OPERATING SYSTEMS(231T403)

UNIT-1

Operating System Introduction-Structure-Simple batch, Multiprogramming, Time-
shared, Personal Computer, Parallel, Distributed System, Real time System,
System Components, OS services, System calls.

Process-Process concepts and scheduling, Operations on process, Cooperating process, Threads

Introduction of Operating System

» An OS act as an interface between user and system hardware.

» Computer consists of the hardware, Operating System, system programs,
application programs.

The hardware consists of memory, CPU, ALU, 1/0 device,

storage device and peripheral device.

System program consists of compilers, loaders, editors, OS etc.
Application program consists of database programs, business programs.
Every computer must have an OS to run other programs.

The OS controls & coordinates the use of the hard ware among the

Y

YV VYV

various system programs and application programs for various tasks.
> Itsimp Iﬁﬁ ides an gnvigenment with if§ which other progr

. do useful work.
n

System and Application Programs

OPERATINGSYSTEM
Definition
» Inthe 1960’s one might have defined OS as “The software that controls
the hardware”.
» Operating System performs all the basic tasks like managing files,processes,

DEPARTMENT OF INFORMATION TECHNOLOGY, NRCM Pagel




OPERATING SYSTEMS(231T403)

And memory. Thus operating system acts as the manager of all the resources, i.e.
Resource manager.
» Operating system becomes an interface between the user and the machine.
It is one of the most required software that is present in the device.
» Operating System is a type of software that works as an interface
between the system program and the hardware.

Concept of OS
» The OS is a set of special programs that run on a computer system that allow it

to work properly.
» It performs basic task as recognizing input from the keyboard, keeping track of
files and directories on the disk, sending output to the display screen and
controlling a peripheral device.
» The OS must support the following tasks. They are,
= Provides the facilities to create, modification of program and data file
using an editor.

= Access to the compiler for translating the user program from high level
language to machine language.

= Provide a loader program to move the compiled program code to the
computer memory for execution.

Types of Operating Systems

There are several types of Operating Systems which are mentioned below.
Batch Operating System

Multi-Programming System

Time-Sharing Operating System

Personal Computers

Parallel Operating System

Distributed Operating System

Real-Time Operating System

YVVVVVVY

1. Batch Operating System
This type of operating system

. . | [ { Batch |
does not interact with the computer ) / =
directly. There is an operator which takes = J |
similar job shaving the same requirement P cou
and groups them into batches. It is the ‘
responsibility of the operator to sort jobs ) R | G

with similar needs.
Advantages

DEPARTMENT OF INFORMATION TECHNOLOGY, NRCM Page2




OPERATING SYSTEMS(231T403)

» Processors of the batch systems know how long the job would be when itis
in the queue.

» Multiple users can share the batch systems.

» The idle time for the batch system is very less.

» It is easy to manage large work repeatedly in batch systems.

Disadvantages
» The computer operators should be well known with batch systems.
» Batch systems are hard to debug.
» It is sometimes costly.
» The other jobs will have to wait for an unknown time if any job fails.
» Itis very difficult to guess or know the time required for any job to complete.

Examples
Payroll Systems, Bank Statements, etc.

2. Multi-Programming Operating System
Multi programming Operating Systems can (.07 )

be simply illustrated as more thanone | === "~
program is present in the main memory and WE=T g Memory
. - 100 3 e CZEN
any one of them can be kept in execution. ~ ———{f Partitions

This is basically used for better | “F°"*" "'
Execution of resources. "
Advantages of Multi-Programming Operating System
» Multi Programming increases the Through put of the System.
» It helps in reducing there sponse time.
Disadvantages of Multi-Programming Operating System
» There is not any facility for user interaction of system resources with the system.

3. Time-Sharing Operating Systems

Each task is given some time to
execute so that all the tasks work smoothly.
Each user gets the time of the CPU as they use
a single system. These systems are also known
as Multitasking Systems. The task can be from
a single user or different users also. The time
that each task gets to execute is called ser 1
quantum. After this time interval is over OS
switches over to the next task.

DEPARTMENT OF INFORMATION TECHNOLOGY, NRCM Page3




OPERATING SYSTEMS(231T403)

Advantages

Each task gets an equal opportunity.

Fewer chances of duplication of software.

CPU idle time can be reduced.

Resource Sharing: Time-sharing systems allow multiple users to share

hardware resources such as the CPU, memory, and peripherals, reducing the

cost of hardware and increasing efficiency.

» Improved Productivity: Time-sharing allows users to work concurrently,
thereby reducing the waiting time for their turn to use the computer. This
increased productivity translates to more work getting done in less time.

YV VYV

» Improved User Experience: Time-sharing provides an interactive environment
that allows users to communicate with the computer in real time, providing a
better user experience than batch processing.

Disadvantages

Reliability problem.

One must have to take care of the security and integrity of user programs and data.

Data communication problem.

High Overhead: Time-sharing systems have a higher overhead than other

operating systems due to the need for scheduling, context switching, and other

overheads that come with supporting multiple users.

» Complexity: Time-sharing systems are complex and require advanced software
to manage multiple users simultaneously. This complexity increases the chance
of bugs and errors.

» Security Risks: With multiple users sharing resources, the risk of security
breaches increases. Time-sharing systems require careful management of user
access, authentication, and authorization to ensure the security of data and
software.

» - sharing operating system that allows multiple users to access a Windows
server remotely. Users can run their own applications and access shared
resources, such as printers and network storage, in real-time.

YV VYV

4. Personal Computer

A personal computer (PC) is a microcomputer designed for use by one person at a
time.

Prior to the PC, computers were designed for -- and only affordable for — companies
that attached terminals for multiple users to a single large mainframe computer whose
resources were shared among all users. By the1980s, technological advances made it
feasible to build a small computer that an individual could own and use as a word
processor and for other computing functions.

DEPARTMENT OF INFORMATION TECHNOLOGY, NRCM Page4




OPERATING SYSTEMS(231T403)

Whether they are home computers or business ones, PCs can be used to store,
retrieve and process data of all kinds. A PC runs firmware that supports an operating
system (OS), which supports a spectrum of other software. This software lets
consumers and business users perform a range of general-purpose tasks, such as the
following:

e word processing

e spreadsheets

e email

e instant messaging

e accounting

¢ database management

e internet access

e listening to music

e network-attached storage

e graphic design

e music composition

e video gaming

e software development

e network reconnaissance

e multimedia a servers

e wireless network access hot spots

¢ video conferencing
Types
Personal computers fall into various categories, such as the following:

Desktop computers usually have a tower, monitor, keyboard and mouse.
Tablets are mobile devices with a touch screen display.

Smart phones are phones with computing capabilities.

Wearables are devices users wear, such as smartwatches and

various types of smart clothing.

Laptop computers are portable personal computers that usually come with
an attached keyboard and trackpad.

» Note book computers are light weight laptops.
» Handheld computers include advanced calculators and various gaming devices.

YV V VYV

Y

5. Parallel Operating System
Parallel Systems are designed to speed up the execution of programs by dividing
the programs into multiple fragments and processing these fragments at the same time.

DEPARTMENT OF INFORMATION TECHNOLOGY, NRCM Page5




OPERATING SYSTEMS(231T403)

Advantages

» High Performance: Parallel systems can execute computationally intensive
tasks more quickly compared to single processor systems.

» Cost Effective: Parallel systems can be more cost-effective compared to
distributed systems, as they do not require additional hardware for
communication.

Disadvantages

» Limited Scalability: Parallel systems have limited scalability as the
number of processors or cores in a single computer is finite.

» Complexity: Parallel systems are more complex to program and debug
compared to single processor systems.

» Synchronization Overhead: Synchronization between processors in a
parallel system can add overhead and impact performance.

6. Distributed Operating System

These types of operating TP
systems are a recent '+,"—‘
advancement in the world of | © DSk f : o
computer technology and are
being widely accepted all over -
the world and, that too, at agreat _PU, Mern
pace.

Various autonomous interconnected computers communicate with each other
using a shared communication network. Independent systems possess their own
memory unit and CPU. These are referred to as loosely coupled systems or distributed
systems. These systems’ processors differ in size and function.

The major benefit of working with these types of the operating system is that it
is always possible that one user can access the files or software which are not actually
present on his system but some other system connected within this network i.e., remote
access is enabled within the devices connected in that network.

Types of Distributed Systems

The nodes in the distributed systems can be arranged in the form of client/server
systems or peer to peer systems. Details about these are as follows —

Client/Server Systems

In client server systems, the client requests a resource and the server provides
that resource. A server may serve multiple clients at the same time while a client is in
contact with only one server. Both the client and server usually communicate via a
computer network and so they are a part of distributed systems.

Peer to Peer Systems

The peer to peer systems contains nodes that are equal participants in data
sharing. All the tasks are equally divided between all the nodes. The nodes interact
with each other as required as share resources. This is done with the help of a network.

DEPARTMENT OF INFORMATION TECHNOLOGY, NRCM Page6




OPERATING SYSTEMS(231T403)

Advantages

» Failure of one will not affect the other network communication, as all
systems are independent of each other.
Electronic mail increases the data exchangespeed.
Sinceresourcesarebeingshared,computationishighlyfastanddurable.
Loadonhostcomputerreduces.
Thesesystemsareeasilyscalableasmany systemscanbeeasily addedtothe network.
Delay indataprocessingreduces.
Disadvantages

» Failureofthemainnetworkwillstoptheentirecommunication.

» Toestablishdistributedsystemsthelanguageisusednotwell-definedyet.

» These types of systems are not readily available astheyarevery
expensive.Notonly thattheunderlyingsoftwareishighly complexandnot
understood well yet.

Example:LOCUS

YV V VY

7. Real-TimeOperatingSystem

These types of OSs serve real-time systems. The time Applicarions ’
interval required to process and respond to inputs is very ¢ :
small. This time interval is called response time. RTOS. Kermal
Real-time systems are used when there are time 5SP
requirements that are very strict like missile systems, air

traffic control systems, robots, etc. i

Types: Custom Hardware

1. HardReal-TimeSystems
Hard Real-Time OSs are meant for applications where time constraints are very

strict and even the shortest possible delay is not acceptable.These systemsarebuilt
for saving life like automatic parachutes or airbags whicharerequired to be readily
available in case of an accident. Virtual memory is rarely found in these systems.

2. SoftReal-TimeSystems
TheseOSsareforapplicationswheretime-constraintislessstrict.

Advantages
» MaximumConsumption: Maximumutilizationofdevicesandsystems,thus more
output from all the resources.

» TaskShifting: Thetimeassignedforshiftingtasksinthesesystemsis very less. For
example, in older systems, it takes about 10 microsecondsin shifting from one
task to another, and in the latest systems, it takes 3 microseconds.

DEPARTMENT OF INFORMATION TECHNOLOGY, NRCM Page7




OPERATING SYSTEMS(231T403)

» Focus on Application: Focus on running applications and less importance on
applications that are in the queue.

» Real-time operating system in the embedded system: Since the size of
programs is small, RTOS can also be used in embedded systems like intransport
and others.

» ErrorFree:Thesetypesofsystemsareerror-free.

» Memory Allocation: Memory allocation is best managed in these typesof
systems.

Disadvantages

» Limited Tasks: Very few tasks run at the same time and
theirconcentration is very less on a few applications to avoid errors.

» Useheavysystemresources: Sometimesthesystemresourcesarenotsogood and
they are expensive as well.

» ComplexAlgorithms: Thealgorithmsareverycomplexanddifficultforthe designer
to write on.

» Devicedriverandinterruptsignals: Itneedsspecificdevicedriversand interrupts
signal to respond earliest to interrupts.

» ThreadPriority:Itisnotgoodtosetthreadpriorityasthesesystemsare very less
prone to switching tasks.

Examples
Scientificexperiments,medicalimaging systems, industrial
control  systems,  weapon

systems,robots,airtrafficcontrolsystems,etc.

OperatingSystemServices

» User Interface - User interface is essential and all operating systems provide it.
Users either interface with the operating system through command-lineinterface
(CUI) or graphical userinterface(GUI). Command interpreter executes next user-
specifiedcommand.AGUI offers the user a mouse-based window and menu
system as an interface.

» Program execution - The system must be able to load a program into memory
and to run that program, end execution, either normally or abnormally
(indicating error)

» 1/O operations -A running program may require 1/0, which may involve afile
or an 1/O device.

» File-system manipulation - The file system is of particular interest. Obviously,
programs need to read and write files and directories, create anddelete them,
search them, list file Information, permission management.

» Communications—Processesmayexchangeinformation,onthesame

DEPARTMENT OF INFORMATION TECHNOLOGY, NRCM Page8




OPERATING SYSTEMS(231T403)

computer or between computers over a network. Communications may be via
shared memory or through message passing (packets moved by the OS)

» Error detection — OS needs to be constantly aware of possible errors mayoccur
in the CPU and memory hardware, in 1/O devices, in user program. For each
type of error, OS should take the appropriate action to ensure correct and
consistent computing. Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system.

AnothersetofOSfunctionsexistsforensuringtheefficientoperationofthe system
itself via resource sharing

» Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them. Many types of
resources such as CPU cycles, main memory, and file storage may have special
allocation code, others such as I/O devices may havegeneral request andrelease
code.

» Accounting - To keep track of which users use how much and what kinds of
computer resources

» Protection and security - The owners of information stored in a multiuser or
networked computer system may want to control use of that information,
concurrent processes should not interfere with each other. Protection involves
ensuring that all access to system resources is controlled. Securityof the system
from outsiders requires user authentication, extends to defending external 1/O
devices from invalid access attempts. If a system is to be protected and secure,
precautions must be instituted throughout it. A chain is only as strong as its
weakest link.

SystemCalls

» Asystemcallis awayforauserprogramtointerfacewiththeoperating system. The
program requests several services, and the OS responds by invoking aseries of
system calls to satisfy the request.
Asystemcallcanbewritteninassemblylanguageorahigh-levellanguagelike
C,C++orPascal.
Systemcallsarepredefinedfunctionsthattheoperatingsystemmaydirectly invoke if
a high-level language is used.

A system call is a method for a computer program to request a service fromthe
kernel of the operating system on which it is running.

Asystemcallis amethodof interactingwiththeoperatingsystemviaprograms.
Asystemcallisarequestfromcomputersoftwaretoanoperatingsystem's  kernel.

VvV VWV V V

DEPARTMENT OF INFORMATION TECHNOLOGY, NRCM Page9




retrieving the system date and time. A more complicated system call, such as
connecting to a network device, may take a few seconds. Most operating
systems launch a distinct kernel thread for each system call to avoidbottlenecks.
Modern operating systems are multi-threaded, which means they can handle
various system calls at the same time.

The Application Program Interface (API) connects theoperating system's
functions to user programs. It acts as a link between the operating system and a
process, allowing user-level programs to request operating system services. The
kernel system can only be accessedusing system calls. System calls arerequired
for any programs that use resources.

» Whencomputersoftwareneedstoaccesstheoperatingsystem'skernel,it  makes a

system call. The system call uses an APl to expose the operating system's
services touserprograms. It is theonlymethod to access the kernel system. All
programs or processes that require resources for execution must use system
calls, as they serve as an interface between the operating system and user
programs.

ExampleofSystemCalls

Systemcallsequencetocopythecontentsofone filetoanotherfile

source file »| destination file

3 Example System Call Sequence 0

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read falls
Close output file
Write completion message to screen
Terminate normally /

\

DEPARTMENT OF INFORMATION TECHNOLOGY, NRCM

OPERATING SYSTEMS(231T403)

» A simple system call may take few nanoseconds to provide the result, like

Pagel0




OPERATING SYSTEMS(231T403)

StandardCLibraryExample
Cprograminvokingprintf()librarycall,whichcall write()systemcall

#include <stdio.h=>
int main ()

{

— printf ("Greetings™):
return O:
H
user

mode T 1
4{ standard C library }7
f<ernel

mode
wrrite ()

write ()
system call

Therearevarioussituationswherewemustrequiresystemcallsintheoperating system.
Following of the situations are as follows:

1. Iltismustrequirewhenafilesystem wantstocreateordeleteafile.

2. Networkconnectionsrequirethesystemcallstosendingandreceivingdata packets.

3. Ifyouwanttoreadorwriteafile,youneedtosystemcalls.

4. Ifyouwanttoaccesshardwaredevices,includingaprinter,scanner,youneed a system
call.

5. Systemcallsareusedtocreateandmanagenew processes.

TypesofSystemCalls
Therearecommonlyfive typesof systemcalls. Theseare asfollows:

ProcessControl
FileManagement
DeviceManagement
InformationMaintenance

5. Communicatio
nProcess Control
Process control is the system call that is used to direct the processes. Some
process control examples include creating, load, abort, end, execute, process,terminate
the process, etc.
FileManagement
Filemanagementisasystemcallthatisusedtohandlethefiles.Somefile management
examples include creating files, delete files, open, close, read, write, etc.
DeviceManagement
Devicemanagementisasystemcallthatisusedtodealwithdevices.Some
examplesofdevicemanagementincluderead,device,write,getdeviceattributes,

How e

DEPARTMENT OF INFORMATION TECHNOLOGY, NRCM Pagell




OPERATINGSYSTEM(23CS403)

releasedevice,etc.

InformationMaintenance

Information maintenance is a system call that is used to maintain information.
Therearesomeexamplesofinformationmaintenance,includinggettingsystemdata,set time
or date, get time or date, set system data, etc.
Communication

Communicationisasystemcallthatisusedforcommunication. Thereare some
examples of communication, including create, delete communication connections,send,
receive messages, etc.

ExamplesofWindowsandUnixsystemcalls

Process Windows Unix
ProcessControl CreateProcess() ExitProcess() Fork()
WaitForSingleObject() Exit()
Wait()
FileManipulation CreateFile()ReadFile() Open()
WriteFile() Read()
CloseHandle() Write()
Close()
DeviceManagement SetConsoleMode() loctl()
ReadConsole()WriteConsole() Read()
Write()
InformationMaintenance GetCurrentProcessID() Getpid()
SetTimer() Alarm()
Sleep() Sleep()
Communication CreatePipe() Pipe()
CreateFileMapping() Shmget()
MapViewOfFile() Mmap()
Protection SetFileSecurity() Chmaod()
InitializeSecurityDescriptor() Umask()
SetSecurityDescriptorgroup() Chown()

open()

Theopen()systemcallallowsyoutoaccessafileonafilesystem. It
allocatesresources to the fileand provides ahandlethat the process mayreferto. Many
processescanopenafileatonceorbyasingleprocessonly.lt'sallbasedonthefile

CSE, NRCM

Pagel2




OPERATINGSYSTEM(23CS403)

systemand structure.

read()
It is used to obtain data from a file on the file system. It accepts threearguments in
general:

» Afiledescriptor.
» Abuffertostoreread data.

