit

® Inheritedattributes

® AninheritedattributeatnodeNisdefinedonlyinterms
ofattributevaluesatN’sparent,NitselfandN’ssiblings

2
.
NRCM

Example of S-attributed SDD =~

~—1) L->En
2) E>E1+T
3) E>T

4) T->T1*F
5) T->F

6) F->(E)
7) F->digit

Semantic Rules L.val = E.val

._:,-V C o A
= T.val=T1.val*F.val T.val = F.val
F.val=E.val

F.val=digit.lexval

SSSSSSSSSSSSSSSSSSSSS

Example of mixed attributes

Production
) T-FT 2) T>*FT"

3) T'->¢ SemanticRules

4 F->digi T’.1nh=F.val
T.val=T".syn
T’ 1.1inh=T".1nh*F.val
T .syn =T 1.syn
T’.syn =T’ .inh
F.val=F.val=digit.lexval

uation orders for SDD’s

® Adependencygraphisusedtodeterminetheorderof
computation of attributes

® Dependencygraph

® Foreachparsetreenode,theparsetreehasanodefor
eachattributeassociatedwiththatnode

® Ifasemanticruledefinesthevalueofsynthesized
attributeA.bintermsofthevalueofX.cthenthe
dependencygraphhasanedgefromX.ctoA.b

® Ifasemanticruledefinesthevalueofinheritedattribute
B.cintermsofthevalueofX.athenthedependency
graphhasanedge fromX.ctoB.c

utes

® IfdependencygraphhasanedgefromMtoNthenM
mustbeevaluatedbeforetheattributeof N

® Thustheonlyallowableordersofevaluationarethose
sequenceofnodesN1,N2,....Nksuchthatifthereisan
edgefrom Ni toNj then i<j

® Suchanorderingiscalledatopologicalsortofagraph
® Example!

sAttributed definitions

® AnSDDisS-attributedifeveryattributeissynthesized

® Wecanhaveapost-ordertraversalofparse-treeto
evaluateattributesin S-attributeddefinitions

postorder(N){
for(eachchildCof N,fromtheleft)postorder(C);

evaluatetheattributesassociatedwithnodeN;

}

® S-Attributeddefinitionscan be implementedduring
bottom-upparsingwithouttheneedtoexplicitlycreate
parse trees

ributeaje?initions

® ASDDisL-Attributediftheedgesindependencygraph
goesfromLefttoRightbutnotfromRighttoLetft.

® Moreprecisely,eachattributemustbeeither
® Synthesized

® Inherited,butifthereusaproductionA->XiX2...Xnandthere
isaninheritedattributeXi.acomputed byaruleassociated
withthisproduction,thentherulemayonlyuse:
e InheritedattributesassociatedwiththeheadA

e Fitherinheritedorsynthesizedattributesassociatedwiththe
occurrencesofsymbolsX1,X2,...,Xi-1locatedtotheleftofXi

e Inheritedorsynthesizedattributesassociatedwiththisoccurrence of
Xiitself, butinsuchawaythatthereisnocycleinthegraph

slation
® Typecheckingandintermediatecodegeneration
(chapter6)

® Constructionofsyntaxtrees

® Leafnodes: Leaf(op,val)

® Interiornode:Node(op,c1,c2,...,ck)

® Example:
Production SemanticRules
1) E->E1+T E.node=new node(‘+’, E1.node,T.node)
2) E->EI-T E.node=newnode(‘-’,E1.node,T.node)
3) E->T E.node = T.node
4) T->(E) T.node=E.node
5) T->id T.node=newlLeaf(id,id.entry)
6) T->num Computd.fiodes=newLeaf(num,num.val)

Engineering

Inition

Production

1)
2)
3)
4)
5)

6)
7)

E->TE’

E=+FEl

E’->-TEI’

E’ ->€e

SemanticRules
E.node=E’.syn
E’.inh=T .node
E1’.inh=newnode(‘+’,E’.inh,T.node)
E’.syn=E1’.syn
E1’.inh=newnode(‘+’,E’.inh,T.node)
E’.syn=E1’.syn
E’.syn= E’.inh

+

T.node=E.node

T.node=newLeaf(id,id.entry)
T.node=newLeaf(num,num.val)

scrnemes

® AnSDTisaContextFreegrammarwithprogramfragments
embedded within production bodies

® Thoseprogramfragmentsarecalledsemanticactions
® Theycanappearatanypositionwithinproductionbody

® AnySDTcanbeimplementedbyfirstbuildingaparsetree and
thgnperformingt eactions inaleft-to-rightdepth first
order