» Thenumberofbytes to readfromthefile.
Thefiledescriptorofthefiletobereadcouldbeusedtoidentifyitandopenit using open()
before reading.

wait()

Insomesystems,aprocessmayhavetowaitforanotherprocessto
completeitsexecutionbeforeproceeding.Whenaparentprocessmakesachild process,
theparent process execution is suspended until the child process is
finished. Thewait()systemcallisusedtosuspendtheparentprocess.Oncethe childprocesshas
completed its execution, control is returned to the parent process.

write()
Itisusedtowritedatafromauserbuffertoadevicelikeafile. Thissystemcall is one wayfor a
program to generate data. It takes three arguments in general:

» Afiledescriptor.
» Apointertothebufferin whichdataissaved.
» Thenumber ofbytesto bewrittenfromthebuffer.

fork()

Processesgenerateclonesofthemselvesusingthe fork()systemcall.ltis
one of the most common ways to create processes in operating systems. When a parent
process spawns a child process, execution of the parent process is interrupted until the
child process completes. Once the child processhas completedits execution, control is
returned to the parent process.

close()

Itisusedtoendfile systemaccess.Whenthissystemcallisinvoked, itsignifies
thattheprogramnolongerrequiresthefile,andthebuffersareflushed,thefileinformation is
altered, and the file resources are de-allocated as a result.

exec()

Whenanexecutablefilereplacesanearlierexecutablefileinanalready
executing process,thissystemfunctionisinvoked.Asanewprocessisnotbuilt,the
oldprocessidentificationstays,butthenewprocessreplacesdata,stack,data,head,etc.

exit()
Theexit()isasystemcallthatisusedtoendprogramexecution. Thiscall
indicatesthatthethreadexecutioniscomplete,whichisespeciallyusefulinmulti-

CSE, NRCM Pagel3




OPERATINGSYSTEM(23CS403)

threaded environments. The operating system reclaims resources spent by the
processfollowing the use of the exit() system function.

SystemcomponentsinOsS:-

An operating system is a large and complex system that can only be created by
partitioning intosmall parts. These pieces should be a well-defined part of the
system, carefully defining inputs,outputs,andfunctions.

Although Windows, Mac, UNIX, Linux, and other OS do not have the same
structure, mostoperating systems share similar OS system components, such as
file,memory, process, 1/0Odevicemanagement.

Thecomponentsofanoperatingsystemplayakeyroletomakeavarietyofcomputer
systempartsworktogether.There
arethefollowingcomponentsofanoperatingsystem,suchas:

ProcessManagement
FileManagement
NetworkManagement
MainMemoryManagement
SecondaryStorageManagement
I/ODeviceManagement
SecurityManagement
CommandinterpreterSystem

© N o ok W

Operatingsystem componentshelp you get thecorrect computingbydetectingCPU and
memoryhardware errors.

P Operating System
Components
1O Doviee
rorag

1. ProcessManagement

The process management component is a procedure for managing many processes
running simultaneously on the operating system. Every running softwareapplication
program has one or more processes associated with them.

For example, when you use a search engine like Chrome, there is a process running
for thatbrowserprogram.

CSE, NRCM Pagel4




OPERATINGSYSTEM(23CS403)

Process management keeps processes running efficiently. It also uses memory
allocated to themandshuttingthemdownwhenneeded.

The execution of a process must be sequential so, at least one instruction should be
executed onbehalfoftheprocess.

Terminate

—
Preempt _--~
- W
‘p-' Run
-

Unblock

.y
Suspend l Tﬁesumc Suspendl TResurﬁe
il
-

Linblock

Create

Functionsofprocessmanagement
Herearethefollowingfunctionsofprocessmanagementintheoperatingsystem,suchas:

Processcreationanddeletion.
Suspensionandresumption.
Synchronizationprocess

o Communicationprocess

2. FileManagement

o O O

A file is a set of related information defined by its creator. It commonly represents
programs(bothsourceandobjectforms)anddata. Datafiles canbealphabetic, numeric,
oralphanumeric.

Functionoffilemanagement
Theoperatingsystemhasthefollowingimportantactivitiesinconnectionwithfilemanagement:

o Fileanddirectorycreationanddeletion.
o Formanipulatingfilesanddirectories.
o Mappingfilesontosecondarystorage.

CSE, NRCM Pagel5




OPERATINGSYSTEM(23CS403)

o Backupfilesonstablestoragemedia.

3.NetworkManagement

Networkmanagementis the process of
administeringandmanagingcomputernetworks. Itincludesperformancemanagement,
provisioning of networks, fault analysis, and maintaining thequalityofservice.

e
Computer Networks '__ _
When we hook up computers together \ =
using data communication facilities, J
we call this a computer network. .-
— - F——— -

A distributed system is a collection of computers or processors thatnever share
theirmemoryand clock. In this type of system, all the processors have their local
memory, and the processorscommunicate with each other using
differentcommunication cables, such as fibre optics ortelephonelines.

Thecomputersinthenetworkareconnectedthroughacommunicationnetwork, which
canconfigureinmanydifferentways.Thenetworkcanfullyorpartiallyconnectinnetwork
management,whichhelpsusersdesignroutingandconnectionstrategiesthatovercomeco
nnectionandsecurityissues.

FunctionsofNetworkmanagement

Networkmanagementprovidesthefollowingfunctions,suchas:

o Distributed systems help you to various computing resources in size and
function. Theymayinvolveminicomputers,microprocessors,andmanygeneral-
purposecomputersystems.

o A distributed system also offers the user access to the various resources the
networkshares.

o It helps to access shared resources that helpcomputation to speed up oroffers
dataavailabilityandreliability.

4, MainMemorymanagement

Mainmemoryisalargearrayofstorageorbytes,whichhasanaddress. Thememorymanage
mentprocessisconductedbyusingasequenceofreadsorwritesofspecificmemoryaddresses.

CSE, NRCM Pagel6




OPERATINGSYSTEM(23CS403)

It should be mapped to absolute addresses and loaded inside the memoryto execute
a program.The selectionofamemorymanagementmethoddependsonseveralfactors.

However, it is mainly based on the hardware design of the system. Each algorithm
requirescorresponding hardware support. Main memory offers fast storage that can
be accessed directlyby the CPU. It is costly and hence has a lower storage capacity.
However, for a program to beexecuted,itmustbeinthemainmemory.

Operating
system

Process P2

3 Secondary Storage
Main Memory

FunctionsofMemorymanagement

AnOperatingSystemperformsthefollowingfunctionsforMemoryManagementintheop
eratingsystem:

o Ithelpsyoutokeeptrackofprimarymemory.
o Determinewhatpartofitareinusebywhom,whatpartisnotinuse.
o Inamultiprogrammingsystem,theOSdecideswhichprocesswillgetmemoryand

howmuch.
o Allocatesthememorywhenaprocessrequests.
o Italsode-

allocatesthememorywhenaprocessnolongerrequiresorhasbeenterminated.
5. Secondary-StorageManagement

The most important task of a computer system is to execute programs. These
programs help youto access the data from the main memory during execution. This
memory of the computer is verysmall to store all data and programs permanently.
The computer system offers secondary storagetobackupthe mainmemaory.

Logical Physical -
addresses addresses Swapping
<

Data

CSE, NRCM Pagel7




OPERATINGSYSTEM(23CS403)

Todaymoderncomputersuseharddrives/SSDastheprimarystorageofbothprogramsand
data.However,thesecondarystoragemanagementalsoworkswith storage

devices, such as USB
flashdrivesandCD/DVDdrives.Programslikeassemblersandcompilersarestoredon
thediskuntilitisloadedintomemory,andthenusethediskisusedasasourceanddestinationf
orprocessing.

FunctionsofSecondarystoragemanagement
Herearesomemajorfunctionsofsecondarystoragemanagementintheoperatingsystem:

Storageallocation
Freespacemanagement
o Diskscheduling

@)

O

o
6. 1/0DeviceManagement

One of the important use of an operating system that helps to hide the variations of
specifichardware devicesfromtheuser.

1A Cormrrmands

El o Dewice

Data Data

Functionsofl/Omanagement
Thel/Omanagementsystemoffersthefollowingfunctions,suchas:

Itoffersabuffercachingsystem
Itprovidesgeneraldevicedrivercode
Itprovidesdriversforparticularhardwaredevices.
I/Ohelpsyoutoknowtheindividualitiesofaspecificdevice.

o O O O

7. SecurityManagement

The various processes in an operating system need to be secured from other
activities. Therefore,various mechanisms can ensure those processes that want to
operate files, memory CPU,
andotherhardwareresourcesshouldhaveproperauthorizationfromtheoperatingsystem.

Securityreferstoamechanismforcontrollingtheaccessofprograms,processes,or

CSE, NRCM Pagel8




OPERATINGSYSTEM(23CS403

users to
theresourcesdefinedbycomputercontrolstobeimposed,togetherwithsomemeansofenfo
rcement.

P L LT P e——

For example, memory addressing hardware helps to confirm that a process can be
executedwithin its own address space. The time ensures that no process has control
of the CPU withoutrenouncing it. Lastly, no process is allowed to do its own 1/O to
protect, which helps you to keepthe integrityofthevarious peripheraldevices.

Security can improve reliability by detecting latent errors at the interfaces between
componentsubsystems.Early detection of interface errors can prevent thefoulness of
ahealthysubsystembya — malfunctioningsubsystem.Anunprotectedresource cannot
misuse by an unauthorized orincompetentuser.

9. CommandInterpreterSystem

One of the most important components of an operating system is its command
interpreter. Thecommandinterpreteristheprimaryinterfacebetweentheuserandtherest
ofthesystem.

Text Input ——3 Parser

—» Parse Tree
Semrmantic Interpreters
Command Generator

Cormrmand Strimng

Cormmand Interpreter

Many commands are given to the operating system by control statements. A
program that readsand interprets control statements is automatically executed when
a new job is  started in a  batchsystemorauserlogsintoatime-
sharedsystem. Thisprogramisvariouslycalled.

o Thecontrolcardinterpreter,
o Thecommand-lineinterpreter,
o Theshell(inUNIX),andsoon.

CSE, NRCM Pagel9




OPERATINGSYSTEM(23CS403)

Its function is quite simple, get the next command statement, and execute it. The
commandstatements deal with process management, 1/0O handling, secondarystorage

management, mainmemorymanagementfile
systemaccess,protection,andnetworking.

PROCESS: A process can be thought of as a program in execution. A process is the unit of workin
most systems.
A process will need certain resources—such as CPU time, memory, files, and 1/O devices

to accomplish its task. These resources are allocated to the process either when it is created or
while it is executing.

StructureofaProcessinMemory

e Aprocessismorethantheprogramcode,whichissometimesknownasthetext section.

¢ ltalsoincludesthecurrentactivity,asrepresentedbythevalueof theprogramcounter
andthecontentsoftheprocessor’sregisters.

e A process generally also includes the process stack, which contains temporary data
(suchasfunction parameters, return addresses, and local variables).

e Adatasection,whichcontainsglobalvariables.

e Aprocessmayalsoincludeaheap,whichismemorythatisdynamicallyallocated during process run
time.

max
stack

heap

data

text

WhenaProgrambecomes Process?

A program is a passive entity, such as a file containing a list of instructions stored on disk
(Often called as executable file). In contrast, a process is an active entity,with a program counter
specifying the nextinstruction to execute and a set of associated resources. Aprogrambecomes a
process when an executable file is loaded into memory.

Two common techniques for loading executable files are double-clicking an icon
representing the executable file and entering the name of the executable file on the command line
(as in prog.exe or a.out).

Iftwoprocessesareassociatedwiththesameprogram,aretheysameordifferent?(Or) Explain if you
run same program twice, what section would be shared in memory?

CSE, NRCM Page20




OPERATINGSYSTEM(23CS403)

Although two processes may be associated with the same program, they are nevertheless
considered two separate execution sequences. For instance, several users may berunning different
copies of the mail program, or the same usermay invoke many copies of the web browser program.
Each of these is a separate process; and although the text sections are equivalent, the data, heap,
and stack sections vary. It is also common to have a process that spawns many processes as it runs.

1. ProcessState
As a process executes, it changes state. The state ofa process is defined in part bythecurrent

activity of that process.
Aprocessmaybeinone ofthefollowing states:
e New:Theprocess isbeingcreated.
e Running:Instructionsarebeingexecuted.
e Waiting:Theprocessiswaitingforsomeeventtooccur(suchasanl/Ocompletionor reception of
a signal).
e Ready:Theprocessiswaitingtobeassigned toaprocessor.
e Terminated:Theprocesshasfinishedexecution.

admitted interrupt

1/0O or event completion scheduﬁler dispdich 1/0O or event wait

2. ProcessControlBlock
Each process is represented in the operatingsystem bya Process Control Block (PCB) or

Task Control Block. It contains many pieces of information associated with a specific process,

including these:

e Processstate: Thestatemaybe new,ready,running, andwaiting, halted,andsoon.

e Programcounter. The counterindicatestheaddress ofthenext instruction tobeexecutedfor this
process.

e CPU registers. The registers vary in number and type, depending on the computer
architecture. They include accumulators, index registers, stack pointers, and general- purpose
registers, plus any condition-code information. Along with the program counter, this state
information must be saved when an interrupt occurs, to allow the process to be continued
correctly afterward.

e CPU-scheduling information. This information includes a process priority, pointers to
scheduling queues, and any other scheduling parameters.

CSE, NRCM Page21




OPERATINGSYSTEM(23CS403)

e Memory-management information. This information may include such items as the valueof
the base and limit registers and the page tables, or the segment tables, dependingon the
memory system used by the operating system.

e Accounting information. This information includes the amount of CPU and real time used,
time limits, account numbers, job or process numbers, and so on.

e /O status information. This information includes the list of I/O devices allocated to the
process, a list of open files, and so on.

process state

process number

program counter

registers

memory limits

list of open files

ProcessScheduling
Theobjectiveofmultiprogrammingistohavesomeprocessrunningatalltimes,to maximize CPU utilizgjion.

TheobjectiveoftimesharingistoswitchtheCPUamongprocessessofrequentlythat users can
interact with each program while it is running.
To meet these objectives, the process scheduler selects an available process (possiblyfrom
aset of several available processes) for program execution on the CPU.
1. SchedulingQueues
Thefollowingarethedifferentqueuesavailable,
a. Job Queue
e Asprocessesenterthesystem,theyareputintoajobqueue,whichconsistsofall processes in the
system.
b. Ready Queue
e The processes that are residingin main memoryand are readyand waitingto execute are
kept on a list called the ready queue.
e This queue is generally stored as a linked list. A ready-queue header containspointers to
the first and final PCBs in the list. Each PCB includes a pointer field that points to the
next PCB in the ready queue.

CSE, NRCM Page22




OPERATINGSYSTEM(23CS403)

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

c. DeviceQueue

queue header

head

PCB.,

tail

head

tail

head

tail

head
tail

head

PCB.

registers
-

PCB;

~
- -
- -
T

—
 —
—

PCB,.,

-

registers
-

tail

PCB.

e Thelistofprocesseswaitingforaparticularl/Odeviceiscalled adevicequeue.

e Eachdevicehasitsowndevice queue.

Queuing-diagramrepresentationofprocessscheduling

Acommonrepresentationofprocessschedulingisaqueuingdiagram.Eachrectangular
boxrepresentsaqueue. Twotypesofqueuesare present: theready queueanda

set of device queues. The circles represent the resources that serve the queues, and the arrows
indicate the flow of processes in the system.

A new process is initially put in the ready queue. It waits there until it is selected for
execution, or dispatched. Once the process is allocated the CPU and is executing, one of several

events could occur:

e Theprocesscouldissueanl/Orequestandthenbeplacedinanl/O queue.
e Theprocesscould createanewchildprocessandwaitforthechild’stermination.
e The process could be removed forcibly from the CPU, as a result of an interrupt, andbeput
back in the ready queue.
In the first two cases, the process eventually switches from the waiting state to the ready
state and is then put back in the ready queue. A process continues this cycle until it terminates, at
which time it is removed from all queues and has its PCB and resources deallocated.

t:] ready queue } (CPU )
4Q/O><—| 17O queue }4—{ I/O request %7
time slice
expired
/"/child\‘> fork a
_executes child
“Thterru pt> wait for an
.__occurs __ interrupt

CSE, NRCM

Page23




OPERATINGSYSTEM(23CS403)

2. Schedulers
Definition: A process migrates among the various scheduling queues throughout its lifetime. The
operating system must select, for scheduling purposes, processes from these queues in some
fashion. The selection process is carried out bythe appropriate scheduler.
TypesofSchedulers
a. Long-TermSchedulerorJobScheduler
e Often, in a batch system, more processes are submitted than can be executedimmediately.
These processes are spooled toa mass-storage device (typically a disk), where they are
kept for later execution.
e The long-term scheduler, or job scheduler, selects processes from this pool and loads
them into memory for execution.
e The long-term scheduler executes much less frequently; minutes may separate the
creation of one new process and the next.
e The long-term scheduler controls the degree of multiprogramming (the number of
processes in memory).
e Ifthedegreeofmultiprogrammingisstable,thentheaveragerateofprocesscreationmust be
equal to the average departure rate of processes leaving the system. Thus, the long- term
scheduler may need to be invoked only when a process leaves the system.

e Because of the longer interval between executions, the long-term scheduler can afford to
take more time to decide which process should be selected for execution.It is important
that the long-term scheduler select a good process mix of 1/0-bound and CPU-bound
processes.

e  Onsomesystems,thelong-termschedulermaybeabsentorminimal.

b. Short-TermScheduler,OrCPUScheduler
e Theshort-termscheduler,or CPU scheduler,selectsfromamongthe processes that are
readyto execute and allocates the CPU to one of them.
e  Theshort-termschedulermustselectanewprocessfortheCPUfrequently.
e Aprocessmayexecuteforonlyafewmillisecondsbeforewaitingforanl/Orequest. Often, the
short-term scheduler executes at least once every 100 milliseconds.
e Becauseoftheshorttimebetweenexecutions,the short-termschedulermustbefast.

c. Medium-TermScheduler

e Some operating systems, such as time-sharing systems, may introduce an additional,
intermediate level of scheduling.

e The key idea behind a medium-term scheduler is that sometimes it can be advantageousto
remove a process from memory (and from active contention for the CPU) and thus reduce
the degree of multiprogramming.

e Later, the process can be reintroduced into memory, and its execution can be continued
where it left off. This scheme is called swapping.

CSE, NRCM Page24




OPERATINGSYSTEM(23CS403)

e The process is swapped out, and is later swapped in, by the medium-term scheduler.
Swapping may be necessary to improve the process mix or because a change in memory
requirements has overcommitted available memory, requiringmemory to be freed up.

swap in

partially executed

swapped-out processes

swap out

~(cPU)

ready queue

3. Context Switch

LA A

» end

NP —

1/0O waiting
queues

Definition: Switching the CPU to another process requires performing a state save of the current
process and a state restore of a different process. This task is known as a context switch.

Whenacontextswitchoccurs,thekernelsavesthecontextoftheoldprocessinitsPCB and loads the
saved context of the new process scheduled to run.
Overhead: Context-switch time is pure overhead, because the system does no useful workwhile

switching.

Switching Speed: Switching speed varies from machine to machine, depending on the memory
speed, the number of registers that must be copied, and the existence of special instructions (such
as a single instruction to load or store all registers). A typical speed is a fewmilliseconds.
Hardware Support: Context-switch times are highly dependent on hardware support. A context
switchhere simply requires changing the pointer to the current register set. Of course,if there are

moreactiveprocessesthanthereareregistersets,thesystemresortstocopying

registerdatatoand from

memory, as before. Also, the more complex the operating system, the greater the amount of work
that must be done during a context switch

CSE, NRCM

Page25




OPERATINGSYSTEM(23CS403)

4. CPU-I/OBurstCycle

The success of CPU scheduling depends on an observed property ofprocesses: process
execution consists of a cycle of CPU execution and 1/0 wait. Processes alternate between these
two states. Process execution begins with a CPU burst. That is followed byanl/O burst, which is
followed byanother CPU burst, then another 1/0 burst, and so on. Eventually, the finalCPU burst
ends with a system request to terminate execution.

load store

add store® CPU burst
read from file
‘ wait for 170 ‘ /O burst
store increment
index CFPU burst
write to file
‘ wait for 170 ‘ 1/ burst
CPU burst
load store
add store
read from file
-
/O burst

wait for I/O

DefinitionofNonPreemptiveScheduling
Under nonpreemptive scheduling, once the CPU has been allocated to a process, the

process keeps the CPU until it releases the CPU either by terminating or by switching to the
waiting state. This scheduling method was used by Microsoft Windows 3.x.
DefinitionofPreemptiveScheduling

Under this, a running process may be replaced by higher priority process at any time. Used
from Windows 95 to till now. Incurs the cost associated with access to shared data. It also affects
the design of OS.