® TypicallySDT’sareimplementedduringparsingwithout
building a parse tree

iX translation schemes

® SimplestSDDsarethosethatwecanparsethegrammar
bottom-upandtheSDDiss-attributed

® ForsuchcaseswecanconstructSDTwhereeachactionis
placedattheendoftheproductionandisexecutedalong
withthereductionof thebodytotheheadof that
production

® SDT’swithallactionsattherightendsoftheproduction
bodies arecalled postfix SDT’s

EXample of?c;;;fix SDT

1) L->En {print(E.val);}
2) E>E1+T {E.val=El.val+T.val;}
3) E->T {E.val=T.val;}
4y T>TI*F {T.val=Tl.val*F.val;}
5 Tk {T.val=F.val;}
6) F->(E) {F.val=E.val;}

7) F->digit {F.val=digit.lexval;}

o iXx SDT’s

® In a shift-reduce parser we can easily
implement semantic action using the parser
stack

® For each non terminal(or state) on the stack we
can associate a record holding its attributes

® Then in a reduction step we can execute the
semantic action at the end of a production to
evaluate the attribute(s)of then on-terminal at the
left side of the production

® And put the value on the stack in replace of
the right side of production

Example

L->En {print(stack[top-1].val);
top=top-1;}

E->EI+T E {stack[top-2].val=stack[top-2].val+stack.val;
top=top-2;}

2 F

T->T1*F {stack[top-2].val=stack[top-2].val+stack.val;
top=top-2;}

T->F

F->(E) {stack[top-2].val=stack[top-1].val

top=top-2;}

F->digit

SDT’s with actions inside —

productions

For a production B->X{a}Y
® If the parse 1s bottom-up then we

perform action “a’as soon as this
occurrence of X appears on the top

of the parser stack

® If the parser is top down we
perform “a” just before we

expand
Y 1y
: : 2)
Sometimes we cant do things 3)
as easily as explained above 4)

) 5
One example is when we are 6%

L->En
E->{print(‘+’);}E1+ T
E->T
T->{print(**’);} TI*F

T->F
F->(E)

parsing this SDT with@BGHtGmce"97) F->digit{print(digitlexval);}

gineering

SDT’s with actions inside - 4

productions (cont) .

Any SDT can be
implemented as follows E

1. Ignore the actions
and produce a parse
tree

print(*+7);

>. Examine each interior T F
Node N and add
actions
As new children at (print(4):

ko, print(4);}
the correct position R N digit

3. Perform a postorder {print(5);}

traversal and execute actions‘whe[{w their

! nodes Lo

| {print(3);}

are
visited di git

S

®We can convert an L-attributed SDD into an SDT
using following two rules:

® Embed the action that computes the inherited
attributes for an on terminal A immediately before that
occurrence of A. if several inherited attributes of A are
dpendent on one another in anacyclic fashion, order
them so that those needed first are computed first

® Place the action of a synthesized attribute for the head
Of a production at the end of the body of the production

ComputerScienceand
Engineering

Example

S->while(C) S1 Li=new();
L2=new();
S1.next=L1;
C.false=S.next;
C.true=L2;

S.code=label||L1||C.code||label||L2||S1.code

S->while({L 1=new();L2=new();C.false=S.next;C.true=L2;}
C) {Sl.next=L1;}
S1{S.code=label||L1||C.code||label||L2||S1.code;}

NRCM
1 1 s Scoince

Syntax Analyzer

Ottline
® Role of parser

® Context free grammars
® Top down parsing

® Bottom up parsing

® Parser generators

NRCM
The rOIe Of parser ¥our roots (o SUCCESS...
token
Source Parsetree Intermediate

program tation

> -

N

4

Uses ofgrammars

E->E+T|T
T->T*F|F
F->(E)| id

E->TFE’
E->+TE|€
T->FT’
T-> *FT’|€
F->(E)| id

_Y
NRCM

W,/
¢\:t'-r_,

Erfor handling

® Common programming errors

® Lexical errors
® Syntactic errors
® Semantic errors
® Lexical errors

® Error handler goals
® Report the presence of errors clearly and accurately

® Recover from each error quickly enough to
detect subsequent errors

® Add minimal over head to the processing of
correct progrms

YOUur roots 1o SICCess...,

Erfor-recover strategies

® Panic mode recovery

® Discard input symbol one at a time until one of
designated set of synchronization tokens is
found

® Phrase level recovery
® Replacing a prefix of remaining input by some string
That allows the parser to continue
® Error productions
® Augment the grammar with productions that
generate the erroneous constructs
® Global correction