Dispatcher
Another component involved in the CPU-scheduling function is the dispatcher. The
dispatcher is the module that gives control of the CPU to the process selected by the short- term
scheduler. This function involves the following:
e Switchingcontext
e Switchingtousermode
e Jumpingtotheproperlocationintheuser programtorestartthatprogram
Thedispatchershouldbeasfastaspossible,sinceitisinvokedduringevery process
switch.

CSE, NRCM Page26




OPERATINGSYSTEM(23CS403)

DispatchLatency:Thetimeittakesforthedispatchertostop oneprocessandstartanotherrunning is known as
the dispatch latency.

Operationsonprocesses(OR)Systemcallinterfaceforprocessmanagement-fork,exit,wait,
waitpid,exec

The processes in most systems can execute concurrently, and they may be created and
deleted dynamically. Thus, these systems must provide a mechanism for process creation and
termination.

a. ProcessCreation

During the course of execution, a process may create several new processes. The creating
process is called a parent process, and the new processes are called the children of that process.
Each of these new processes may in turn create other processes, forming a tree of processes.
SystemCalls
o fork()

» Most operating systems (including UNIX, Linux, and Windows) identify processes
according to a unique process identifier (or pid), which is typically an integer number.

» Anewprocess Is created bythefork ()system call. Thenewprocess consists ofa copyof the
address space of the original process.

» This mechanism allows the parent process to communicate easily with its child process.
Both processes (the parent and the child) continue execution at the instruction after the
fork (), with one difference: thereturn code for thefork () is zero for the new (child)
process, whereas the (nonzero) process identifier of the childis returned to the parent.

o exec()
> After a fork () system call, one of the two processes typically uses the exec () systemcallto
replace the process’s memoryspace with a new program.
» The exec () system call loads a binary file into memory and starts its execution. In this
manner, the two processes are able to communicate and then go their separate ways.

e wait()

» The parent can then create more children; or, if ithas nothing else to do while the child
runs, it can issue a wait () system call to move itself off the ready queue until the
termination of the child. Because the call to exec () overlays the process’s address space
with a new program, the call to exec () does not return control unless an error occurs.

parent

: resumes
wait

CSE, NRCM Page27




OPERATINGSYSTEM(23CS403)

b. ProcessTermination

A process terminates when it finishes executing its final statement and asks the operating
system to delete it by using the exit () system call. At that point, the process may return a status
value (typically an integer) to its parent process (via the wait() system call). All the resources of
the process—including physical and virtual memory, open files and 1/O buffers—are deallocated
by the operating system.

Termination can occur in other circumstances as well. A process can cause thetermination
of another process via an appropriate system call (for example, TerminateProcess() in Windows).
Usually, such a system call can be invoked only by the parent of the process that is to be
terminated. Otherwise, users could arbitrarily kill each other’s jobs.

COOPERATINGPROCESSES
= TheconcurrentprocessexecutingintheOSmaybeeitherindependent process or
cooperating process.
= Independentprocesscannotaffectorbeaffectedbytheexecutionofanother process.
= Cooperatingprocesscanaffectorbeaffectedbytheexecutionofanotherprocess.
Advantagesofprocesscooperation
1. Informationsharing:severalusersmaybeinterestinthesamepieceof information.
2. Computationspeed-up: Ifwewantaparticulartasktorunfaster,wemust break it
into subtasks and run in parallel.
3. Modularity:Constructing thesystem inmodularfashion,dividing thesystem
functions into separate process.
4. Convenience:Userwillhavemanytaskstoworkinparallel(Editing,compiling,

printing).

Processescancommunicatewitheachotherthroughboth:
» SharedMemory
» Messagepassing
The following figure shows a basic structure of communicationbetweenprocesses
via the shared memory method and via the message passing method.

Figure 1 - Shared Memory and Message Passing

CSE, NRCM Page28




OPERATINGSYSTEM(23CS403)

(i) SharedMemory

Communication  between  processes using shared memory requires
processestosharesomevariable, and itcompletelydependson howtheprogrammerwill
implement it.

One way of communication using shared memory can be imagined like this:
Suppose processl and process2 are executing simultaneously, and theyshare some
resources or use some information from another process. Processl generates
informationaboutcertain computationsorresourcesbeingused and keepsitasarecord in
shared memory. When process2 needs to use the shared information, it will check in
the record stored in shared memory and take note of the information generated by
processl and act accordingly.

Processes can use shared memory for extracting information as a record from
another process as well as for delivering any specific information to other processes.

Ex:Producer-Consumerproblem

A producer process produces information that is consumed by a consumer
process. For example, a print program produces characters that are consumed by the
printer driver.

A producer can produce one item while the consumer is consuming another
item. The Producer and Consumer must be synchronized. The consumer does not tryto
consume an item, the consumer must wait until an item is produced.
Unbounded-Buffer

e nopractical limit onthesizeof thebuffer.

e Producercan produceanynumberofitems.

e Consumermayhave towait
Bounded-Buffer

e assumesthatthereisa fixedbuffersize.

Bounded-Buffer-Shared-Memory Solution:
Shared data

#define BUFFER_SIZE 10

Typedef struct

{

}item;
itembuffer[BUFFER_SIZE];
intin=0;

intout=0;

Bounded-Buffer—Producer Process:

CSE, NRCM Page29




OPERATINGSYSTEM(23CS403)

itemnextProduced,
while (1)
{

while(((in+1)% BUFFER_SIZE)==out); [*donothing
*/buffer[in]= nextProduced,;

in=(in+1)%BUFFER_SIZE;

}

Bounded-Buffer—ConsumerProcess:
itemnextConsumed,;
while (1)
{
while(in==out); [*donothing
*/next Consumed = buffer[out];
out=(out+1)%BUFFER_SIZE;

}

(if) MessagingPassingMethod
In this method, processes communicate with eachother without usinganykind of
sharedmemory. Iftwoprocesseswanttocommunicatewitheachother, theyproceed as

follows

e Establish a communication link (if a link alreadyexists,noneedto establish it

again.)
e Startexchangingmessagesusingbasicprimitives.
e Themessagesizecanbeoffixedsizeorofvariablesize.Ifitisoffixed size,itiseasy

foranOSdesignerbutcomplicatedforaprogrammerandifit is of variable size then it
is easy for a programmer but complicated for the OS designer.

e Cooperating process to communicate with each other via an inter process
communication (IPC).

e |IPC provides a Mechanism to allow processes to communicate and tosynchronize
their actions.

e |fPandQwanttocommunicate,acommunicationlinkexistsbetweenthemand

CSE, NRCM Page30




OPERATINGSYSTEM(23CS403)

exchangemessages viasend/receive.OSprovidesthis facility.
e IPCfacilityprovidestwooperations:
Send (message)—messagesizefixedorvariable.
Receive(message)
e Implementationofcommunicationlink byfollowing.

o physical(e.g.,sharedmemory,hardwarebus)
o logical(e.g.,logicalproperties)

Methodsforlogicalimplementationof a link
i.  Directcommunication.
ii.  Indirectcommunication.

DirectCommunication
e Eachprocessesmust nameeachotherexplicitly:

o Send(P,message) —sendamessagetoprocessP.
o Receive(Q,message)-receiveamessagefromprocessQ.
e Linksareestablishedautomatically.
e Alinkis associatedwith exactlyonepairofcommunicatingprocesses.
e Betweeneach pair thereexistsexactlyonelink.
e Thelink maybeunidirectional, but is usuallybi-directional.
¢ Thisexhibitsboth symmetryand asymmetryin addressing
Symmetry:
Boththesenderandthereceiverprocessesmustnametheotherto communicate.
Asymmetry:
Onlysendernamestherecipient,therecipientisnotrequiredtonamethesender. The
send and receive primitives are as follows.

o Send(P,message)-sendamessagetoprocess P.
o Receive(id,message)-receiveamessagefromanyprocess.

Disadvantageofdirectcommunication
Changinga name oftheprocesscreatesproblems.

IndirectCommunication
e Themessagesaresentandreceivedfrommailboxes(alsoreferredtoas ports).
e Amailbox isanobject
e Processcanplace messages.
e Processcanremovemessages.

CSE, NRCM Page31




OPERATINGSYSTEM(23CS403)

Twoprocesses cancommunicate onlyiftheyhaveasharedmailbox.

Primitivesaredefinedas:

send(A,message)-sendamessagetomailboxA

receive(A,message)—receiveamessagefrommailbox A.
Amailboxmaybeowned either byaprocess orbythe OS.
If the mailbox is owned by a process, then we distinguish b/w the owner (who
can only receive msg through this mailbox) and the user (who can only send
msg to the mailbox).
Amailboxmaybe owned bytheOSis independentand provide amechanism,

o createa mailbox

o receivemessagesthroughmailbox
o destroyamailbox.

Mailboxsharingproblem

TheprocessesP1,P2,andP3allsharemailboxA.ProcessesP1,sends; P2
andP3receivethemessagefromA.Who gets amessage?

Solutions

Allowalinktobeassociatedwith at most two processes.
Allowonlyoneprocessat atimetoexecuteareceive operation.

Allow the system to select arbitrarily the receiver. The system may identifythe
receiver to the sender.

DefiningThread

AthreadisaLightweightprocess. Threadisaflowofcontrolexecutionofthe program.

Threadisa basicunit of CPU utilization; it comprisesa thread ID, a program counter, a register set,and astack. It
shares with other threads belonging to the same process its code section, data section, and other operating-
system resources, such as open files and signals.

A traditional (or heavyweight) process has a single thread of control. If a process has

multiple threads of control, it can perform more than one task at a time.

‘ code ‘ ‘ data ‘ ‘ files ‘ ‘ code ‘ ‘ data ‘ ‘ files ‘
[regrsters [ rogretere [ reqrters|
‘ stack ‘ ‘ stack ‘ ‘ stack ‘
thread ——— g é ; g«—— thread
single-threaded process multithreaded process

CSE, NRCM Page32




OPERATINGSYSTEM(23CS403)

SingleThread

e Aprocessisaprogramthatperformsasinglethreadofexecution.

e For example, when a process is running a word-processor program, a single thread of
instructions is being executed.

Thissinglethreadofcontrolallowstheprocesstoperformonlyonetaskat atime.The usercannot

simultaneously type in characters and run the spell checker within the same process, for

example.Multi Thread

e Most modern operating systems have extended the process concept to allow a process tohave
multiple threads of execution and thus to perform more than one task at a time.

e This feature is especially beneficial on multicore systems, where multiple threads can
runinparallel.

e Onasystemthatsupportsthreads,thePCBisexpandedtoincludeinformationforeach thread. Other
changes throughout the system are also needed to support threads.

MultithreadingModels
Support for threads may be provided either at the user level, for user threads, or by the

kernel, for kernel threads. User threads are supported above the kernel and are managed without
kernel support, whereas kernel threads are supported and managed directly by the operating
system. Virtually all contemporary operating systems—including Windows, Linux, Mac OS X,
and Solaris support kernel threads.

Ultimately, a relationship must exist between user threads and kernel threads. The
following are the three common ways of establishing such a relationship: the many-to-one model,
the one-to-one model, and the many-to many models.

1. Many-to-OneModel
e Themany-to-onemodelmapsmanyuser-levelthreadstoonekernelthread.
2. One-to-OneModel
e Theone-to-onemodelmapseachuserthread toakernelthread.
3. Many-to-ManyModel
e Itmultiplexesmanyuser-level threads toasmalleror equal numberof kernelthreads.

CSE, NRCM Page33




OPERATINGSYSTEM(23CS403)

D)

L
e _

J - kernel thread

Eﬂ— user thread

Many-to-one model.

; ; +«— User thread

O ¢

. One-to-one model.

S~

| «=—kernel thread

™~ ™~
/k ) (k) | y ~—— kernel thread
A

|\_/ |\y

Manv-to-manv model.

CSE, NRCM

Page34




OPERATINGSYSTEM(23CS403)

UNIT-2

CPU scheduling- Scheduling criteria, Scheduling Algorithms, Multiple Processor Scheduling, System
call interface for process management-fork, exit, wait, waitpid, exec.

Deadlocks- system Model, Deadlock Characterization, Methods for handling deadlocks, Deadlock Prevention,
Deadlock Avoidance, deadlock Detection, and recovery from deadlock

CPUscheduling

while

CPUschedulingistheprocessofdecidingwhichprocesswillownthe CPU to use
another process is suspended. The main function of the CPU

schedulingistoensurethatwhenevertheCPUremainsidle,theOShasatleast selected one of
the processes available in the ready-to-use line.

In Multiprogramming, if the long-term scheduler selects multiple 1 / O binding

processesthenmostofthetime,theCPUremainsanidle. Thefunctionofan effective program
is to improve resource utilization.

If most operating systems change their status from performance to waiting then

there may always be a chance of failure in the system. So in ordertominimize this
excess, the OS needs to schedule tasks in order to make full use of the CPU and avoid
the possibility of deadlock.

ObjectivesofProcessSchedulingAlgorithm

>
>
>

UtilizationofCPUatmaximumlevel. KeepCPUasbusyaspossible.
AllocationofCPUshouldbefair.
ThroughputshouldbeMaximum.i.e.Numberofprocessesthatcomplete their
execution per time unit should be maximized.
Minimumturnaroundtime,i.e.timetakenbyaprocesstofinishexecution should be
the least.

Thereshouldbea minimumwaitingtime andtheprocessshouldnotstarve in the
ready queue.

Minimum responsetime. Itmeansthatthetimewhenaprocessproducesthe first
response should be as less as possible.

Terminologies

YV VYV

A\

Arrival Time: Timeatwhichtheprocessarrivesinthereadyqueue.
CompletionTime: Timeatwhichprocesscompletesitsexecution.

BurstTime: TimerequiredbyaprocessforCPUexecution.
TurnAroundTime:TimeDifferencebetweencompletiontimeandarrival time.
TurnAroundTime=CompletionTime-ArrivalTime

WaitingTime(W.T): TimeDifferencebetweenturnaroundtimeandburst

CSE, NRCM

Page35




OPERATINGSYSTEM(23CS403)

time.
WaitingTime=TurnAroundTime—BurstTime

THESCHEDULINGCRITERIA
CPUutilization:
Themain purposeofanyCPUalgorithm isto keep theCPUas busyas possible.
Theoretically, CPU usage can range from 0 to 100 but in a real-time system, it
varies from 40 to 90 percent depending on the system load.

Throughput:

The average CPU performance is the number of processes performed and
completed during each unit. This is called throughput. The output may vary
depending on the length or duration of the processes.

TurnroundTime:

For a particular process, the important conditions are how long it takes to
performthatprocess.Thetimeelapsedfromthetimeofprocessdelivery tothe
timeofcompletionisknownastheconversiontime.Conversiontimeisthe amount of time
spent waiting for memory access, waiting in line, using CPU, and waiting for I / O.

WaitingTime:

The Scheduling algorithm does not affect the time required to completethe
process once it has started performing. It only affects the waiting time oftheprocess
i.e. the time spent in the waiting process in the ready queue.

ResponseTime:

In a collaborative system, turn around time is not the best option. The process
may produce something early and continue to computing the new results while the
previous results are released to the user. Therefore another method is the time taken
in the submission of the application process until the first response is issued. This
measure is called response time.

Typesof CPUSchedulingAlgorithms
Therearemainly twotypesofschedulingmethods:

PreemptiveScheduling:
Preemptiveschedulingisusedwhenaprocessswitchesfromrunningstateto ready

state or from the waiting state to the ready state.

Non-PreemptiveScheduling:
Non-Preemptiveschedulingisusedwhenaprocessterminates,orwhena process

switches from running state to waiting state.

CSE, NRCM Page36



https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/

OPERATINGSYSTEM(23CS403

CPU Scheduling

e

[ Preemptive ] Non-Preemptive

Priority LO”_QBS" Shortest Longest
Scheduling RJ‘:;:';";_':“T" /JC:D First Job First
-irs

Flirst Highest
Shortest Round- Come Q&'f.i;_}fmse
Remaining Raobin First N<;)l((:
Job First Serve

1. FirstComeFirstServeScheduling:
FCFS considered to be the simplest of all operating system scheduling

algorithms. First come first serve scheduling algorithmstatesthattheprocessthat
requeststheCPUfirstisallocatedtheCPUfirstandisimplementedbyusingFIFO gueue.
Characteristics:

» FCFS supports  non-preemptive

schedulingalgorithms.

» TasksarealwaysexecutedonaFirst-come,First-serveconcept.

» FCFSiseasytoimplementanduse.

» Thisalgorithmisnotmuchefficientinperformance,andthewaittimeisquite high.
Advantages:

» Easy toimplement

» Firstcome,firstservemethod
Disadvantages:

» FCFSsuffersfromConvoyeffect.

» Theaveragewaitingtimeismuchhigherthantheotheralgorithms.

» FCFSisvery simpleandeasy toimplementandhencenotmuchefficient.

and preemptive  CPU

2. ShortestJobFirst (SJF)Scheduling:
Shortest job first (SJF) is a scheduling process that selects the waiting process

with the smallest execution time to execute next. This scheduling method mayormay
notbepreemptive.Significantlyreducestheaveragewaitingtime forother processes waiting
to be executed. The full form of SJF is Shortest Job First.

CSE, NRCM

Page37



https://www.geeksforgeeks.org/queue-data-structure/

OPERATINGSYSTEM(23CS403

rl_"",w“-‘f ';“ 4:“ uwfﬁ'—jsefom Process P2 pets executed last
I ’n.\' ‘:,,q,a,ﬂ ‘ 1:."‘," N “,m,' e '\,}:‘ ' ,‘: . as il has the largest burst time of 8
T larger than P4 but shorter than P2 and P3 which is larger than P4, P1 and P3
Process | . Therefore Waiting time (P1) = 3 SRV
ime | S Therefore Waiting time (P2) = 16
|
Pl 6 -—J L__, X
TR r
0 234567 4910112131415 18 19 20 21 22 23 24
L 09 8 | A5 9§ A PR A A B R N
= — . -
A
- P3 7
P4 3 |
. | Process P3 gets executed third
as It has the hurst time of 7
which is larger than P4 and P1
Therefore Walting time (P1) =0 -
Therefore Waiting time (P3) =9
Characteristics:

» Shortest Job first has the advantage of having a minimum average waitingtime
among all operating system scheduling algorithms.
» ltisassociatedwitheachtaskasaunitoftimetocomplete.
» Itmaycausestarvationifshorterprocesseskeepcoming. Thisproblemcan be solved
using the concept of ageing.
Advantages:
» AsSJFreducestheaveragewaitingtimethus,itisbetterthanthefirst come first serve
scheduling algorithm.
» SJFisgenerallyusedforlongtermscheduling
Disadvantages:
» OneofthedemeritSJFhasisstarvation.
» Manytimesitbecomescomplicatedtopredictthelengthoftheupcoming CPU request

3. LongestJobFirst(LJF)Scheduling:

This is just opposite of shortest job first (SJF), as the name suggests this
algorithmisbaseduponthefactthattheprocess withthelargestbursttime is processed first.
Longest Job First is non-preemptive in nature.

Characteristics:
» Among all the processes waiting in a waiting queue, CPU is alwaysassigned to
the process having largest burst time.
» Iftwoprocesseshavethesamebursttimethenthetieisbrokenusing FCFSi.e. the
process that arrived first is processed first.

CSE, NRCM Page38



https://www.geeksforgeeks.org/program-for-fcfs-cpu-scheduling-set-1/

OPERATINGSYSTEM(23CS403)

» LJFCPUSchedulingcanbeofbothpreemptiveandnon-preemptivetypes.
Advantages:

» Noothertaskcanscheduleuntilthelongestjoborprocessexecutes completely.

» Allthejobsorprocessesfinishatthesametimeapproximately.
Disadvantages:

» Generally, the LJF algorithm gives a very high average

waitingtime and average turn-around time for a given set of processes.
» Thismayleadtoconvoyeffect.

4. PriorityScheduling:
Preemptive Priority CPU Scheduling Algorithm is apre-emptivemethod of

CPU scheduling algorithm that works based on the priority of aprocess. In this
algorithm, the editor sets the functions to be as important,meaning that the most
importantprocessmustbedonefirst.Inthecaseofanyconflict, thatis,where there are more
than one processor with equal value, thenthe most important CPU planning algorithm
works on the basis of the FCFS Characteristics:

» Schedulestasksbasedonpriority.

» Whenthehigherpriorityworkarriveswhileataskwith lesspriorityis executed, the

higher priority work takes the place of the less priority one and

» Thelatterissuspendeduntiltheexecutioniscomplete.

» Loweristhenumberassigned,higheristheprioritylevelofaprocess.
Advantages:

» TheaveragewaitingtimeislessthanFCFS

» Lesscomplex

Disadvantages:

» One of the most common demerits of the Preemptive priority CPU scheduling
algorithm is the Starvation Problem. This is the problem in which a process has
to wait for a longer amount of time to get scheduled into the CPU. This
condition is called the starvation problem.

5. RoundRobinScheduling:
Round Robin is a CPU scheduling algorithm where each process is cyclically

assignedafixedtimeslot.ItisthepreemptiveversionofFirstcomeFirstServe CPU Scheduling
algorithm. Round Robin CPU Algorithm generally focuses on Time Sharing technique.
Characteristics:
» It’ssimple,easytouse,andstarvation-freeasallprocessesgetthebalanced CPU
allocation.
» OneofthemostwidelyusedmethodsinCPUschedulingasacore.

CSE, NRCM Page39




OPERATINGSYSTEM(23CS403)

» ItisconsideredpreemptiveastheprocessesaregiventotheCPUfora  very  limited
time.

Advantages:
» Roundrobinseemstobefairaseveryprocessgetsanequalshareof CPU.
» Thenewly createdprocessisaddedtotheendofthereadyqueue.

6. ShortestRemainingTimeFirstScheduling(SRTF):

SRTF is the preemptive version of the Shortest job first which we have
discussed earlier where the processor is allocated tothejobclosesttocompletion. In SRTF
the process with thesmallest amountoftime remaining until completion is selected to
execute.

Characteristics:

» SRTF algorithm makes the processing of the jobs fasterthanSJF algorithm,
given it’s overhead charges are not counted.

» The context switch is done a lot more times in SRTF than in SJF and consumes
the CPU’s valuable time for processing. This adds up to its processing time and
diminishes its advantage of fast processing.

Advantages:

» InSRTFtheshortprocessesarehandledvery fast.

» Thesystemalsorequiresverylittleoverheadsinceitonlymakesadecision when a
process completes or a new process is added.

Disadvantages:
» Liketheshortestjobfirst,italsohasthepotentialforprocessstarvation.
» Long processes maybe  held off indefinitelyif  short processes are
continually added.

7. LongestRemainingTimeFirst:

Thelongestremainingtimefirst isapreemptiveversionofthelongestjob
firstschedulingalgorithm.Thisschedulingalgorithmisusedbytheoperatingsystem to
program incoming processes for use inasystematicway. This algorithm schedules those
processes first which have the longest processing time remaining for completion.
Characteristics:

» Amongalltheprocesseswaitinginawaitingqueue,theCPUisalways assigned to the
process having the largest burst time.
» Iftwoprocesseshavethesamebursttimethenthetieisbrokenusing FCFS i.e. the
process that arrived first is processed first.
» LJFCPUSchedulingcanbeofbothpreemptiveandnon-preemptivetypes.
Advantages:
» Nootherprocesscanexecuteuntilthelongesttaskexecutescompletely.

CSE, NRCM Page40




OPERATINGSYSTEM(23CS403)

» Allthejobsorprocessesfinishatthesametimeapproximately.
Disadvantages:
» Thisalgorithmgivesaveryhighaveragewaitingtimeandaverageturn- around time
for a given set of processes.
» Thismayleadtoaconvoyeffect.

8. HighestResponseRatioNext:

Highest Response Ratio Next is a non-preemptive CPU Scheduling algorithm
and it is considered as one of the most optimal scheduling algorithms. The name itself
statesthatweneedtofindtheresponseratioofallavailableprocessesandselectthe one with the
highest Response Ratio. A process once selected will run till completion.
Characteristics:

» Thecriteriafor HRRN  isResponse Ratioand the mode is
NonPreemptive.

» HRRNisconsideredasthemodificationofShortestJobFirst toreducethe problem of
starvation.

» In comparison with SJF, during the HRRN scheduling algorithm, the CPUis
allotted to the nextprocess which has the highestresponseratio and not tothe
process having less burst time.

ResponseRatio=(W+S)/S
Here,W-Waitingtimeoftheprocess
S-Bursttimeoftheprocess.
Advantages:

» HRRNSchedulingalgorithmgenerallygives better performance thanthe
shortest job first Scheduling.

» Thereisareductioninwaitingtimeforlongerjobsandalsoitencourages shorter jobs.

Disadvantages:

» The implementation of HRRN scheduling is not possible as it is notpossible to
know the burst time of every job in advance.

» Inthisscheduling,theremayoccuranoverloadontheCPU.

9. MultipleQueueScheduling:

Processes in the ready queue can be divided into different classes where each
classhasitsownschedulingneeds.Forexample,acommondivisionis a foreground
(interactive) process and a background(batch) process.These two classes have
different scheduling needs. For this kind of situation Multilevel Queue Scheduling is
used.

CSE, NRCM Page41




OPERATINGSYSTEM(23CS403)

High Priority
System processes - Quene 1
Interactive Processes {— Quene 2
Batch Processes —> Quene 3
g
Low Priority

Thedescriptionoftheprocessesintheabovediagramisasfollows:

» System Processes: The CPU itself has its process to run, generally termedas
System Process.

» Interactive Processes: An Interactive Process is a type of process inwhich
there should be the same type of interaction.

» Batch Processes: Batch processing is generally a technique in the Operating
system that collectsthe programs and data together in the form of a batch before
the processing starts.

Advantages:

» Themainmeritofthemultilevelqueueisthatithasalowscheduling overhead.
Disadvantages:

» Starvationproblem

» ltisinflexibleinnature

10. MultilevelFeedbackQueueScheduling:

Multilevel Feedback Queue Scheduling (MLFQ) CPUSchedulingis like
Multilevel Queue Scheduling but in this process can move between the queues. And
thus, much more efficient than multilevel queue scheduling.

Characteristics:

» In a multilevel queue-scheduling algorithm, processes are permanently assigned
to a queue on entry to the system, and processes are not allowedto move
between queues.

» As the processes are permanently assigned to the queue, this setup has the
advantage of low scheduling overhead,

» Butontheotherhanddisadvantageofbeinginflexible.

Advantages:
> ltismoreflexible

CSE, NRCM Page42




OPERATINGSYSTEM(23CS403)

» Itallowsdifferentprocessestomovebetweendifferentqueues
Disadvantages:

» ltalsoproducesCPUoverheads
» Itisthemostcomplexalgorithm.

ComparisonbetweenvariousCPUSchedulingalgorithms
HereisabriefcomparisonbetweendifferentCPUschedulingalgorithms:

Average Pre Star
Algorith Allocationis Complexity  waiting time emp vatio Performa
m (AWT) tion n nce
Fcrs  armival time of the ey  to Large. No No  Slow
processes,the  CPUis  jmplement
allocated.
Basedonthelowest More Smaller  than
SJF CPUbursttime (BT). complex FCFS Yes  Good
thanFCFS
Same as SJF the
allocationoftheCPU More Dependingon
SRTF Isbasedonthelowest  compjex amval v ves  Good
CPlJ_bl_Jrsttime(BT). thanECES ti_me, process
But it is preemptive. size
According to the  The Large  than
RR order of the process  complexity SJF and Y& Fair
arrives with fixed  dependson Priority
time quantum (TQ) TQ scheduling.
Priority According to the
Pre- priority. The bigger Less Smaller  than g Yes  Well
emptive priority task complex FCFS
executes first
CSE,NRCM Page43




OPERATINGSYSTEM(23CS403)

Priority  According  to the | esscomplext Most
non- priority WIth  han Priority ~ Smaller  than No  Yes  Dbeneficial
preemp ~ Monitoring the new preemptive ECES withbatch
tive incoming higher systems
priorityjobs
Average Pre Star
Algorith Allocationis Complexity ~ waiting time emp vatio Performa
m (AWT) tion n nce
According to the More
MLQ process that residesin complex Smaller  than No Vs Good
the bigger queue thanthe FCFS
priority priority
According to the  |tisthemost Smaller than
MLFQ process of a bigger Complex all scheduling No  No Good
priorityqueue.
Examplel(FCFS)
1.Process ID ProcessName BurstTime(ms)
TPl A 6
P2 B 2
P3 & 1
P4 D 9
P5 E 8
GanttChart lp1 [pP2 |[P3 |Pa |P5 |
0 6 8 9 18 26
ProcessID | Arrival Burst Completion Turn Around| Waiting
Time(ms) | Time Time (Ms) Time (ms) Time
(ms) (ns)
P1 0 6 6 6 0
P2 2 2 8 8 6
CSE, NRCM Page44




OPERATINGSYSTEM(23CS403)

P3 3 1 9 9 8
P4 4 9 18 18 9
P5 5 8 26 26 18
AverageTurnAroundTime=(6+8 +9+18 +26)/5=67 /5=13.4ms
AverageWaitingTime =(0 +6 +8+9 +18 )/ 5 =41/ 5=8.2ms
Example2(FCFS)

ProcessID ProcessName Burst Time

P AW 9

P2 B 2

P3 (& 3

P4 D 1

P5 E 25

P6 F 3
Processld | BurstTime CompletionTime | Turn Waiting

(BT) (CT) Around Time(WT)
Time(TAT)

P1 79 79 79 0
P2 2 81 81 79
P3 3 84 84 81
P4 1 85 85 84
P5 25 110 110 85
P6 3 113 113 110

AvgWaitingTime=(0 +79+81 +84 +85+110)/6 =73.17ms
AvgTurnAroundTime= (79 +81+84+85+110+113)/ 6=92 ms

CSE, NRCM




OPERATINGSYSTEM(23CS403)

Example3(SJF)

ProcessID Arrival Time BurstTime

PO
P1
P2
P3
P4
P5

OGN W EFE DN
(J'Ib\lN@wJ

NonPre-Emptive ShortestJobFirstCPUScheduling

GanttChart:
| P2 | PO P4 P5 P1 P3
0 2 5 9 14 20 27
ProcessID| Arrival Burst | Completion TurnAround Waiting
Time Time Time Time Time
TAT=CT-AT | WT=CT-BT

PO 1 3 5 4 1
P1 2 6 20 18 12
P2 0 2 2 2 0
P3 3 7 27 24 17
P4 2 4 9 7 4
P5 5 5 14 10 5

AverageWaitingTime=(1+12 +17 +0+5+4)/6=39/ 6=6.5 ms
AverageTurnAround Time=(4+18+2+24+7+10)/6=65/6=10.83ms Pre Emptive

Shortest Job First CPU Scheduling

Ganttchart:

| P2 | PO | P4 | P5 P4 P1 P3
0 2 5 6 8 11 17 24

CSE, NRCM Page46




OPERATINGSYSTEM(23CS403)

Arrival TurnAroundTime WaitingTime
Time TAT=CT-AT WT=CT-BT

PO 1 3 5 4 1
P1 2 6 17 15 9
P2 0 2 2 / 0
P3 3 7 24 21 14
P4 2 4 11 9 5
P5 6 2 8 2 0
AverageTurn AroundTime =(4 +15+2 +21+9+2 )/ 6=53/ 6= 8.83 ms
AverageWaitingTime =(1+9+0 +14+5+0)/6 =29/ 6= 4.83 ms
Example4(PRIORITY)

S.No  ProcessIiD ArrivalTime BurstTime Priority

1 PL o 5 5

2 P2 1 6 4

3 P3 2 2 0

4 P4 3 il 2

5 P5 4 7 1

6 P6 4 6 3
(5has theleastpriorityand Ohas thehighest priority)
Solution:
Gantt
Chart:

P1 P3 P5 P4 P6 P2
0 5 7 14 15 21 27
CSE, NRCM Page47




OPERATINGSYSTEM(23CS403)

Process | Arrival Priority |Completion| TurnAround Waiting

Id Time Time Time
TAT=CT-AT | WT=TAT-

BT

P1 0 5 5 5 5 0

P2 1 6 4 27 26 20

P3 2 2 0 i 5 3

P4 3 1 2 15 12 11

P5 4 7 1 14 10 3

P6 4 6 3 21 17 11

AvgWaiting Time =(0+20+3 +11+3 +11)/ 6 =48/ 6=8 ms

AvgTurnAroundTime=(5 +26+5 +11+ 10 +17)/ 6=74 / 6=12.33ms

Example5(RoundRobin)

TimeQuantum=1 ms

ProcessID Arrival Time Burst Time
PO 1. 3
P1 0 )
P2 3 2
P3 4 3
P4 2 1
Solution:
Ganttchart:
lpilro P4 ]P0 |P2 [P3 P1
o 1 2 3 5 7 10 14

CSE, NRCM Page48




OPERATINGSYSTEM(23CS403)

ProcessID| Arrival Burst Completion Turn Waiting
Time Time Time AroundTime| Time
PO 1 3 5 4 1
P1 0 5 14 14 9
P2 3 2 1 4 2
P3 4 3 10 6 3
P4 2 1 3 1 0

AvgTurnAroundTime=(4+14+4+6+1)/5=5.8 ms
AvgWaitingTime =(1+9+2+3+0)/5=3 ms

DEADLOCK
Aprocessinoperatingsystemusesresourcesinthefollowingway.
0] Requestsaresource
(i)  Usetheresource
(i)  Releasestheresource
A deadlock is a situation where a set of processes are blocked because each processis
holding a resource and waiting for another resource acquired by some other process.
Consider an example when two trains are coming toward each other on the same
track and there is only one track, none of the trains can move once they arein front of
each other.

A similar situation occurs in operating systems
when there are two or more processes that holdsome
resources and wait for resources heldby other(s). For
example, in the below diagram, Processl is holding
Resourcel and waiting for Rsource2 which is acquired
by Process2, and Process2 is waiting for Resourcel.

ExamplesofDeadlock
1. Thesystemhas2tapedrives.PlandP2eachholdonetapedriveandeachneeds

CSE, NRCM

Page49




OPERATINGSYSTEM(23CS403)

anotherone.
2. SemaphoresAandB,initializedto1,P0,andPlarein deadlock
as follows: PO P1
POexecuteswait(A)andpreempts.P1 executes ) )
Wait(B). wait(A);  wait(B)

NowP0andP1enterindeadlock. _ )
wait(B);es wait(A)
3. Assumethespaceisavailableforallocationof200Kbyt sequence ndthefo llowing

of events occurs.
PO P1

Request  Request
80KB; 70KB;

Request  Request
60KB; 80KB;

Systemmodel:

A system consists of a finite number of resources to be distributed
amonganumberofcompetingprocesses. The resources are partitioned into several types, each
consisting of some
number
ofidenticalinstances.Memoryspace,CPUcycles, files,I/Odevicesareexamplesofresourcetypes.fa
systemhas2CPUs,thenthe resourcetypeCPU has 2instances.

Aprocessmustrequestaresourcebeforeusingitandmustreleasetheresourceafterusing
it. Aprocessmayrequestasmanyresourcesasitrequirestocarryoutitstask. Thenumber
ofresourcesasitrequirestocarryoutitstask. Thenumberofresourcesrequestedmaynot
exceedthetotalnumberofresourcesavailableinthesystem. Aprocesscannotrequest3 printers if
thesystemhas onlytwo.
Aprocessmayutilizearesourceinthefollowingsequence:
U] REQUEST: The process requests the resource. If the request cannot be granted
immediately(iftheresourceisbeingusedbyanotherprocess),thentherequestingprocessmustwaituntil
itcan
acquiretheresource.
D) USE: The processcanoperateonthe  resource.ifthe  resourceisa  printer,the
processcanprintontheprinter.
(111) RELEASE:Theprocessreleasestheresource.
For each use of a kernel managed by a process the operating system checks that the process
hasrequested and has been allocated the resource. A system table records whether eachresource
isfree (or) allocated. For each resource that is allocated, the table also records the process to
whichitisallocated. Ifaprocessrequestsaresourcethatiscurrentlyallocatedtoanother process,
itcanbe addedtoa queueofprocesses waitingforthis resource.

CSE, NRCM Page50




OPERATINGSYSTEM(23CS403)

Toillustrateadeadlockedstate,considerasystemwith3CDRWdrives.Eachof3

CSE, NRCM

Page51




OPERATINGSYSTEM(23CS403)

processesholdsoneoftheseCDRW(drives. Ifeachprocessnowrequestsanotherdrive,the3processesw

ill be in a deadlocked state. Each is waiting for the event “CDRW is released” which can
becaused only by one of the other waiting processes. This example illustrates a deadlock
involvingthe sameresourcetype.

Deadlocks may also involve different resource types. Consider a system with one printer and
oneDVD drive. The process Pi is holding the DVD and process Pj is holding the printer. If
PirequeststheprinterandPjrequests the DV Ddrive,a deadlockoccurs.

NECESSARYCONDITIONSFORDEADLOCK
» MutualExclusion
Twoormoreresourcesarenon-shareable(Onlyoneprocesscanuse at a time)

» HoldandWait
Aprocessisholdingatleastoneresourceandwaitingforresources.
» NoPre-emption
A resource cannot be taken from a process unless the processreleases the
resource.

» CircularWait
Asetofprocesseswaitingforeachotherincircularform.

ResourceAllocationGraph
The resource allocation graph is the pictorial representation of the state of a

system. As its name suggests, the resource allocation graph is the complete information
about all the processes which are holding some resources or waiting for some resources.

Italsocontainstheinformationaboutalltheinstancesofalltheresources whether they
are available or being used by the processes.

In Resource allocation graph, the process is represented by a Circle while the
Resource is represented by a rectangle.

Vertices are mainly of two types, Resource and Process. Each of them will be
represented by a different shape. Circle represents process while rectanglerepresents
resource. A resource can have more than one instance. Each instance will be represented
by a dot inside the rectangle.

EdgesinRAGarealsooftwotypes,  one S,
represents Assignment Edge and other '._.__P"""'ss__.,.'
represents the wait of a process for a resource :

ie.Request Edge.
A resource is shown as assigned to a

process if the tail of the arrow is attached to an — Resource

instanceto theresource andtheheadis attached to

a process. Resource is assigned  Frocess is requesting
to process for a resource

CSE, NRCM Page52




OPERATINGSYSTEM(23CS403

1)

A process is shown as waiting for a resource if the tail of an arrow is attached to
the process while the head is pointing towards the resource.

Example

Consider 3 processes P1, P2 and P3 and two
types of resources R1 and R2. The resources are having o @ e
1 instance each.

According to the graph, R1 is being used by P1,
P2 is holding R2 and waiting for R1, P3 iswaiting forR1
as well as R2. 4) \3
The graph is deadlock free since no cycle is
being formed in the graph. R1 R2

Using Resource Allocation Graph, it can be easily detected whether systemis in a
Deadlock state or not. The rules are

Rule-01:InaResourceAllocationGraphwherealltheresourcesaresingleinstance,
» If acycleis beingformed,thensystemis inadeadlockstate.
» If nocycleisbeingformed,thensystemisnotinadeadlock state.