® Choosing minimal sequence of changes to obtain
a globally least-cost correction

YOUur roots 1o SICCess...,

Context free grammars

® Terminals

©® Non
terminals

® Start symbol
® productions

e
NRCM

expression->expressiontterm
expression -> expression — term
expression -> term
term->term™*factor

term -> term / factor

term -> factor
factor->(expression)

factor->id

YOUur roots 1o SICCess...,

e
NRCM

Dérivations

® Productions are treatedasre writing rules to generate
a string

® Right most and left most derivations
® E->E+E|E*E|-E|(E)| id
® Derivations for-(id+id)
® E =>-E=> -(E)=>-(E+E)=>-(id+E)=>-(id+id)

YOUur roots 1o SICCess...,

P!se trees _

0 -(id+id)
® E =>-E=> -(E)=> -(E+E)=> -(id+E)=>-(id +id)

M R
Ambpiguity =

® For some strings there exist more than one parse tree

® Or more than one left most derivation
® Or more than one right most derivation
® Example:id+id*id

N /N,
/N /1N
| | | |

id id id id

E

i

Elfmination of abiuity

stmt — If expr then stmt gl
| If expr then stmt else stmt / ‘\\
if expr then gimt else stmi

| other = /|\\\

= if expr then stmt else Smt

il v il)

E2 52 53

strit mit

if expr then st if expr then smt else stmt

?/\\\ T INE

if expr then gyt else stmt if expr then syt

il G S

EZ2 3

e
NRCM

YOUur roots 1o SICCess...,

Elfmination of abiuity cont’)

® Idea:

® A statement appearing between a then and an else
Must be matched

stimt — matched_stmt
| open_stmt
matched_stmt —3 If expr then matched_stmt else matched_stmt
| other
open_stmt =3 |f axpr then stmt
| If expr then matched_stmt else open_stmi

LY
. \:t'-;,

_Y
NRCM

Elfmination of left recursion ~=

® A grammar is left recursive if it has a non-terminal
A such that there is a derivation A=>A &

® Top down parsing methods cant handle Ileft-
recursive grammars

® A simple rule for direct left recursion elimination:
® For arule like:

o A>Aca|B
® We may replace it with
e A>BA

o A->aAlle

e
NRCM

Left recursion elimination (c

® There are cases like following
® S->Aa|b
® A->Ac|Sd|e
® Left recursion elimination algorithm:
® ArrangethenonterminalsinsomeorderAi,Az,...,An.

® For(eachifromiton){
® For(eachjfromitoi-1){
e Replace each groduction of the form Ai->Ajy bg the production

Ont.)

Ai->81 7| 02 7| ..|0kry where Aj->81| 02| .. | «are all
current Aj productions
¢}

o Eliminate left recursion among the Ai-productions
o |

YOUur roots 1o SICCess...,

-

W,/
Q\gf%

£

Left factorin g

Left factoring is a grammar transformation that is useful
for producing a grammar suitable for predictive or top-
down parsing.
Consider following grammar:
® Stmt->if expr then stmt else stmt
o |lif expr then stmt
On seeing input if it is not clear for the parser
which production to use
We can easily perform left factoring:

®Ifwe have A->a B1| @ B2 Then were place it with
o A>aA
e A->fB1| 82

LeTt factoring(cont.)
® Algorithm

® For each non-terminal A, find the longest prefix «
common to two or more of its alternatives. If & <>€,
then replace all of A-productions A->a B1| a B 2|...

| @ Bn| v by
o A>aA'lr

o A'->f1| B2|..|Bn
® Example:
@ S->IEtS|iEtSeS|a
®E->b

Top-down parser

W,/
Q\:f%,

-

Dz
iry
S
el L)
o
=
4]
W
\'_.!'.

YOUT' roots |

A Top-down parser tries to create a parse tree from

the root towards the leaf canning input from
Left to right

[t can be also viewed as finding a left most
derivation for an input string

Example: id+id*id

E_>TE’ E Im E Im E Im E Im E Im E
E’->+TE’[€ T B= g, =% EF=T
T->FT’ /N /N /N /N
T"->*FT’|E EANVANVAN
F->(E)lid id e id ¢

e
NRGM

Récursive descent parsing

® Consists of a set of procedures, one for
each non terminal

® Execution begins with the procedure for start symbol

® A typical procedure for anon-terminal

voidA(){
chooseanA-production,A->X1X2..Xk for
(1=1to k) {
1f(Xiis anonterminal
callprocedureXi();
else if (Xi equals the current input symbol a)
advancetheinputtothenextsymbol;
else/*anerrorhasoccurred™®/

YOUur roots 1o SICCess...,

W
N
AT AA

-

_Y
NRCM

REcursive descentparsing(cofitj™

® General recursive descent may require back tracking

® The previous code needs to be modified to
allow back tracking

® In general form it cant choose an A-production easily.
® So we need to try all alternatives

@ If one failed the input pointer needs to be reset
and another alternative should be tried

® Recursive descent parsers cant be used for
left- recursive grammars

Example

S->cAd
A->ab|a Input: Cad

First and Follow

® First()is set of terminals that begins strings derived from
O If o =>¢ thenisalso in First(€)

® In predictive parsing when we haveA->« | B ,ifFirst(o)
and First(8) are disjoint sets then we can select
appropriate A-production by looking at then extin put

® Follow(A),for any non terminal A, is set of terminals a
that can appear immediately after A in some sentential
form

® Ifwe have S=>a Aa B forsome @ and 8 thena
is in Follow(A)

® If A can be the right most symbol in some sentential
form, then $ is in Follow(A)

Cor

puting First

® To compute First(X)for all grammar symbols X,
apply folloving rules until no more terminals or €
can be added to any First set:

1.

25

3.

[f X is a terminal then First(X)={X]}.

If X is a non terminal and X->Y1Y2..Yk is a
production for some k>=1,then place a in First(X) if
for some ia is in First(Yi) and € is in all of
First(Y1),...,First(Yi-1)that isY1.Yi-i=>¢.if €is in
First(Yj) for j=1,...,k then add € to First(X).

If X->¢ is a production then add € to First(X)

® Example!

Computing follow

®To compute First(A)for all non terminals A,
apply following rules until nothing can be added
to any follow set:

1. Place $ in Follow(S)where S is the start symbol

>. If there is a production A->aB /5 then everything
in First(3)except € is in Follow(B).

3. If there is a production A->B or a production

A->a B3 where First(8)contains €, then everything
In Follow (A)is inFollow(B)

® Example!

N,/
N
\i.h:

-

_Y
NRCM

LT)Grammars

® Predictiveparsersarethoserecursivedescentparsersneedingno
backtracking
® Grammarsforwhichwecancreatepredictiveparsersarecalled
LLG1)
® ThefirstLmeansscanninginputfromlefttoright
® ThesecondLmeansleftmostderivation
® Andistandsforusingoneinputsymbolforlookahead
® AgrammarGisLL(1)ifandonlyifwheneverA-> & | B aretwo
distinctproductionsofG,thefollowingconditionshold:
® Fornoterminalado @and 8 bothderivestringsbeginningwitha
® Atmostoneof & or 3 canderiveemptystring

® If @ =>¢ethen 8 doesnotderiveanystringbeginningwitha
terminalinFollow(A).

YOUur roots 1o SICCess...,

C
parsing table

® ForeachproductionA-> @ ingrammardothe
following:

1. ForeachterminalainFirst(& JaddA->inM|A,a]

>. If € isinFirst(&), thenforeachterminal bin
Follow(A)addA->etoM|[A,b].Ife isinFirst(&)and
sisinFollow(A),addA->etoM|[A,$]aswell
® [fafterperformingtheabove,thereisnoproduction in
M[A,a] thensetM[A,a] toerror

» F {Gid) 14,%).8}
—>TE :
E9_>_|_TE9|E T {(,ld} {+’)9$}
T>FT’ E {(;id} 0.}
T9_>*FT9|E E, {_}-’8} {)9$}
F->(E) |id T '{‘E} {+.),8}
N InputSymbol
terminal 1d T % () $
E E-TIE E->TE’
B’ E’->+TE E->¢ | BE’->€
T T>FD T->FT’
T T.>e | T'->*FT T T
F F->id

ey

Bottom-upParsing

® Constructsparsetreeforaninputstringbeginningat
theleaves(thebottom)andworkingtowardstheroot

(the top)
® Example:id*id

E->E+T| T
T->T*F|F
F->(E) |id

F idid

T*F F E
g
q | o

fld

id

o T = NRCGM
Shitt-reduceparser

® Thegeneralideaistoshiftsomesymbolsofinputto
thestackuntilareductioncan beapplied

® Ateachreductionstep,aspecificsubstringmatching
thebodyofaproduction isreplaced bythe
nonterminal attheheadof theproduction

® Thekeydecisionsduringbottom-upparsingareabout
whentoreduceandaboutwhatproductiontoapply