Rule-02:InaResourceAllocationGraphwherealltheresourcesareNOTsingle instance,
» Ifacycleisbeingformed, thensystemmaybe inadeadlockstate.

» Banker’s Algorithmis applied to confirm whether system is in a deadlockstateor
not.

» Ifnocycleisbeingformed,thensystemisnotinadeadlock state.

» Presenceofacycleisanecessarybutnotasufficientconditionforthe occurrence of
deadlock.

METHODSFORHANDLINGDEADLOCK
Therearethreewaystohandledeadlock
Deadlockpreventionoravoidance
PREVENTION
Theideaistonotletthesystemintoadeadlockstate. Thissystemwillmake surethat
abovementioned fourconditions will notarise. Thesetechniques areverycostly so we use
this in cases where our priority is making a system deadlock-free.
One can zoom into each category individually, Prevention is done by negatingone
of the four necessary conditions for deadlock.

CSE, NRCM

Page53



https://www.gatevidyalay.com/bankers-algorithm-deadlock-avoidance/

OPERATINGSYSTEM(23CS403)

Eliminatemutualexclusion
It is not possible to dis-satisfy the mutual exclusion because some resources, such as
the tape drive and printer, are inherently non-shareable.

SolveholdandWait

Allocate all required resources to the process before the start of its execution, thisway
hold and wait condition is eliminated but it will lead to low device utilization. for
example, if a process requires a printer at a later time and we have allocated a printer
before the start of its execution printer will remain blocked tillit has completed its
execution. The process will make a new request for resources after releasing the current
set of resources. This solution may lead to starvation.

Allowpre-emption
Preempt resources from the process when resources are required by otherhigh-
priorityprocesses.

CircularwaitSolution

Each resource will be assigned a numerical number. A process can request the
resources to increase/decrease. order of numbering. For Example, if the P1 process is
allocated R5 resources, now next time ifP1 asks for R4, R3 lesser than R5 such a request
will not be granted, only a request for resources more than R5 will be granted.

AVOIDANCE

Avoidance is kind of futuristic. By using the strategy of “Avoidance”, we have to
make an assumption. We need to ensure that all information about resources that the
process will need is known to us before the execution of the process.

ResourceAllocationGraph

The resource allocation graph (RAG) is used to visualize the system®s current
state as a graph. The Graph includes all processes, the resources that are assignedtothem,
as well as the resources that each Process requests. Sometimes,if there are fewer
processes, we can quickly spot a deadlock in the system by looking at the graph rather
than the tables we use in Banker"s algorithm.
Banker’sAlgorithm

Bankers™s Algorithm is a resource allocation and deadlock avoidance algorithm
whichtestalltherequestmadebyprocessesforresources,itchecksfor the safestate, and after
granting a request system remains in the safe state it allows the request, and if there is no
safestateit doesn“t allow the request madeby the process.

Inprevention andavoidance,we get thecorrectness ofdatabutperformance

CSE, NRCM Page54




OPERATINGSYSTEM(23CS403)

decreases.

2) Deadlockdetectionandrecovery
IfDeadlockpreventionoravoidanceisnotappliedtothesoftwarethenwecan handle this

by deadlock detection and recovery,which consist of two phases.
Inthefirstphase,weexaminethestateoftheprocessandcheckwhether there is a
deadlock or not in the system.
If found deadlock in the first phase then we apply the algorithmfor recovery of
the deadlock.

3) Deadlockignorance:

If a deadlock is very rare, then let it happen and reboot the system. This is the
approachthatbothWindowsandUNIXtake.Weusetheostrichalgorithm for deadlock
ignorance.

In Deadlock, ignorance performance is better than the abovetwo methods but not
the correctness of data.

SAFESTATE
A safe state can be defined as a state in which there is no deadlock. It is
achievable if:

» If a process needs an unavailable resource, it may wait until the same has been
released by a process to which it has already been allocated. if such a sequence
does not exist, it is an unsafe state.

» Alltherequestedresourcesareallocatedtotheprocess.

BANKER'SALGORITHM

Itisabankeralgorithmusedto avoiddeadlock and allocate resourcessafely to each
process in the computer system. The 'S-State'examines all possible testsor activities
before decidingwhether the allocation should be allowed to each process. It also helps the
operating system to successfully sharethe resources between all the processes.

The banker's algorithm is named because it checks whether a person shouldbe
sanctioned a loan amount or not to help the bank system safely simulate allocation
resources.

Suppose the number of account holders in a particular bank is 'n’, and the total
moneyin abank is "T'. If an account holder applies foraloan; first, thebank subtracts the
loan amount from full cash and then estimates the cash difference is greaterthanTto
approvetheloanamount. Thesestepsaretakenbecauseifanotherpersonapplies for a loan or
withdraws some amount from the bank, it helps the bank manage andoperate all things
without any restriction in the functionalityof the banking system.

Similarly, it works in an operating system. When a new process is created in a
computersystem,theprocessmustprovidealltypesofinformationtothe

CSE, NRCM Page55



https://www.javatpoint.com/operating-system

OPERATINGSYSTEM(23CS403)

operating system like upcoming processes, requests for their resources, counting them,
and delays.

Based on these criteria, the operating system decides which process sequence
should be executed or waited so that no deadlock occurs in a system. Therefore, it is also
knownasdeadlock avoidancealgorithmordeadlockdetection in theoperating system.

Whenworkingwithabanker'salgorithm,itrequeststoknowaboutthree things:

1. Howmucheachprocesscanrequestforeachresourceinthesystem.ltis denoted by the
[MAX] request.

2. Howmucheachprocessiscurrentlyholdingeachresourceinasystem.Itis denoted by
the [ALLOCATED] resource.

3. lItrepresentsthenumberofeachresourcecurrently availableinthesystem.lt is denoted
by the [AVAILABLE] resource.

Following are the important data structures terms applied in the banker's algorithm as
follows:

Suppose n is the number of processes, and m is the number of each type of resource
used in a computer system.

1. Available: It is an array of length 'm' that defines each type of resource available
in the system. When Available[j] = K, means that 'K' instances of Resources type
R[j] are available in the system.

2. Max: Itis a[n x m] matrix that indicates each process P[i] can store themaximum
number of resources R[j] (each type) in a system.

3. Allocation: It is a matrix of m x n orders that indicates the typeof resources
currently allocated to each process in the system. When Allocation [i, j] = K, it
means that process P[i] is currently allocated K instances of Resources type R[j]in
the system.

4. Need: It is an M x N matrix sequence representing thenumberof remaining
resources for each process. When the Need[i] [j] = k,then process P[i] may require
K more instances of resources type Rj to complete the assigned work.
Need[i][j]J=Max[i][j]-Allocation[i][j].

5. Finish: It is the vector of the order m. It includes a Boolean value (true/false)
indicating whether the process has been allocated to the requested resources, and
all resources have been released after finishing its task.

CSE, NRCM Page56




OPERATINGSYSTEM(23CS403)

TheBanker'sAlgorithmisthecombinationofthesafetyalgorithmandtheresource request
algorithm to control the processes and avoid deadlock.
Safety Algorithm
Itisasafetyalgorithmusedtocheckwhetherornotasystemisinasafestate or follows the
safe sequence in a banker's algorithm:

Stepl:
There are two vectorsWokandFinishof length m and n in a safetyalgorithm. Initialize:
Work = Available
Finish[i]=false;forl=0,1,2, 3, 4... n -1.

CSE, NRCM Page57




OPERATINGSYSTEM(23CS403)

Step2:
Checktheavailabilitystatusforeachtypeofresources[i],suchas: Need[i] <= Work

Finish[i]==false
Iftheidoesnotexist,gotostep4. Step3:

Step4:
Work = Work +Allocation(i) /ltogetnewresourceallocation

Finish[i] = true
Gotostep2tocheckthestatusofresourceavailabilityforthenextprocess.If Finish[i] ==true;

it means that the system is safe for all processes.

ResourceRequestAlgorithm
LetcreatearesourcerequestarrayR[i]foreachprocessP[i].
Stepl:
Whenthenumberofrequestedresources ofeachtypeislessthan
the Need resources, go to step2 and if the condition fails, which means that the
processP[i] exceeds its maximum claim for the resource. As the expressionsuggests:
IfRequest(i)<=Need,thengotostep2,Elseraiseanerror message.
Step2:
Andwhenthenumberofrequestedresourcesofeachtypeislessthanthe
availableresourceforeachprocess,gotostep(3).Astheexpressionsuggests: If Request(i) <=
Available, then go to step3.
ElseProcess P[i] mustwaitfortheresource.

Step3:
Whentherequestedresourceisallocatedtotheprocessbychangingstate: Available =

Available — Request
Allocation(i)=Allocation(i)+Request(i) Need; =
Needi- Request;

When the resource allocation state is safe, its resources are allocated to theprocess
P(i). And if the new state is unsafe, the Process P (i) has to wait for each type of Request
R(i) and restore the old resource-allocation state.

CSE, NRCM Page58




OPERATINGSYSTEM(23CS403)

Example:

Consider a system that contains five processes P1, P2, P3, P4, P5 and the three
resource types A, B and C. Following are the resources types: A has 10, B has 5 and the
resource type C has 7 instances.

Process | A Allocation A Max c | o Available -
B C B B

P1 01 0 7 5 3 3 3 2

P2 2 0 0 3 2 2

P3 30 2 9 0 2

P4 21 1 2 2 2

P5 00 2 4 3 3

Answerthefollowingquestionsusingthebanker'salgorithm:
1. Whatisthe referenceoftheneed matrix?
2. Determineifthesystemissafeor not.

3. Whatwillhappeniftheresourcerequest(1,0,2)forprocessP1canthe system accept this
request immediately?

4. Whatwill happeniftheresourcerequest(3,3,0)forprocessP5?
5. Whatwill happeniftheresourcerequest(0,2,0)forprocessP1?

Ans.1:
Contextoftheneedmatrix isasNeed [i]=Max[i]-Allocation [i]
NeedforP1: (7,5,3)-(0,1,0)=7, 4,3

NeedforP2: (3,2, 2)-(2,0,0)=1, 2,2 Process Need

NeedforP3: (9,0, 2)-(3,0,2)=6, 0,0 A B C

NeedforP4: (2,2, 2)-(2,1,1)=0, 1,1

NeedforP5: (4,3, 3)-(0,0,2)=4, 3,1 P1 7 4 3
P2 1 2 2
P3 6 0 0
P4 0 1 1
P5 4 3 1

CSE, NRCM Page59




OPERATINGSYSTEM(23CS403)

Ans.2:ApplytheBanker'sAlgorithm:
AvailableResourcesofA,BandCare3, 3,and 2.
Nowwecheckifeachtypeofresourcerequestisavailableforeachprocess.

Stepl:

Step2:

Stepa3:

Step4:

Step5:

ForProcessP1:

Need<=Available
7, 4,3 <=3, 3, 2 condition is false.
So,we examine another process, P2.

ForProcessP2:

Need<=Available

1,2, 2<=3,3, 2conditiontrue

New available = available + Allocation(3,
3,2)+(2,0,0)=>5,3,2
Similarly,weexamineanotherprocessP3.

ForProcessP3:

P3Need<= Available
6,0, 0< =5, 3,2 condition is false.
Similarly,we examine another process, P4.

ForProcessP4:

P4Need<= Available

0,1, 1<=5,3, 2conditionis true
NewAvailableresource=Available+Allocation5,3, 2 +
2,1,1=>7,4,3
Similarly,weexamineanotherprocessP5.

ForProcessP5:

P5Need<= Available

4,3, 1<=7,4, 3conditionis true

New available resource= Available+Allocation7, 4, 3
+0,0,2=>7,4,5
Now,weagainexamineeachtypeofresourcerequestforprocesses P1 and P3.

CSE, NRCM

Page60




OPERATINGSYSTEM(23CS403)

Step6:
ForProcessP1:
P1Need<= Available
7,4, 3<=7,4, 5conditionis true
NewAvailableResource=Available+Allocation7,4, 5 +
0,1,0=>7,5,5
So,weexamineanotherprocessP2.
Step7:
ForProcessP3:
P3Need<= Available
6,0, 0<=7,5, 5conditionistrue
NewAvailableResource=Available+Allocation7,5, 5 +
3,0,2=>10,5,7
Hence,weexecutethebanker'salgorithmtofindthesafestateandthesafe sequence like
P2, P4, P5, P1 and P3.

Ans.3:
ForgrantingtheRequest (1,0,2),firstwehavetocheck that
Request <= Available, that is (1, 0, 2)<= (3, 3,2), Since
the condition is true, the process P2mayget

therequestimmediately.
AllocationforP2is(3,0,2)andnewAvailableis (2, 3, 0) Process Need
Contextoftheneedmatrixisasfollows: Need [i] a £ ©
= Max [i] - Allocation [i] p1 7 4 3
NeedforP1: (7,5,3)-(0,1,0)=7, 4,3
NeedforP2:(3,2, 2)-(3, 0,2)=0, 2,0 P2 0 2 0
NeedforP3: (9,0, 2)-(3,0,2)=6, 0,0
NeedforP4: (2,2, 2)-(2,1,1)=0, 1,1 P3 6 0 0
NeedforP5: (4,3, 3)-(0,0,2)=4, 3,1 P2 0 1 1
PS5 4 3 1

ApplytheBanker's Algorithm:
AvailableResourcesofA,BandCare 2, 3,and0.
Nowwecheckifeachtypeofresourcerequestisavailableforeachprocess.

CSE, NRCM Page61




OPERATINGSYSTEM(23CS403)

Stepl:
ForProcessP1:
Need<=Auvailable
7, 4,3 <=2, 3,0 condition is false.
So,we examine another process, P2.
Step2:
ForProcessP2:
Need<=Available
1,2, 2<=2, 3, Oconditiontrue
New available = available + Allocation(2,
3,00+(3,0,2)=>5,3,2
Similarly,weexamineanotherprocessP3.
Step3:
ForProcessP3:
P3Need<= Available
6, 0,0 <=5, 3, 2 condition is false.
Similarly,we examine another process, P4.
Step4:
ForProcessP4:
P4Need<= Available
0,1, 1<=5,3, 2conditionis true
NewAvailableresource=Available+Allocation5,3, 2 +
2,1,1=>7,4,3
Similarly,weexamineanotherprocessP5.
Step5:
ForProcessP5:
P5Need<= Available
4,3, 1<=7,4, 3conditionis true
Newavailableresource=Available+Allocation7, 4, 3 +
0,0,2=>7,4,5
Now,weagainexamineforprocessesPlandP3.
Step6:
ForProcessP1.:
P1Need<= Available
7,4, 3<=7,4, 5conditionis true
NewAvailableResource=Available+Allocation7,4, 5 +
0,1,0=>7,5,5
So,weexamineanotherprocessP2.
CSE, NRCM Page62




OPERATINGSYSTEM(23CS403)

Step7:
ForProcessP3:
P3Need<= Available
6,0, 0<=7,5, 5conditionistrue
NewAuvailableResource=Available+Allocation7,5, 5 +
3,0,2=>10,5,7
Hence,P2grantedimmediatelyandthesafesequencelikeP2,P4,P5,P1and
P3.

Ans.4:
Forgrantingthe Request (3,3, 0) byP5, firstwehavetocheck that
Request<= Available, thatis(3,3, 0)<=(2, 3,0),
Sincetheconditionisfalse.Sotherequestfor(3,3,0)byprocessP5
cannotbe granted.

AnNs.5:

Forgrantingthe Request (0,2, 0) byP1, firstwehavetocheck that

Request<= Available, thatis(0,2, 0)<=(2, 3,0),

Sincetheconditionistrue.Sotherequestfor(0,2,0)byprocessP1maybe
granted.

Contextoftheneedmatrixisasfollows: Need [i] A B
= Max [i] - Allocation [i] C
NeedforP1: (7,5,3)-(0,3,0)=7, 2, 3

P1 7 2 3

ApplytheBanker's Algorithm:

AvailableResourcesofA,BandCare2,1, P2 0 2 0
ando. P3 6 0 0
ForProcess P1:7, 2,3<=2,1,0condition isfalse.
ForProcess P2:0, 2,0<=2,1,0condition isfalse. P4 0 1 1
ForProcess P3:6, 0,0<=2,1,0condition isfalse. PS5 4 3 1

ForProcessP4:0,1,1<=2,1,0condition is false.
ForProcessP5:4,3,1 <=2,1, Ocondition is false.

Hence,thestateisunsafe,P1cannotbegrantedimmediately.

CSE, NRCM Page63




OPERATINGSYSTEM(23CS403)

DEADLOCKDETECTION
Ifasystemdoesnotemployeitheradeadlockpreventionordeadlockavoidance algorithm
then a deadlock situation may occur. In this case-
» Applyanalgorithmtoexaminethesystem sstatetodeterminewhetherdeadlock has
occurred.

» Applyanalgorithm torecoverfromthe deadlock.

Adeadlockdetection algorithm is atechniqueused byan operatingsystem to identify
deadlocks in the system. This algorithm checks the status of processes andresources to
determine whether any deadlock has occurred and takes appropriate actions to recover
from the deadlock.

Thealgorithmemploysseveraltimesvaryingdata structures:

Available-Avectoroflengthmindicatesthenumberofavailableresourcesof each type.

Allocation — An n*m matrix defines the number of resources of each type

currentlyallocated to a process. The column represents resource and rows represent a

process. Request-Ann*mmatrixindicatesthecurrentrequestofeachprocess. If

request[i][j] equals k then process Piis requesting k more instances of resource type

R;.

The Bankers algorithm includes a Safety Algorithm / Deadlock Detection
Algorithm. The algorithm for finding out whether a system is in a safe state canbe
described as follows:

Stepsof Algorithm:
1. Let Work and Finish be vectors of length m and n respectively.

Initialize Work= Available. For =0, 1, ...., n-1,

if Requesti= 0, then Finish[i] = true;

otherwise, Finish[i]= false.

2. Findanindexisuchthatboth

a) Finish[i]==false

b) Requesti<=Work

Ifnosuchiexistsgotostep4.

3. Work=Work+AllocationiFin

ish[i]= true

GotoStep 2.

4. If Finish[i]==false forsomei,0<=i<n,thenthesystemisinadeadlockedstate. Moreover,
if Finish[i]==false the process Piis deadlocked.

CSE, NRCM Page64




OPERATINGSYSTEM(23CS403)

Forexample,
Allecation Regues Available
A B C A B C A B C
PO 0 1 0 0 0
P1 2.0 0 2 0 2
P2 3 0 g 0 )
P3 Z 9 1
P4 3 O 2 00 2
1. Inthis, Work =[0,0, 0]&

Finish=[false,false,false,false,false]

2. i=0isselectedasbothFinish[0]=falseand[0,0,0]<=[0,0,0].3.
Work=[0, 0, 0]+[0,1,0]=>[0, 1, 0]&
Finish=[true,false,false,false,false].

4. i=2isselectedasbothFinish[2]=falseand[0,0,0]<=[0,1,0].5.
Work=[0, 1, 0]+[3,0,3]=>[3, 1, 3]&
Finish=[true,false,true,false,false].

6. i=1lisselectedasbothFinish[1]=falseand[2,0,2]<=[3,1,3].7.
Work=[3, 1, 3]+[2,0,0]=>[5, 1, 3]&

Fini

sh=[true,true,true,false,false].