® Areductionisareverseofastepinaderivation

® Thegoalofabottom-upparseristoconstructa
derivation in reverse:
@ E=>T=>T*F=>T*id=»kikezid*idno

Engineering

Shiftreduceparsing

® Astackisusedtoholdgrammarsymbols

® Handlealwaysappearontopofthestack

® Initialconfiguration:
Stack Input
$ w$

® Acceptanceconfiguration
Stack Input
$S $

uce/reduceconflict

stmt->1d(parameter list)
stmt -> expr:=expr
parameter list->parameter list, parameter
parameter list->parameter

parameter->1d

expr->1id(expr_list)

expr->1d

expr_list->expr_list,expr

expr_list->expr Stack

... id(id

Input

-

_Y
NRCM

W,/
¢\:t'-_,

LRParsing

® Themostprevalenttypeotbottom-upparsers
® LR(k),mostlyinterestedonparserswithk<=1

® WhyLRparsers?
® Tabledriven

® Canbeconstructedtorecognizeallprogramminglanguage
constructs

® Mostgeneralnon-backtrackingshift-reduceparsingmethod
® Candetectasyntacticerrorassoonasitispossibletodoso

® ClassofgrammarsforwhichwecanconstructLRparsersare
supersetof thosewhichwecanconstructLLparsers

YOUur roots 1o SICCess...,

W,/
¢\:t'-r_,

_Y
NRCM

StatesofanLRparser

® Statesrepresentsetofitems

® AnLR(o)itemofGisaproductionofGwiththedotat some
positionof the body:

® ForA->XYZwehavefollowingitems
o A->.XYZ
o A->X.YZ
o A->XY.Z
o A->XYZ.

® InastatehavingA->.XYZwehopetoseeastring
derivablefromXYZnextontheinput.

® WhataboutA->X.YZ?

YOUur roots 1o SICCess...,

B l
) ’
Sne

ConstructingcanonicalLR(O) gf_
Iitem sets o

® Augmentedgrammar:
® Gwithadditionofaproduction:S’->S
® Closureofitemsets:

@ Iflisasetofitems,closure(I)isasetof itemsconstructedfromlIby the
following rules:

e Addeveryiteminltoclosure(I)

e IfA->a.Bfisinclosure(I)andB->yisaproductionthenaddthe
itemB->.ytoclsoure(I).

® Example: B'SE

E->E+T| T
T->T*F |F
F->(E) [id

ssssssssssssssssssssss

itém sets (cont.)

® Goto(I,X)wherel isanitemsetandXisagrammar
symbolisclosureofsetofallitems[A->0X.[3 [where [A->

o.X Blisin I
® Example

:
C O n Ica | LR(O) Ite mS YOUT FOOLS 10 SUCCESS. .

Voiditems(G’){
C=CLOSURE({[S’->.S]});

repeat
for(eachsetof itemsl in C)

for(eachgrammarsymbolX)
if(GOTO(I,X)isnotemptyandnotinC) add
GOTO(L,X) to C;
untilnonewsetofitemsareaddedtoConaround;

}

Exa

USeof LR(O)autoatn
O Example:id*id

e
NRCM

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

0

05

03

02
027
0275
02710
02

o1

$id
$F
$T
$T*
$T*id
$T*F
$T
$E

id*ids
*ids
*ids
*ids
ids

L AL A A

Shifttos
ReducebyF->id
ReducebyT->F
Shiftto7

Shifttos
ReducebyF->id
ReducebyT->T*F
ReducebyE->T

accept

YOUur roots 1o SICCess...,

LR-Parsingmodel
nruT EEEEIEEEN

LRParsing
Program

> Output

LY
. \:t'-;,

_Y
NRCM

arsingalgorithm

letabethefirstsymbolofws;
while(1){/*repeatforever*/
letsbethestateontopofthestack; if
(ACTION{[s,a] = shiftt) {
pushtontothestack;
letabethenextinputsymbol;
telseif(ACTION(s,a]=reduceA->f){
pop |B| symbols of thestack;
letstatetnowbeontopofthestack;
push GOTO|[t,A] ontothe stack;
output the production A->;
Jelseif(ACTION(s,a]=accept)break;/*parsingisdone*/ else
call error-recoveryroutine;

}

YOUur roots 1o SICCess...,

10

1

o =

Sé

R3

R7

o =

S4

g

R6

Sn

R3

R6

R3

10

(0O)E’->E

(4) T>F
(5) F >(E)
(6) F->id

e
NRGM

YOUur roots 1o SICCess...,

id*1d+1d?