8. i=3isselectedasbothFinish[3]=falseand[1,0,0]<=[5,1,3].9.
Work=[5, 1, 3]+[2,1,1]=>[7, 2, 4]&

Fini

10.

sh=[true,true,true,true,false].

i=4isselectedasbothFinish[4]=falseand[0,0,2]<=[7,2,4].11.

Work=[7, 2, 4]+[0,0,2]=>[7, 2, 6]&

Fini

12.

sh=[true,true,true,true,true].

SinceFinishisavectorofalltrueitmeansthereisnodeadlockinthis example.

CSE, NRCM

Page65




OPERATINGSYSTEM(23CS403)

There areseveralalgorithmsfor detectingdeadlocksinanoperating system,including:

1. Wait-ForGraph:

A graphical representation of the system™s processes and resources. A directed edgeis
created from a process to a resource if the process is waiting for that resource. A cycle in
the graph indicates a deadlock.

2. Banker’sAlgorithm:
A resource allocation algorithm that ensures that the system is always in a safe state,
where deadlocks cannot occur.

3. ResourceAllocation Graph:

A graphical representation of processes and resources, where a directed edge from a
processto a resourcemeansthatthe processis currentlyholdingthat resource. Deadlocks can
be detected by looking for cycles in the graph.

4. DetectionbySystemModeling:
A mathematical model of the system is created, and deadlocks can be detected by
finding a state in the model where no process can continue to make progress.

5. Timestamping:
Each process is assigned a timestamp, and the system checks to see if any process
is waiting for a resource that is held by a process with a lower timestamp.

These algorithms are used in different operating systems and systems with
different resource allocation and synchronization requirements. The choice ofalgorithm
depends on the specific requirements of the system and the trade-offs between
performance, complexity and accuracy.

R1 «—— P1 €«——— R2
2 \
- » —>

/ :
P1 P3
| ~ /
R& —»/ P3 — » R3

Resource Allocation Graph Wait-For graph

CSE, NRCM Page66




OPERATINGSYSTEM(23CS403)

RECOVERYFROMDEADLOCK

The OS will use various recoverytechniques to restore the system if it encounters
any deadlocks. When a Deadlock Detection Algorithm determines that a deadlock has
occurred in the system, the system must recover fromthat deadlock.

ApproachestoBreaking aDeadlock

(a) ProcessTermination

To eliminate the deadlock, we can simplykill one or more processes. For this, weuse
two methods:

1. AbortalltheDeadlocked Processes:

Abortingalltheprocesseswillcertainlybreakthe deadlockbut atagreat expense. The
deadlocked processes may have been computed for a long time, and the result of
those partial computations must be discarded and there is a probability ofrecalculating
them later.

2. Abortoneprocess atatimeuntil thedeadlock is eliminated:

Abort one deadlocked process at a time, until the deadlock cycle is eliminated
from the system. Due to this method, there may be considerable overhead, because,
after aborting each process, we have to run a deadlock detection algorithm to check
whether any processes are still deadlocked.

(b) ResourcePreemption
To eliminate deadlocks using resource preemption, we preempt some resourcesfrom

processes and give those resources to other processes. This method will raise three issues
1. Selectingavictim:

Wemust determinewhichresourcesand whichprocesses areto bepreemptedand also
in order to minimize the cost.
2. Rollback:

We must determine what should be done with the process from which resources
are preempted. One simple idea is total rollback. Thatmeans aborting the processand
restarting it.

3. Starvation:

In a system, it may happen that the same process is always picked as avictim. As a
result, that process will never complete its designated task. This situation is called
Starvation and must be avoided. One solution is that aprocess must be picked as a
victim only a finite number of times.

CSE, NRCM Page67




OPERATINGSYSTEM(23CS403)

UNIT-3

ProcessManagementandSynchronization-
Thecriticalsectionproblems,Synchronizationhardware,Semaphore, and Classical problems of
Synchronization, Critical region, Monitor.

Inter process communication Mechanism- IPC between process on a single computer system, IPC
between process on different system,Using Pipes, FIFOs, Message Queue, Shared memory

SYNCHRONIZATION

Process Synchronization is the coordination of execution of multiple processes in
a multi-process system to ensure that they access shared resources inacontrolled and
predictable manner. It aims to resolve the problem of race conditions and other
synchronization issues in a concurrent system.
Themainobjectiveofprocesssynchronizationistoensurethatmultiple processes
access shared resources without interfering with each other and to prevent the possibility
of inconsistent data due to concurrent access. To achieve this, various synchronization
techniques such as semaphores, monitors and critical sections are used.
On the basis of synchronization, processes are categorized as one of the followingtwo
types:
» Independent Process: The execution of one process does not affect the
execution of other processes.
» Cooperative Process: A process that can affect or be affected by other
processes executing in the system.

ProcesssynchronizationproblemarisesinthecaseofCooperativeprocesses also
because resources are shared in Cooperative processes.

RaceCondition

A race condition is a condition when there are many processes and every process
shares the data with each other and accessing the data concurrently and theoutput of
execution depends on a particular sequence in which they share the data and access.

(OR)

When more than one process is executing the same code or accessing the same
memoryor anyshared variable in that condition there is a possibilitythat theoutput or the
value of the shared variable is wrong so for that all the processes doing the race to saythat
my output is correct. This condition is known as race condition.

Several processes access and process the manipulations over the same data
concurrently, then the outcome depends on the particular order in which the accesstakes
place.

CSE, NRCM Page68




OPERATINGSYSTEM(23CS403)

Example:

Let™s say there are two processes P1 and P2 which share common variable
(shared=10), both processes are present in ready — queue and waiting for its turn tobe
execute.

Suppose, Process P1 first come under

execution, initializedasX=10andincrementitoy Processl Process2

1 (ie.X=11), after then when CPU read line

sleep(1), it switches from current process P1 to  intX=shared intY=shared
processP2 present in ready-queue. The processP1

goes in waiting state for 1 second. X++ Y--

Now CPU execute the Process P2,
initialized Y=10 and decrement Yby 1(ie.Y=9),

after then when CPU read sleep(l), the current  Sleep(1) sleep(1)
process P2 goes in waiting state andCPU remains

idle for sometime as there is no process in ready-  shared= X shared=Y
queue.

After completion of 1 second of process P1 when it comes in ready-queue, CPU
takes the process P1 under execution and execute the remaining line of code and
shared=11.

After completion of 1 second of Process P2, when process P2 comes in ready-
queue, CPU start executing the further remaining line of Process P2 and shared=9.

Note:

Weareassumingthefinalvalueofcommonvariable(shared)after
execution of Process P1 and Process P2 is 10 (as Process P1 increment variable byl and
ProcessP2decrementvariablebylandfinallyitbecomesshared=10). But  wearegetting
undesired value due to lack of proper synchronization.

Actualmeaningofrace-condition

» If the order of execution of process (first P1 -> then P2) then we will get thevalue
of common variable (shared) = 9.

» If the order of execution of process (first P2 -> then P1) then we will get thefinal
value of common variable (shared) =11.

Basically, Here the (valuel = 9) and (value2=11) are racing , If we execute these two

process in our computer system then sometime we will get 9 and sometime we will

get 10 as final value of common variable(shared). This phenomenon is called Race-

Condition.

CSE, NRCM

Page69




OPERATINGSYSTEM(23CS403)

CRITICALSECTIONPROBLEM

A critical section is acode segment that can be accessed byonlyone process at a
time. The critical section contains shared variables that need to be synchronised to
maintain the consistency of data variables. So the critical section problem means
designing a way for cooperative processes to access sharedresources without creating
data inconsistencies.

Intheentrysection, theprocessrequestsforentryintheCritical Section.
Anysolutiontothecriticalsection problemmustsatisfythreerequirements:

» Mutual Exclusion: If a process is executing in its critical section, then no other
process is allowed to execute in the critical section.

» Progress: If no process is executing in the critical section and other processes are
waiting outside the critical section, then only those processes that are not
executingintheirremaindersectioncanparticipateindecidingwhichwillenterin ~ the
critical section next, and the selection can“t be postponed indefinitely.

» Bounded Waiting: A bound must exist on the number of times that other
processes are allowed to enter their critical sections after aprocess hasmade a
request to enter its critical section and before that request is granted.

PETERSON’SSOLUTION
Peterson“sSolutionisaclassicalsoftware-basedsolutiontothecriticalsectionproblem. In
Peterson®s solution, we have two shared variables:
» boolean flag[i]: Initialized to FALSE, initially no one is interested inentering the
critical section
» intturn: Theprocesswhoseturnistoenterthecritical section.

/lcodeforproduceri
do

{
flag[i]=true;turn
=)
while(flag[j]==true&&turn==j);
criticalsection
flag[i]=false;
remindersection
Jwhile(TRUE);

CSE, NRCM Page70




OPERATINGSYSTEM(23CS403)

/lcodeforconsumerj
do

{
flag[j]=true;turn
=l
while(flag[i]==true&&turn==i);
criticalsection
flag[i]=false;
remindersection
while(TRUE);

In the solution, i represents the Producer and j represents the Consumer. Initially,
the flags are false. When a process wants to execute it™s critical section,it sets its flag to
true and turn into the index of the other process. This means that the process wants to
execute but it will allowthe other process to run first. The process performs busy waiting
until the other process has finishedit“sown critical section. Afterthis, the current process
enters its critical section and addsor removes a random number from the shared
buffer.Aftercompletingthe critical section, it sets it“s own flag to false, indicating it does
not wish to execute anymore.

Peterson’sSolutionpreservesallthreeconditions:

» MutualExclusionisassuredasonlyoneprocesscanaccessthecriticalsection at any
time.

» Progressisalsoassured,asaprocessoutsidethecriticalsectiondoesnotblock other
processes from entering the critical section.

» BoundedWaitingispreservedaseveryprocessgets afairchance.

DisadvantagesofPeterson’sSolution
» Itinvolves busywaiting.
» Itislimitedto2processes.

» PetersonssolutioncannotbeusedinmodernCPUarchitectures.

SynchronizationHardware

» ProblemsofCriticalSectionarealsosolvablebyhardware.

« Uniprocessor systems disables interrupts while a Process Pi isusing the CS but it is
a great disadvantage in multiprocessorsystems

CSE, NRCM Page71




OPERATINGSYSTEM(23CS403)

« Some systems provide a lock functionality where a Processacquires a lock while
enteringthe CS and releases thelockafterleavingit. Thus another process tryingto enter
CS cannotenteras the entry is locked. It can only do so if it is free
byacquiringthelockitself

 AnotheradvancedapproachistheAtomiclnstructions(Non-Interruptibleinstructions).

MUTEXLOCKS

 Asthesynchronizationhardwaresolutionisnot easytoimplement from everyone, a
strict software approachcalledMutex Locks was introduced. In this approach,
intheentry  section of code, a LOCK is acquired over
thecriticalresourcesmodifiedand used insidecriticalsection,andintheexitsection
thatLOCK:isreleased. As the resource is locked while a process executes
itscritical sectionhenceno otherprocess canaccess

SEMAPHORES
Semaphore is a Hardware Solution. This Hardware solution is written or given to
critical section problem. The Semaphore is just a normal integer. The Semaphore cannot
be negative. The least value for a Semaphore is zero (0). The Maximum value of a
Semaphore can be anything. The Semaphores usually have two operations. The two
operations have the capability to decide the values of the semaphores.
ThetwoSemaphoreOperationsare:
1. Wait()

2. Signal()

WaitSemaphoreOperation
The Wait operation works on the basis of Semaphore or Mutex Value.lf the
Semaphore value is greater than zero, then the Process can enter the Critical SectionArea.
IftheSemaphorevalueisequaltozerothentheProcesshasto wait.
IftheprocessexitstheCriticalSection,thenhavetoreducethevalueof Semaphore.

Definitionofwait()

wait(SemaphoreS)

{
while (S<=0) ; /Inooperation
S

¥

SignalSemaphoreOperation
ThemostimportantpartisthatthisSignalOperationorVVFunctionisexecuted

CSE, NRCM Page72




OPERATINGSYSTEM(23CS403)

only when the process comes out of the critical section. The value of semaphore
cannotbe incremented before the exit of process from the critical section.

Definitionofsignal()
signal(S)

S++;

}

Therearetwotypesofsemaphores:
» BinarySemaphores:

Theycan onlybeeither0 orl. Theyare also knownas mutex locks, as the
locks can provide mutual exclusion. All the processes can share the same mutex
semaphore that is initialized to 1. Then, a process has to wait until the lock
becomes 0. Then, the process can make the mutex semaphore 1 and start its
critical section. When it completes its critical section, it can reset the value of the
mutex semaphore to 0 and some other process can enter its critical section.

» Counting Semaphores:

They can have any value and are not restricted over acertain domain. They
can be used to control access to a resource that has a limitation on the number of
simultaneous accesses. The semaphore can be initialized to the number of
instances of the resource. Whenever a process wants to use that resource, it checks
if the number of remaining instances is more than zero, i.e., the processhas an
instance available. Then, the processcan enter its critical section thereby
decreasing the value of the counting semaphore by 1. After the process is over
with the use of the instance of theresource, it can leave the critical section thereby
adding 1 to the number of available instances of the resource.

CLASSICALPROBLEMSOFSYNCHRONIZATION

Thefollowingproblemsofsynchronizationareconsideredasclassicalproblems:
1. Bounded-buffer(orProducer-Consumer)Problem,
2. Dining-PhilosophersProblem,
3. ReadersandWritersProblem,

Bounded-buffer(orProducer-Consumer)Problem

Bounded Bufferproblem is also called producerconsumerproblem and itis one
of the classic problems of synchronization. This problem is generalized in termsofthe

CSE, NRCM Page73



https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/

OPERATINGSYSTEM(23CS403)

producer

! I
Buffer of n siots
- CONSuUMSr

Producer-Consumer problem. Solution to this problem is, creatingtwocounting
semaphores “full” and “empty” to keep track of the current number of full and empty
buffers respectively. Producers produce a productand consumers consume the product,
but both use of one of the containers each time.

Aproducertriestoinsertdatainto anemptyslotofthebuffer.Aconsumer triesto
removedatafromafilled slotin thebuffer.Thereneedstobeawayto maketheproducer and
consumer work in an independent manner.

One solution of this problem is to use semaphores. The semaphores which will be
used here are:

» m,abinarysemaphorewhichisusedtoacquireandreleasethelock.

» empty,acountingsemaphorewhoseinitialvalueisthenumberofslots in the

buffer, since, initially all slots are empty.

» full,acountingsemaphorewhoseinitialvalueisO.

At anyinstant, the current value of empty represents the number of empty slotsin
the buffer and full represents the number of occupied slots in the buffer.

TheProducerOperation
do

{
wait(empty);
[Iwaituntilempty>0andthendecrement'empty'wait(mute
X); Il acquire lock

[*performtheinsertoperationinaslot*/

signal(mutex); // release lock
signal(full); /lincrement'full’

Jwhile(TRUE);

71 Looking at the above code for a producer, we can see that a producer
firstwaitsuntil there is atleast one empty slot.

71 Thenitdecrementstheemptysemaphorebecause,therewillnowbeoneless empty slot,
since the producer is going to insert data in one of those slots.

CSE, NRCM Page74




OPERATINGSYSTEM(23CS403)

71 Then,itacquireslockonthebuffer,sothattheconsumercannotaccessthebuffer

untilproducercompletesitsoperation.
1 Afterperformingtheinsertoperation,thelockisreleasedandthevalueof
fullis incrementedbecausetheproducer has just filled aslot in the buffer.

TheConsumerOperation
do

{
wait(full);
[Iwaituntilfull>0andthendecrement'full'wait(mut
ex); Il acquire the lock

[*performtheremoveoperationinaslot®/

signal(mutex); IIreleasethelock
signal(empty); // increment 'empty’

Twhile(TRUE);

71 Theconsumerwaitsuntilthereisatleast onefullslotinthebuffer.

7 Thenitdecrementsthe full semaphorebecausethenumberofoccupiedslotswill be
decreased by one, after the consumer completes its operation.

7 Afterthat,theconsumeracquireslockonthebuffer.

7 Followingthat,theconsumercompletestheremovaloperationsothatthedata from one
of the full slots is removed.

71 Then,theconsumer releasesthelock.

1 Finally,the empty semaphoreisincrementedbyl,becausetheconsumerhas just removed
data from an occupied slot, thus making it empty.

Dining-PhilosophersProblem

The Dining Philosopher Problem states that K philosophers seated around a
circular table with one chopstick between each pair of philosophers. There is one
chopstick between each philosopher. A philosopher may eat if he can pickup the two
chopsticksadjacenttohim.Onechopstickmaybepickedup byanyoneofitsadjacent
followers but not both. This problem involves the allocation of limited resources to a
group of processes in a deadlock-free and starvation-free manner.

CSE, NRCM Page75



https://www.geeksforgeeks.org/operating-system-dining-philosopher-problem-using-semaphores/

OPERATINGSYSTEM(23CS403

Chopsticks Philosophers

4\ o/ / ’oj >

N\ /4
‘- O
af B
o /-; - '_) 2 ;‘ 7
N A )
< p 2
[E24]

The design of the problem was to illustrate the challenges ofavoiding deadlock, a
deadlock state of a system is a state in which no progress of system is possible. Considera
proposal where each philosopher is instructed to behave as follows:

» The philosopher is instructed to think till the left fork is available,whenit
isavailable, hold it.
Thephilosopherisinstructedtothinktilltherightforkisavailable,when it is
available, hold it.

Thephilosopheris instructedtoeatwhenboth forksare available.
then,puttherightforkdownfirst

then,puttheleftforkdownnext

repeatfromthebeginning.

Y

YV V V VY

Thestructureof Philosopher i is asfollows.do

{
Wait(take_chopstick[i]);
Wait(take_chopstick[(i+1)%5]);

EAT

Signal(put_chopstick[i]);
Signal(put_chopstick[(i+1)%5]);
THINK
Iwhile(TRUE);

Intheabovecode, firstwaitoperationisperformedontake_chopstick[i]and
take_chopstick[(i+1)%?5]. Thisshowsphilosopherihavepickedupthechopsticks

CSE, NRCM Page76




OPERATINGSYSTEM(23CS403)

fromitsleftandright. Theeatingfunctionisperformedafter that.

On completion of eating by philosopher i the, signal operation is performed on
take_chopstick[i] and take_chopstick[(i+1) % 5]. This shows that the philosopher ihave
eaten and put down both the left and right chopsticks. Finally,the philosopher starts
thinking again.

Let value of i = O( initial value ), Suppose Philosopher Powants to eat, it will enter in
Philosopher() function, and execute Wait(take _chopstick[i] ); by doing this itholds CO
chopstick and reduces semaphore CO to O, after that it execute Wait(
take_chopstick[(i+1) % 5] ); by doing this it holds C1 chopstick (since i =0, therefore(0
+1) % 5 =1) and reduces semaphore C1 to 0.

Similarly, suppose now Philosopher P1 wants to eat, it will enter in Philosopher()
function, and execute Wait( take_chopstick[i] ); by doing this it will try to hold C1
chopstick but will not be able to do that, since the value of semaphore C1 has already
been set to 0 by philosopher PO, therefore it will enter into an infinite loop because of
which philosopher P1 will not be able to pick chopstick C1 whereas if Philosopher P2
wants to eat, it will enter in Philosopher() function, and execute Wait(
take_chopstickCli] ); by doing this it holds C2 chopstick and reduces semaphore C2 to
0, after that, it executes Wait( take_chopstickC[(i+1) % 5] ); by doing this it holds C3
chopstick( since i =2, therefore (2 + 1) % 5 = 3) and reduces semaphore C3 to 0.