Cor tructingSLRa ngta ole

® Method

® ConstructC={lo,I1,...,In},thecollectionofLR (o)itemsforG’

® Stateiisconstructedfromstateli:
o If[A->a.af]isinliandGoto(li,a)=Ij,thensetACTION[i,a]to“shiftj”
e If[A->a.]isinli,thensetACTION[i,a]to“reduceA->o"forallain

follow(A)

e If{S’->.S]isinli,thensetACTIONII,$]to“Accept”

® Ifanyconflictsappearsthenwesaythatthegrammarisnot
SLR(1).

® IfGOTO(Ii,A)=IjthenGOTO[i,A]=j

® Allentriesnotdefinedbyaboverulesaremade“error”

® Theinitialstateoftheparseristheoneconstructedfromthe
setof itemscontaining [S’->.S]

YOUur roots 1o SICCess...,

10

$°>.S
S->1=R
S->R
L->*R|
L->id
R->L

S->L=R|R
L->*RJid
R->L
I1 I3 I5
S’->8S. S->R. L->1d.
2 14 16
S>L.=R L->*R S->L=.R
R ->L. R->.L R->L
L->.*R L->.*R
= =
C L 1g L->.ad
Ac&m
Shift6
RedngeR->

Engineering

Your roots 1o SWCCess...,

I7
E= 2R

I8
R->L.

19
S->L=R.

orepowerfulLRparsers

® Canonical-LRorjustLRmethod
® Uselookaheadsymbolsforitems:LR(1)items

® Resultsinalargecollectionofitems
® LALR:lookaheadsareintroducedinL.R(0)items

Canonical LR(1)items

® InLR(1)itemseachitemisintheform:[A->a.f3,a]
® AnLR(1)item|[A->a.[3,a]isvalidforaviableprefixyif
thereisaderivationS=>8Aw=>3aBw,where
® ['=0«x
® Eitheraisthefirstsymbolofw,orwiseandais$

® Example: %
S=>aaBab=>aaaBab
® S->BB -
® B->aB|b [tem[B->a.B,a]isvalidfory=aaa and

w=ab

e
NRGM

for(eachitem[A->o.Bf,a]inl)
for(eachproductionB->yinG’)
for(eachterminalbinFirst(Ba))
add[B->.y,b]tosetl;

untilnomoreitemsareaddedtol;
returnl;

}

SetOfltemsGoto(I,X){
initializeJtobetheemptyset;
for(eachitem[A->o.X,a]inI)

additem[A->oX.[3,a]toset];

returnclosure(J);

}

voiditems(G’){
initializeCtoClosure({[S->.S,$]});
repeat

for(eachsetofitemslinC)
for(eachgrammarsymbolX)
if(Goto(I,X)isnotemptyandnotinC)
addGoto(I,X)toC;
untilnonewsetsofitemsareaddedtoC;

Your roots 1o SWCCess...,

S’->S
S->CC
C->cC
C->d

N,/
N
‘-i.f{,

-

_Y
NRCM

YOUur roots 1o SICCess...,

CanonicallLR(1)parsingtable

® Method
® ConstructC={lo,I1,...,In},thecollectionofLR (1)itemsforG’

® Stateiisconstructedfromstateli:

o If[}zleFa.aB,b]isinIiandGoto(Ii,a)=Ij,thensetACTION[i,a]to
“s i t j”

e If[A->a.,alisinli,thensetACTION(i,aJto“reduceA->a”
o If{S->.S,$]isinli,thensetACTION|L,$]to“Accept”

® [fanyconflictsappearsthenwesaythatthegrammarisnot
LR(1).

@ IfGOTO(Ii,A)=IjthenGOTO[i,Al=j

® Allentriesnotdefinedbyaboverulesaremade“error”

® Theinitialstateoftheparseristheoneconstructedfromthe
setof itemscontaining [S'->.S,$]

S’->S
S->CC
C->cC
C->d

LACRPa rsingTabI

® Forthepreviousexamplewehad:

147
—dcd$

® StatemergescantproduceShift-Reduceconflicts.
Why?
® Butitmayproducefeduce-fedueeconflict

Engineering

10:E’->.E
E->.E+E
E-=>E*E
E->.(E)
E->.1d

13: E->.1d

[1:E’->E.
E->E.+E
E>E.*E

[4:E->E+E
E->E+E
E->.E*E
E->.(E)
E->.id

e
NRCM

STATE ACTON e
your roots (o SUcCess...
A

id
o S3
1
2 S3
3
4 S3
5 S3
12:E->(.E) 6
E->E+E ;
E->.E*E
E->.(E)
E->.id 9
IS:E->E*E 16:E->(E.)
E->(.E) E->E+E
E->E+E E->E.*E
E=>.E*E
E->.(E) I8:E->E*E.
E>Gomputer BelerEeand

EngleBrifg

+ * (
S2
S4 Ss
S2
R4 R4
Sz
S2
S4 Ss
Ri Ss
R2 Rz
R3 R3
I7:E->E+E.
E->E.+E
E->E.*E
19:E->(E).

) $ E
1
Acc
6
R4 R4
7
8
Ri Ri
Rz Rz
R3 R3

Run-TimeEnvironments

' Outline

® Compilermustdothestorageallocationandprovide
accesstovariables and data

® Memorymanagement
® Stackallocation
® Heapmanagement
® Garbagecollection

S

ageOrganization

Code

Static

:! Heap

'

Free Memory

!

Stack

Ste |vs.DynamicIIcation

® Static:Compiletime,Dynamic:Runtimeallocation

® Manycompilersusesomecombinationoffollowing
® Stackstorage:forlocalvariables,parametersandsoon

® Heapstorage:Datathatmayoutlivethecalltothe
procedure that created it

® Stackallocationisavalidallocationforprocedures
sinceprocedurecallsare nested

Ay \ii'd:

-

Y
Sketchofaquicksortprogram — NRM

int a[11];
void readArray() { /+* Reads 9 integers into a[l],...,a[9]. */

int 13

+
int partition(int m, int n) {
/* Picks a separator value v, and partitions alm .. n] so that
alm ..p— 1] are less than v, alp] = v, and alp + 1..n] are
equal to or greater than v. Returns p. */

+
void quicksort(int m, int n) {
int i;
if (n > m) {
i = partition(m, n);
quicksort(m, i-1);
quicksort(i+l, n);
}
]_
main() {
readArray();
a[0] = -9999;
a[10] = 9999;
quicksort(1,9);

IvationforQuicksort

enter main()
enter readArray()
leave readArray()
enter quicksort(1,9)
enter partition(1,9)
leave partition(1,9)
enter quicksort(1,3)

leave quicksort(1,3)
enter quicksort(5,9)

leave quicksort(5,9)
leave quicksort(1,9)
leave main()

&2 X
r q{l|, 9) \
p(1,9) q(1,3) q(5,9)
7| A
p(1.3) q(1,0) q(2,3) p(5,9) q(5.5) q(7.9)
ya \ < | N\

p(2,3) ';'EE 1) q(3,3) p(7,9) q(7,7) q(9,9)

Ivationrecords

® Procedurecallsandreturnsareusaullymanagedbya
run-timestackcalled thecontrol stack.

® Eachliveactivationhasanactivationrecord
(sometimes called a frame)

® Therootofactivationtreeisatthebottomofthestack

® Thecurrentexecutionpathspecifiesthecontentofthe
stackwiththelastactivationhasrecord inthetopof the
stack.

AGE eralActivatinecor

Actual parameters

R e e e e e e e
. e o e . e e S s e e e e e o e
o e e N e o e e N e e e e e o e - e

= o B B TR OEE O TH OB TH OB ER OEE W PR O T .

= =y == oy B T ER YT OB OB A BT EE BN B EE

IvationRecord

® Temporaryvalues
® Localdata
® Asavedmachinestatus

® An“accesslink”

® Acontrollink

® Spaceforthereturnvalueofthecalledfunction

® Theactualparametersusedbythecallingprocedure

W,
L Y s
AN\ TAA

your roots 1o SUCCess...,

Activation record

e e e e e B e il e N N A SR SN NN I BN EE D SN o am mm

________ Pointer toa______ _y for p
________ Pointer tob_ 5
........ Pointer toc_ ___ __
Array a
_______________________ 1
Array b Arrays of p
Array ¢

1

—————————————————————— : o
i Control link and saved status Activation record for
lopgp — - - - oo ssosoms oo procedure g called by p

Engimeering

Arrays of g

tﬂ-p —-

® Twobasicfunctions:
® Allocation
® Deallocation
® Propertiesofmemorymanagers:
® Spaceefficiency
® Programefficiency
® Lowoverhead

Part of a Heap

Chunk A

e —

— -

Chunk B

———

Chunk O

101200 |

£ 2000

0:100 |

~100:0

o

P

_J | "_I:JI I'I .I::'..' : ::
SRR
i et :_'-'_.' L

e
NRCM

| uction

® Thefinalphaseofacompileriscodegenerator

® Itreceivesanintermediaterepresentation(IR)with
supplementary information insymbol table