Hence the above code is providing a solution to the dining philosopher problem, A
philosopher can only eat if both immediate left and right chopsticks ofthe
philosopherareavailableelsephilosopherneedstowait. Alsoatonegotwo
independentphilosophers can eat simultaneously (i.e., philosopher PO and P2, P1 and P3
& P2 and P4 can eat simultaneously as all are the independent processes and they are
following the above constraint of dining philosopher problem)

Thedrawbackoftheabovesolutionofthediningphilosopher problem
7 Notwoneighbouringphilosopherscaneatatthesamepointin time.
71 This solution can lead to a deadlock condition. This situation happens if all the
philosophers pick their left chopstick at the same time, which leads to the
condition of deadlock and none of the philosophers can eat.

Toavoiddeadlock,someofthesolutionsareasfollows:

1 Maximum number of philosophers on the table should not be more than four, in
this case, chopstick C4 will be available for philosopher P3, so P3
willstarteatingandafterthefinishofhiseatingprocedure,hewillputdown his both the
chopstick C3 and C4, i.e. semaphore C3 and C4 will nowbe incremented to 1.
NowphilosopherP2 whichwas holding chopstick C2 willalsohave chopstickC3
available, hence similarly, he will put down hischopstick after eating and enable
other philosophers to eat.

71 Aphilosopheratanevenpositionshouldpick the rightchopstickandthentheleft

CSE, NRCM Page77




OPERATINGSYSTEM(23CS403)

chopstickwhile aphilosopherat an odd position should picktheleftchopstick and
then the right chopstick.

Only incaseifboththechopsticks(leftandright)areavailableatthesame time, only
then a philosopher should be allowed to pick their chopsticks

All the four starting philosophers ( PO, P1, P2, and P3) should pick the left
chopstick and then the right chopstick, whereas the last philosopher P4 should
pick the right chopstick and then the left chopstick. This will force P4 to hold his
right chopstickfirst since theright chopstickofP4 is CO, which is alreadyheld by
philosopher PO and its value is set to 0, i.e CO is already 0, because of which P4
will get trapped into an infinite loop and chopstick C4 remains vacant. Hence
philosopher P3 has both left C3 and right C4 chopstick available, therefore it will
start eating and will put down its both chopsticks once finishes and let others eat
which removes theproblem of deadlock.

ReadersandWritersProblem

Suppose that a database is to be shared among several concurrent processes. Some of
these processes may want only to read the database, whereas others may want to update
(that is, to read and write) the database. We distinguish between these two types of
processesbyreferringto theformer as readers and to thelatter as writers.Preciselyin OS we
call this situation as the readers-writers problem. Problem parameters:

.

N B

Onesetofdataissharedamonganumber ofprocesses.
Once a writer is ready, it performs its write. Onlyone writer maywrite at atime.
If a process is writing, no other process can read it.

If atleastonereaderis reading,nootherprocesscan write.
Readersmaynotwriteand onlyread.

Therearefourtypesofcasesthatcouldhappenhere.

Case Processl Process2 Allowed/NotAllowed

Casel | Writing Writing NotAllowed

Case2 | Writing Reading NotAllowed

Case3 | Reading Writing NotAllowed

Case4 | Reading Reading Allowed

Threevariablesareused:mutex,wrt,readcnt

CSE, NRCM

Page78



https://www.geeksforgeeks.org/readers-writers-problem-set-1-introduction-and-readers-preference-solution/

OPERATINGSYSTEM(23CS403)

1. Semaphoremutexisusedtoensuremutualexclusionwhenreadcntisupdated
i.e.whenanyreaderentersorexitfromthecriticalsection.

2. Semaphorewrtisusedbybothreadersandwriters.
3. readcnttellsthenumberofprocessesperformingreadinthecriticalsection, initially O
amd it is integer variable.

Functionsforsemaphore
wait():decrementsthesemaphorevalue.
signal():incrementsthesemaphorevalue.

Readerprocess

71 Reader requests the entryto critical section.
7 If allowed:

% it increments the count of number of readers inside the critical section.If
thisreaderisthefirstreaderentering,itlocks the wrtsemaphore to restrict the
entry of writers if any reader is inside.

% It then, signals mutex as any other reader is allowed to enter while others
are already reading.

% After performing reading, it exits the critical section. When exiting, it
checks if no more reader is inside, it signals the semaphore “wrt”’as now,
writer can enter the critical section.

71 Ifnotallowed,itkeepsonwaiting.

do
{

wait(mutex); /I Reader wants to enter the critical section
readcnt++; /I The number of readers has now increased by 1

if (readent==1) /lthereisatleastonereaderinthecriticalsection wait(wrt);
/I'no writer can enter if there is even one reader

signal(mutex); /lotherreaderscanenterwhereothererisinside

performREADING

wait(mutex); /lareaderwantstoleave
readcnt--;
if (readcnt == 0) /Inoreaderisleftinthecriticalsection,
signal(wrt); Il writers can enter

CSE, NRCM Page79




OPERATINGSYSTEM(23CS403)

signal(mutex); //readerleaves

Jwhile(true);

Writerprocess
1. Writerrequeststheentrytocriticalsection.
2. Ifallowedi.e.wait()givesatruevalue,itentersandperformsthe write. If not
allowed, it keeps on waiting.
3. Itexitsthecriticalsection.

do
{
wait(wrt); IIwriterrequestsforcriticalsection
...performWRITING
signal(wrt); /lleavesthecriticalsection

Iwhile(true);

Thus, the semaphore ,wrt, is queued on both readers and writers in a
mannersuchthatpreferenceisgiventoreadersifwritersarealsothere. Thus,no  readeriswaiting
simply because a writer has requested to enterthecritical section.

MONITOR
It is a synchronization technique that enables threads to mutual exclusion and the

wait() for a given condition to become true. It is an abstract data type. It hasashared
variableandacollectionofproceduresexecutingonthesharedvariable. A process may not
directly access the shared data variables, and procedures are required to allow several
processes to access the shared data variables simultaneously.

At any particular time, only one process may be active in a monitor. Other
processes that require access to the shared variables must queue and are only granted
access after the previous process releases the shared variables.

Syntax:
monitor

/Isharedvariabledeclarations

CSE, NRCM Page80




OPERATINGSYSTEM(23CS403)

data variables;
ProcedureP1(){...}
ProcedureP2(){...}

iDrocedure Pn) { .. }
Initialization Code() { ... }

Advantages

.

B
B
.

Mutualexclusionisautomaticin monitors.
Monitorsarelessdifficulttoimplementthansemaphores.

Monitors may overcome the timing errors that occur when semaphores areused.
Monitorsareacollectionofproceduresandconditionvariablesthatarecombined in a
special type of module.

Disadvantages

B
B
.

Monitorsmustbeimplementedintotheprogramminglanguage. The

compiler should generate code for them.

It gives the compiler the additional burden of knowing what operating system
features is available for controlling access to crucial sections in concurrent
processes.

CSE, NRCM

Page81




OPERATINGSYSTEM(23CS403)

ComparisonbetweentheSemaphoreand Monitor

Features Semaphore Monitor

Definition | A semaphore is an integer variablethat | Itisasynchronizationprocess that
allows many processes in a parallel | enables threads to have mutual
system to manage access toa common | exclusion and the wait() for a
resource like amultitasking OS. given condition to becometrue.

Syntax /I Wait Operation Monitor
wait(Semaphore S) {

{ /Isharedvariabledeclarations
while(S<=0);
S ProcedureP1(){...}
} ProcedureP2(){...}
/I Signal Operation
signal(SemaphoreS)
{
S++; '
} ProcedurePn(){...}
InitializationCode(){...}
}

Basic Integervariable Abstractdata type

Access When a process uses sharedresources, | When a process uses shared
it calls the wait() method on S, and | resources in the monitor, it has to
when it releases them, it uses the | access them via procedures.
signal() method on S.

Action The semaphore's value shows the | The Monitor type includesshared
number of shared resources available | variables as well as a set of
in the system. procedures that operate on them.

Condition | Nocondition variables. Ithascondition variables.

Variable

CSE, NRCM Page82




OPERATINGSYSTEM(23CS403)

Whatis InterProcessCommunication

In general, Inter Process Communication is a type of mechanism usually provided by the operating
system (or OS). The main aim or goal of this mechanism is to provide communications in between
several processes. In short, the intercommunication allows a process letting another process know that
some event has occurred.

Let us now look at the general definition of inter-process communication, which will explain the same
thing that we have discussed above.

Definition

"Inter-process communication is used for exchanging useful information between numerous threads in
one or more processes (or programs).”

Tounderstandinterprocesscommunication,youcanconsiderthefollowinggivendiagramthat illustrates the
importance of inter-process communication:

password
letmetin 1
— subperman

> Hash Function
" one-way F{superman)==>y
function

B4d96156a65073a3
bcfO0eb218b2a576

gwerty

Dictionary

Collision
84d96156a65073a3 a _tt_e:n?z _____ N
befl0eb216b2a576

Password
representation

RoleofSynchronizationininterProcess Communication

It is one of the essential parts of inter process communication. Typically, this is provided by inter
process  communicationcontrolmechanisms,butsometimesitcan  alsobecontrolledbycommunication
processes.

Thesearethe followingmethods that usedto providethe synchronization:

MutualExclusion
Semaphore
Barrier

el

Spinlock

CSE, NRCM Page83




OPERATINGSYSTEM(23CS403)

MutualExclusion:-

Itisgenerallyrequiredthatonlyoneprocessthreadcanenterthecriticalsectionatatime. Thisalso helps in
synchronization and creates a stable state to avoid the race condition.

Semaphore:-

Semaphoreisatypeofvariablethatusuallycontrolstheaccesstothesharedresourcesbyseveral processes. Semap|jore
is further divided into two types which are as follows:

1. BinarySemaphore
2. CountingSemaphore

Barrier:-

Abarriertypicallynot allowsan individual process to proceed unless all theprocesses does not reach it. It
is used by many parallel languages, and collective routines impose barriers.

Spinlock:-

Spinlock is a type of lock as its name implies. The processes are trying to acquire the spinlock waits or
staysin aloop whilecheckingthatthelockisavailableornot. It isknownasbusywaitingbecauseeven though
the process active, the process does not perform any functional operation (or task).

IPCbetweenprocessesonasinglecomputersystem:-

IPC refers to the mechanisms and techniques that operating systems use to facilitate communication
between different processes. In a multitasking environment, numerous processes are running
concurrently, and IPC serves as the bridge that allows them to exchange information and coordinate
their actions.

Computer Computer
2
] —
z n\\ 7 \
£ \ / :
[ Process | | Network | ‘ Process |

W \

CSE, NRCM Page84




OPERATINGSYSTEM(23CS403

IPCbetweenprocessesondifferent system:-

Approachesto Interprocess Communication

Wewillnowdiscuss somedifferentapproaches tointer-processcommunication whichareasfollows:

Message
ques

Direct Sharred
Commication - Memmory

Thesearea fewdifferentapproachesforinter-ProcessCommunication:

Pipes

Shared Memory
Message Queue

Direct Communication
Indirectcommunication
MessagePassing

FIFO

No ok owbd P

Tounderstandthem inmoredetail,we will discusseach ofthem individually.

CSE, NRCM Page85




OPERATINGSYSTEM(23CS403)

Pipe:-

The pipe is a type of data channel that is unidirectional in nature. It means that the data in this type of
data channel can be moved in only a single direction at a time. Still, one can use two-channel of this
type, so that he can able to send and receive data in two processes. Typically, it uses the standard
methods for input and output. These pipes are used in all types of POSIX systems and in different
versions of window operating systems as well.

Shared Memory:-
It can be referred to as a type of memory that can be used or accessed by multiple processes

simultaneously. It is primarily used so that the processes can communicate with each other. Therefore
the shared memory is used by almost all POSIX and Windows operating systems as well.

Message Queue:-

In general, several different messages are allowed to read and write the data to the message queue. In
the message queue, the messages are stored or stay in the queue unless their recipients retrieve them. In
short, we can also say that the message queue is very helpful in inter-process communication and used
by all operating systems.

To understand the concept of Message queue and Shared memory in more detail, let's take a look at its
diagram given below:

Approaches to Interprocess Communication

Shared Memory

Process P2

Process P1

-

T |

Shared Memory Message Queue

MessagePassing:-

It is a type of mechanism that allows processes to synchronize and communicate with each other.
However, by using the message passing, the processes can communicate with each other without
restoring the hared variables.

CSE, NRCM Page86




OPERATINGSYSTEM(23CS403)

Usually,theinter-processcommunicationmechanismprovidestwooperationsthatareasfollows:

o send(message)
o received(message)

Direct Communication:-

Inthistypeofcommunicationprocess,usually,alinkiscreatedorestablishedbetweentwo communicating proces
However, in everypair of communicating processes, onlyone link can exist.

IndirectCommunication
Indirect communication can only exist or be established when processes share a common mailbox, and

each pair of these processes shares multiple communication links. These shared links can be
unidirectional or bi-directional.

FIFO:-

Itisatypeofgeneralcommunicationbetweentwounrelatedprocesses. Itcanalsobeconsideredas full-duplex,
which means that one process can communicate with another process and vice versa.

Someotherdifferentapproaches

o Socket:-
It acts as a type of endpoint for receiving or sending the data in a network. It is correct for data sent

between processes on the same computer or data sent between different computers on the samenetwork.
Hence, it used by several types of operating systems.

o File:-

file server. Another most important thing is that several processes can access that file as required or
needed.

o Signal:-
As its name implies, they are a type of signal used in inter process communication in a minimal way.

Typically, they are the massages of systems that are sent by one process to another. Therefore, they are
not used for sending data but for remote commands between multiple processes.

Usually,theyarenot usedto sendthe databutto remotecommands inbetween several processes.

CSE, NRCM Page87

ES.




OPERATINGSYSTEM(23CS403)

Whyweneed interprocesscommunication?

There are numerous reasons to use inter-process communication for sharing the data. Here are some of
the most important reasons that are given below:

o Ithelpstospeedupmodularity
o Computational
o Privilegeseparation

o Convenience
o Helpsoperatingsystemto communicatewitheach otherandsynchronizetheiractionsas well.

CSE, NRCM Page88




OPERATINGSYSTEM(23CS403)

UNIT-4

Memory Management and virtual memory-Logical versus physical address space, Swapping,
Contiguousallocations,Paging,segmentation,segmentationwithpaging,Demandpaging,Page
replacement, Page Replacement algorithms.

Memory Management:-Memory is central to the operation of a modern computer system.
Memory consists ofa large array of bytes, each with its own address.

A typical instruction-execution cycle, for example, first fetches an instruction from
memory. The instruction is then decoded and may cause operands to be fetchedfrom memory.
After the instruction has been executed on the operands, results may be stored back in
memory.

1. BasicHardware

Main memory and the registers built into the processor itself are the only general-
purpose storage that the CPU can access directly. Therefore, any instructions in execution,and
any data being used by the instructions, must be in one of these direct-access storage devices.
If the data are not in memory, theymust be moved there before the CPU can operate onthem.
Protectinguserprocessesfromoneanother:

We first need to make sure that each process has a separate memory space. Separate
per-process memory space protects the processes from each other and is fundamental to
having multiple processes loaded in memory for concurrent execution. To separate memory
spaces, we need the ability to determine the range of legal addresses that the process may
access and to ensure that the process can access only these legal addresses. We can provide
this protection byusing two registers, usually a base and a limit

The base register holds the smallest legal physical memory address; thelimit
registerspecifies thesizeoftherange.Forexample,ifthebaseregisterholds 300040 and the limit
register is 120900, and then the program can legally access all addresses from 300040
through 420939 (inclusive).

o
operating
system

256000
process

I 300040
process base
420940 L=0000

limit
process

880000

1024000

Any attempt by a program executing in user mode toaccessoperating-system
memoryor other users’ memoryresults in a trap to the operating system.

base + limit

trap to operating system

Thebaseandlimitregisterscanbeloadedoniybytieoperatingsystem,whichusesa

CSE, NRCM Page89




OPERATINGSYSTEM(23CS403)

specialprivilegedinstruction.Sinceprivilegedinstructionscanbeexecutedonlyinkernel

mode,andsinceonlytheoperatingsystemexecutesinkernelmode,onlytheoperating system can load
the base and limit registers.

2. AddressBinding

Usually, a program resides on a disk as a binary executable file. To be executed, the
program must be brought into memory and placed within a process. Depending on the
memory management in use, the process may be moved between disk and memory during its
execution. The processes on the disk that are waiting to be brought into memoryforexecution
form the input queue.

Classically, the binding of instructions and data to memory addresses can be done at
any step along the way:

e Compile time. If you know at compile time where the process will reside in memory,
then absolute code can be generated. For example, if you know that a user process will
reside starting at location R, then the generated compiler code will start at that location
and extend up from there. If, at some later time, the starting location changes, then it will
be necessary to recompile this code. The MS-DOS .COM-format programs are bound at
compile time.

e Load time. If it is not known at compile time where the process will reside in memory,
then the compiler must generate relocatable code. In this case, final binding is delayed
until load time. If the starting addresses changes, we need only reload the user code to
incorporate this changed value.

e Execution time. If the process can be moved during its execution from one memory
segment to another, then binding must be delayed until run time. Most general-purpose
operating systems use this method.

er‘é;ig?n

‘ cornpller or compile

assemb!er time

P bject
= R module
other
object
modules
o lin kage
edltor
load
module time
ystem
||brary =
loader
dynamloall )

loaded
execution
time (run
time)

—

syster‘n
= Ilbrary
7 dynamic
linking

in- memory
binary
memory
image

3. LogicalVersusPhysicalAddressSpace
e An address generated by the CPUis commonly referred to as alogical address or
virtual address.
e Anaddressseenbythememoryunit—thatis,theoneloadedintothememory- address
register of the memory—is commonlyreferred to as a physical address.
e Thesetofalllogicaladdressesgenerated byaprogramisalogicaladdress space.

CSE, NRCM Page90




OPERATINGSYSTEM(23CS403)

e Thesetofallphysicaladdressescorrespondingtotheselogicaladdressesisa
physicaladdress space.

Memory-ManagementUnit (MMU)

e The run-time mapping from virtual to physical addresses is done by a hardware
device called the memory-management unit (MMU).

e The base register is now called a relocation register. The value in the relocation
register is added to every address generated bya user process at the time the address
is sent to memory.

e For example,if the baseis at14000, then an attemptbythe user to addresslocation O is
dynamically relocated to location14000; an access to location346 is mapped to
location 14346.

relocation
register
14000
logical physical
address m address
CcCPU t memory
346 N " 4 14346
MMU

WhatisSwapping?

A process must be in memory to be executed. A process, however, can be swapped
temporarily out of memory to a backing store and then brought back into memory for
continued execution. Swapping makes it possible for the total physical address space of all
processes to exceed the real physical memory of the system, thus increasing the degree of
multiprogramming in a system.

1. StandardSwapping

Standard swapping involves moving processes between main memory and a backing
store. The backing store is commonly a fast disk. It must be large enough to accommodate
copies of all memory images for all users, and it must provide direct access to these memory
images.
Ready Queue: The system maintains a ready queue consisting of all processes whose
memory images are on the backing storeor in memoryand are readyto run.
Dispatcher: Whenever the CPU scheduler decides to execute a process, it callsthe dispatcher.
The dispatcher checks to see whether the next process in the queue is in memory. If it is not,
and if thereis no free memoryregion, the dispatcher swaps out a process currently in memory
and swaps in the desired process. It then reloads registers and transfers control to the selected
process.

Factors
e Thecontext-switchtimeinsuchaswappingsystemis fairlyhigh.
e Thetotaltransfer timeis directlyproportionaltotheamount ofmemoryswapped.

CSE, NRCM Page91




OPERATINGSYSTEM(23CS403)

e Ifwewanttoswapaprocess,wemustbesurethatitiscompletelyidle.