® Producesasemanticallyequivalenttargetprogram
® Codegeneratormaintasks:

® Instructionselection

® Registerallocationandassignment

® Insrtuctionordering

- -

YOUur roots 1o SICCess...,

B
Geénerator

® Themostimportantcriterionisthatitproducescorrect
code
® Inputtothecodegenerator
® IR+Symboltable

® Weassumefrontendproduceslow-levellR,i.e.valuesof
namesin itcanbedirectly manipulatedbythemachine

instructions.
® Syntacticandsemanticerrorshavebeenalreadydetected
® Thetargetprogram
® Commontargetarchitecturesare:RISC,CISCandStack
basedmachines
® InthischapterweuseaverysimpleRISC-likecomputerwith
additionof someCISC- Ii?ieaddressing modes

complexityofmapping

® thelevelofthelR

® thenatureoftheinstruction-setarchitecture

® thedesiredqualityofthegeneratedcode.

a=b-+c
Tt d=a+te
LD RO,y LD RO,b
ADD RO,R0z ADD RO,RO,c
ST %,R0 ST a, RO
LD RO,a

ADD RO,RO,e
d, RO

e
NRGM

Régister allocation

® Two sub problems

® Register allocation: selecting the setoff variables that will reside
in register sat each point in the program

® Resister assignment: selecting specific register that a variable reside
in

® Complications imposed by the hardware architecture
® Example: register pairs for multiplication and division

t=a+b t=a+b

t=t*c t=t+c

T=t/d T=t/d

E RO,a

L Rl, a A RO,b
A R1,b M RO,c
M RO, ¢ SRDA R0,32
D RO,d
ST R1,t

S R1,t
Engineering

YOUur roots 1o SICCess...,

ASimple target machine moaei™

® Load operations:LDr,xandLDr1,r2

® Store operations: STx,r

® Computation operations:OPdst,src1,src2
® Unconditional jumps: BRL

® Conditional jumps: Bcondr,LlikeBLTZr,L

A

® Variable name: x

® Indexed address: a(r)likeLDR1,a(R2)means

Ri=contents(a+ contents (R2))

ressing Modes

® Integer indexed by a register:likeLDR1,100(R2)
® Indirect addressing mode:*rand*100(r)

® Immediate constant addressing mode: like LDR1,#100

LDRu,i //R1=1
MUL Ry, Ry, 8 //R1=R1*8
LD R2, a(R1)

//R2=contents(a+contents(R1))

STb,R2 //b=R2

LDR1,c //Ri=c

LDR2,j //R2=j
MUL R2, R2, 8 //R2=R2*8
STa(R2), R1

//contents(a+contents(R2))=R1

Machine-Independent Optimization

>"the-intermediate code to get-a bettémtarg NRCM
he part of the code which is transformed here
does not involve any absolute memory location or
any CPU registers.
Code Optimization can perform in the following
different ways:
(1) Compile Time Evaluation:
(a) z = 5*(45.0/5.0)*1

Perform 5*(45.0/5.0)*rat compile time.
(b) x=5.7

y=Xx/3.6

Evaluate x/3.6as5.7/3.6atcompiletime.

.

ptimization the code is:

After Optimization the code is:
c=a*b
X=a
till
d=a*b+4

X=

till

d=a*b+4

After elimination the code is:
c=a*b

till

d=a*b+4

\“'l
:j“‘ii
t | ES-t1c evaluaulon 1Iredguerncy orex DFESSION. m

[t rmgs loop in variant statements out of the
loop. do
{
[tem =10;
value value=value+ item;
} while (value<100);

YOUur roots 1o SICCess...,

/] /ﬂ:be#ﬁrﬁt NRCM

item = 10;
do
{
Value value=value+ item;
} while (value<100);
(5) Induction Variable and Strength Reduction: Streng
th reduction is used to replace the high strength
operator by the low strength.
An induction variable is used in loop for thefollowing
kind of assignment like i = i + constant.
Before reduction the codeis:

{
while(t<40)
Y=gt
t =t +4;

}

Af
i = _
.

N
N
“‘.‘1’.

-

Y
e = NRCM

Toefficiently optimize the code compiler collectsall”
the information about the program and distribute this
information to each block of the flow graph. This
process is known as data-flow graph analysis.

Da

Certain optimization can only be achieved by
examining the entire program. It can't be achieve by
examining just a portion of the program.

Some optimization needs more global information. For
example, consider the following code:
a=1;

b=2;

C=3;

if (....)x=a+ 5;
else x=b+4; c
=X+ 1;