Standardswappinginmodernoperatingsystems

e Standard swapping is not used in modern operating systems. It requires too much
swapping time and provides too little execution time to be a reasonable memory-
management solution.

e Modified versions of swapping, however, are found on many systems, including UNIX,
Linux, and Windows.

e In one common variation, swapping is normally disabled but will start if the amount of
free memoryfalls below a threshold amount. Swapping is halted when the amount of free
memory increases.

e Another variation involves swapping portions of processes—rather than entire
processes—to decrease swap time.

operating e
system

<1> S — process £,

process F.

(2) swap in ‘

I:* = —

user R e
space

backing store

main memory

2. SwappingonMobile Systems
Mobilesystemstypicallydo notsupportswappinginanyform.
Reasons
e Mobile devices generally use flash memory rather than hard disks. The resulting
spaceconstraints avoid swapping.
e Thelimitednumberofwritesthatflashmemorycantoleratebeforeitbecomesunreliable
e Thepoorthroughputbetweenmainmemoryandflashmemoryin thesedevices.

MechanismsinsteadofSwapping

e Apple’s iOS asks applications to voluntarily relinquish allocated memory. Any
applications that fail to free up sufficient memory may be terminated by the operating
system.

e Android does not support swapping and adopts a strategy similar to that used by iOS. It
may terminate a process if insufficient free memory is available. However, before
terminating a process, Android writes its application state to flash memoryso that it can
be quickly restarted.

ContiguousMemoryAllocation
We usually want several user processes to reside in memory at the same time. We
therefore need to consider how to allocate available memory to the processes that are in the
input queue waiting to be brought into memory. In contiguous memory allocation, each
process is contained in a singlesection ofmemorythat is contiguous to thesection containing
the next process.

CSE, NRCM Page92




OPERATINGSYSTEM(23CS403)

1. MemoryProtection
We can prevent a process from accessing memory it does not own by combining two

ideas. If we have a system with a relocation register, together with a limit register, we

accomplish our goal.

Process

e The relocation register contains the value of the smallest physical address; the limit
register contains the range of logical addresses (for example, relocation = 100040 and
limit = 74600).

e Eachlogicaladdressmustfallwithintherangespecifiedbythelimitregister.

e The MMU maps the logical address dynamically by adding the value in the relocation
register. This mapped address is sent to memory.

e When the CPU scheduler selects a process for execution, the dispatcher loads the
relocation and limit registers with the correct values as part of the context switch.

e Because every address generated by a CPU is checked against these registers, we can
protect both the operating system and the other users programs and data from being
modified by this running process.

limit relocation
register register

logical 4 physical
address /)\ ves —, address
CPU /< = = \+/ memory
e o it

no

L 2
trap: addressing error

2.  Memoryallocationmethodsformemoryallocation
a. Fixed-Sized Partitions

e Oneofthesimplestmethodsforallocatingmemoryistodividememoryinto several
fixed-sized partitions.

e Eachpartitionmaycontainexactlyone process.

e In this multiple partition method, when a partition is free, a process is selected
from the input queue and is loaded into the free partition.

e \Whentheprocessterminates,thepartitionbecomesavailableforanother process.

e Thismethodwasoriginally usedbytheIBMOS/3600peratingsystem(called MFT) but
is no longer in use.

b. VariableSized -Partition
e Inthe variable-partition scheme, the operating system keeps a table
indicatingwhich parts of memory are available and which are occupied.
o Initially, all memory isavailablefor user processes andis considered one large
block of available memory, a hole.
e When a process arrives and needs memory, the system searches the set for a hole
that is large enough for this process.

CSE, NRCM Page93




e If the hole is too large, it is split into two parts. One part is allocated to the
arriving process; the other is returned to the set of holes.

e When a process terminates, it releases its block of memory, which is then placed
back in the set of holes.

e |f the new hole is adjacent to other holes, these adjacent holes aremerged to form
one larger hole.

e At this point, the system may need to check whether there are processes waiting
for memory and whether this newly freed and recombined memory could satisfy
the demands of any of these waiting processes.

DynamicStorageAllocationProblem(MemoryAllocation Techniques)

This concerns how to satisfy a request of size n from a list of free holes. There are
many solutions to this problem. The first-fit, best-fit, and worst-fit strategies are the ones
most commonlyused to select a free hole from the set of available holes.

e First fit. Allocate the first hole that is big enough. Searching can start either at the
beginning of the set of holes or at the location where the previous first-fit search ended.
We can stop searching as soon as we find a free hole that is large enough.

e Best fit. Allocate the smallest hole that is big enough. We must search the entire list,
unless the list is ordered bysize. This strategyproduces the smallest leftover hole.

e Worst fit. Allocate the largest hole. Again, we must search the entire list, unless it is
sorted by size. This strategy produces the largest leftover hole, which may bemore useful
than the smaller leftover hole from a best-fit approach.

Comparison:

e FirstfitandBestfitarebetterthanWorstfitintermsofdecreasingtimeandstorage utilization.

o Neither first fit nor Best fit is clearlybetter than the other in terms ofstorage utilization,
but First fit is generally faster.

3. Fragmentation
Memoryfragmentationcanbeinternalaswellasexternal.
a. InternalFragmentation
e The overhead to keep track of this hole will be substantially larger than the hole
itself. The general approach to avoiding this problem is to break the physical
memoryinto fixed-sized blocksandallocate memoryinunitsbasedonblock size.
e With this approach, the memoryallocated to a process maybe slightlylarger than
the requested memaory.
e The difference between these two numbers is internal fragmentation—unused
memory that is internal to a partition.
b. ExternalFragmentation
e Both the first-fit and best-fit strategies for memory allocation sufferfrom
externalfragmentation.Asprocessesareloaded andremovedfrommemory,the free
memory space is broken into little pieces.

CSE, NRCM Page94




OPERATINGSYSTEM(23CS403)

e External fragmentation exists when there is enough total memory space to satisfy
a request but the available spaces are not contiguous: storage is fragmented into a
large number of small holes.
50-percent rule: Depending on the total amount of memory storage and the average process
size, external fragmentation may be a minor or a major problem. Statistical analysis of firstfit,
for instance, reveals that, even with some optimization, given N allocated blocks, another
0.5 N blocks will be lost to fragmentation. That is, one-third of memory may be unusable!
This property is known as the 50-percent rule.

SolutiontoExternalFragmentation
a. Compaction

e Thegoal is to shufflethememorycontents so as to placeall freememorytogetherin one
large block.

e Compaction is not always possible, however. If relocation is static and is done at
assemblyor load time, compaction cannot be done. It is possible onlyif relocation is
dynamic and is done at execution time.

e The simplest compaction algorithm is to move all processes toward one end of
memory; all holes move in the other direction, producing one large hole of available
memory. This scheme can be expensive.

b. Noncontiguouslogicaladdressspace

e This permits the logical address space of the processes to be noncontiguous, thus
allowing a process to be allocated physical memory wherever such memory is
available.

e Twocomplementarytechniquesachievethissolution:segmentationandpaging.

Segmentation

Dealing with memory in terms of its physical properties is inconvenient to both the
operating system and the programmer. What if the hardware could provide a memory
mechanism that mapped the programmer’s view to the actual physical memory? The system
would have more freedom to manage memory, while the programmer would have a more
natural programming environment. Segmentation provides such a mechanism.

1. BasicMethod

Segmentation is a memory-management scheme that supports the programmer view
of memory. A logical address space is a collection of variable sized segments. Each segment
has a name and a length. The addresses specify both the segment name and the offset within
the segment. The programmer therefore specifies each address by two quantities: a segment
name and an offset.
segments are numbered and are referred to by a segment number, rather than by a segment
name. Thus, a logical address consists of a two tuple:

<segment-number,offset>.

ExampleofSegments
When a program is compiled, the compiler automatically constructs segments reflecting the
input program.

CSE, NRCM Page95




OPERATINGSYSTEM(23CS403)

ACcompilermightcreateseparatesegmentsforthefollowing:
1. Thecode

Globalvariables

Theheap,fromwhichmemoryis allocated

Thestacks used byeachthread

ThestandardC library\

g~ wn

2. SegmentationHardware

Although the programmer can now refer to objects in the program by a two-
dimensional address, the actual physical memory is still, of course, a one dimensional
sequence of bytes. Thus, we must define an implementation to map two-dimensional user-
defined addresses into one-dimensional physical addresses. This mapping is affected by a
segment table. Each entry in the segment table has a segment base and a segment limit.
e Segment base: The segment base contains the starting physical address where the

segment resides in memory.

e Segmentlimit:Thesegmentlimitspecifiesthelengthofthesegment.

A logical address consists of two parts: a segment number, s, and an offset into that
segment, d. The segment number are used as an index to the segment table. The offsetd of the
logical address must be between 0 and the segment limit. If it is not, we trap to the operating
system (logical addressing attempt beyond end of segment). When an offsetis legal, itis added
to the segment base to produce the address in physical memory of the desired byte. The
segment table is thus essentially an arrayof base—limit register pairs.

Tlimit |[base |

cPU = d |

= Yas B

trap: addressing error physical memory

Example:

We have five segments numbered from O through 4. The segments are stored in
physical memory. The segment table has a separate entry for each segment, giving the
beginning address of the segment in physical memory (or base) and the lengthof that segment
(or limit).

Consider, segment 2 is 400 bytes long and begins at location 4300. Thus, a reference
to byte 53 of segment 2 is mapped onto location 4300 + 53 = 4353. A reference to segment 3,
byte 852, is mapped to 3200 (the base of segment 3) + 852 = 4052. A reference to byte 1222
of segment O would result in a trap to the operating system, as this segmentis only 1,000 bytes
long.

CSE, NRCM Page96




OPERATINGSYSTEM(23CS403)

e e
Aroutine stack
/ 1400

f segment 3 \ segment 0
[ | 2400
symbol
segment o table
limit | base
Sqrt segment 4 o[ 1000 | 1400
\ / 1| 400 | 6300 =200
main / 2| 400 | 4300
X /
\ program 3| 1100 | 3200 segment 3}
4| 1000 | 4700
segment table 4560
segment 1 segment 2 Ererieiz
4700
= P

logical address space segment 4

5700

6300

segment 1

6700
physical memory

Paging

Pagingisanothermemory-managementschemethatoffersphysicaladdressspaceof
a process to be non-contiguous. Paging also avoids external fragmentation and the need for
compaction, whereas segmentation does not. Because of its advantages, paging in its various
forms is used in most operating systems, from mainframes to smart phones.

1. BasicMethod
e Frames:Paginginvolvesbreakingphysicalmemoryintofixed-sizedblockscalled
frames.
e Pages:Breakinglogicalmemoryintoblocksofthesamesizecalledpages.

When a process is to be executed, its pages are loaded into any available memory
frames from their source (a file system or the backing store).

HardwareSupport forPaging

EveryaddressgeneratedbytheCPUisdividedintotwoparts:apagenumber(p)

and apageoffset(d).

e Page Table: The page number is used as an index into a page table. The page table
contains the base address of each page in physical memory. This base address is
combined with the page offset to define the physical memory address that is sent to the
memaoryunit.

e Frame Table: Since the operating system is managing physical memory, it must be
aware of the allocation details of physical memory—which frames are allocated, which
frames are available, how many total frames there are, and so on? This information is
generally kept in a data structure called a frame table. The frame table has one entry for
each physical page frame, indicating whether the latter is free or allocated and, if it is
allocated, to which page of which process or processes.

CSE, NRCM Page97




OPERATINGSYSTEM(23CS403)

logical physical
address address fO000 ... 0000

om0 T d
p{

f

1111 ... 1111

physical
memory

page table

DefiningofPageSize
The page size (like the frame size) is defined by the hardware. The size of a page is a

power of 2, varying between 512 bytes and 1 GB per page, depending on the computer
architecture. The selection of a power of 2 as a page size makes the translation of a logical
address into a page number and page offset particularly easy.

If the size of the logical address space is 2", and a page size is 2"bytes, then the high-
order m— n bits of a logical address designate the page number, and the n low-order bits
designate the page offset. Thus, the logical address is as follows:

hufmber STrdet

(@] d

m-n m

wherepisanindexintothepagetableanddisthedisplacementwithinthepage.

Example
Here, in the logical address, n= 2 and m = 4. Using a page size of 4 bytes and a

physical memoryof32 bytes (8pages).Logical address 0 is page0, offset 0. Indexinginto the
page table, wefind that page O is in frame 5. Thus, logical address 0 maps to physical address
20 [=(5 x 4) +0]. Logicaladdress 3 (page 0,offset 3) maps to physicaladdress 23 [= (5 x4)

+ 3]. Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to
frame 6. Thus, logical address 4 maps to physical address 24 [= (6% 4) + 0]. Logical address
13mapstophysicaladdress9.

o (=1 o

1 b

2 c

3 d

a e P i
(53 f

e a ) B [
7 h 1 s I
8 i 2 1 8 m
=] j e n
0| K e o
$.3 A page table P
g i m 12

13 n

14 o

1S [=]

logical memory

JQ-0Q000

CSE, NRCM Page97

physical memory




OPERATINGSYSTEM(23CS403)

2. HardwareSupport

Methods for storing page table: Each operating system has its own methodsfor storing page
tables.

a) Some allocate a page table for each process. A pointer to the page table is stored with the
other register values (like the instruction counter) in the process control block. When the
dispatcher is told to start a process, it must reload the user registers and define the correct
hardware page-table values from the stored user page table.

b) Other operating systems provide one or at most a few page tables, which decreases the
overhead involved when processes are context-switched.

HardwarelmplementationofthePageTable

Registers

e In the simplest case, the page table is implemented as a set of dedicated registers. These
registers should be built with very high-speed logic to make the paging-address
translation efficient.

e Every access to memory must go through the paging map, so efficiency is a major
consideration.

e The CPU dispatcher reloads these registers, just as it reloads the other registers.
Instructions to load or modify the page-table registers are, of course, privileged, so that
only the operating system can change the memory map. The use of registers for the page
table is satisfactory if the page table is reasonably small.

e TheDECPDP-11 isanexample.

Page-TableBaseRegister(PTBR)

Most contemporary computers, allow the page table to be very large (for example, 1
million entries). For these machines, the use of fast registers to implement the page table is
not feasible. Rather, the page table is kept in main memory, and a page-table base register
(PTBR) points to the page table. Changing page tables requires changing only this one
register, substantially reducing context-switch time.

Problem

Theproblem with this approach is the time required to access a user memorylocation.
If we want to access location i, we must first index into the page table, using the value in the
PTBR offset by the page number fori. This task requires a memory access. It provides us with
the frame number, which is combined with the page offset to produce the actual address.
Wecan then access the desired placein memory. With this scheme, two memoryaccesses are
needed to access a byte (one for the page-table entry, one for the byte). Thus, memory access
is slowed by a factor of 2.

Solution:TranslationLook-AsideBuffer(TLB).

The standard solution to this problem is to use a special, small, fast lookup hardware
cache called a translation look-aside buffer (TLB). The TLB is associative, high-speed
memory. Each entryin the TLB consists of two parts: a key(or tag) and a value.

CSE, NRCM Page98




OPERATINGSYSTEM(23CS403)

Workingoftranslationlook-asidebuffer(TLB):

e The TLB is used with page tables in the following way. The TLB contains only a few of
the page-table entries.

e When a logical address is generated by the CPU, its page numberis presented to the TLB.
If the page number is found, its frame number is immediately available and is used to
access memory.

e |f the page number is not in the TLB (known as a TLB miss), a memory reference to the
page table must be made.

e DependingontheCPU,thismaybedoneautomaticallyin hardwareor via aninterruptto the
operating system.

e When theframenumber is obtained, wecan useit to access memory. In addition, weadd
the page number and frame number to the TLB, so that theywill be found quicklyon the
next reference. If the TLBis alreadyfull of entries, an existingentrymust be selected for
replacement.

logical

address
CcPU ——{ %) d |
page frame
number number
l—:_E TLB hit physical
IEE | address
f d
TLB i
p {
TLB miss
f
A — physical
memory

page table

Address-Spaceldentifiers(ASIDs)

e Some TLBs store address-space identifiers (ASIDs) in each TLB entry. An ASID
uniquely identifies each process and is used to provide address-space protection for that
process.

e When the TLB attempts to resolve virtual page numbers, it ensures that the ASID for the
currently running process matches the ASID associated with the virtual page. If the
ASIDs do not match the attempt is treated as a TLB miss.

Hit ratio: The percentage of times that the page number of interest is found in the TLB is

called the hit ratio

3. Protection
Memoryprotectioninapagedenvironmentisaccomplishedbyprotectionbits associated with
each frame. Normally, these bits are kept in the page table.
Read-WriteorRead-OnlyBit
¢ Onebitcandefineapagetoberead—writeorread-only.Every referencetomemory goes
through the page table to find the correct frame number.
e At the same time thatthe physicaladdress is being computed,the protection bits can be
checked to verifythat no writes are being made to a read-only page.

CSE, NRCM Page99




OPERATINGSYSTEM(23CS403)

An attempt to write to a read-only page causes a hardware trap to the operating system
(or memory-protection violation).
Wecaneasilyexpandthisapproachtoprovideafinerlevelofprotection.

We can create hardware to provide read-only,read—write, or execute-only protection; or,
by providing separate protection bits for each kind of access, we can allow any
combination of these accesses. Illegal attempts will be trapped to the operating system.

Valid-InvalidBit

Oneadditionalbitisgenerallyattachedtoeachentryinthepagetable:avalid—invalid

bit.

Whenthis bit isset to valid,theassociatedpage isintheprocess’s logicaladdressspace and
is thus a legal (or valid) page.
Whenthebitissettoinvalid,thepageisnotintheprocess’slogicaladdressspace. Illegal
addresses are trapped byuse of the valid—invalid bit.
Theoperatingsystemsetsthisbitforeachpagetoallowor disallowaccesstothepage.

Example

Suppose, for example, that in a system with a 14-bitaddress space (0 to 16383), we have
a program that should use only addresses 0 to 10468.

Given a page size of 2 KB, Addresses in pages 0, 1, 2, 3, 4, and 5 are mapped normally
through the page table.

Any attempt to generate an address in pages 6 or 7, however, will find that the valid—
invalid bit is set to invalid, and the computer will trap to the operating system (invalid
page reference).

o
1
2 Prage O
00000 frame number valid—invalid bit
page O 7\‘ 7777/ 3 page 1
O |F2 v
page 1 1 3 v 4 page 2
2 -1 v
age 2 5
229 3 7 v
page 3 4 8 v F3
5|9 v
page 4 e| O i 7 page 3
7 (o] i
10,468 page 5 oL 8 page 4
12,287 page table
(=) page 5
page 1

HardwareforProtection:Page-TableLengthRegister(PTLR)

Some systems provide hardware, in the form of a page-table lengthregister(PTLR),

to indicate the size of the page table. This value is checked against every logical address to
verify that the address is in the valid range for the process. Failure of this test causes an error
trap to the operating system.

4. SharedPages

Anadvantageofpagingisthepossibilityofsharingcommoncode. This

consideration is particularly important in a time-sharing environment.
Example:

CSE, NRCM Page100




OPERATINGSYSTEM(23CS403)

Consider a system that supports 40 users, each of whom executes a text editor. If the
text editorconsistsof150 KBofcodeand 50 KB of dataspace, weneed 8,000 KBto support the
40 users. If the code is reentrant code or pure code (Reentrant code is non-self- modifying
code: it never changes during execution. Thus, two or more processes can execute the same
code at the same time. However, it can be shared.

ed1 0
3
ed?2 g 1 data 1
ed3 8 2| data3
1
data 1 page table 3 ed1
for P
1 ed 1
process P, 3 4 ed?2
ed 2
4 5
ed3 8
7 6 ed3
data 2 page table
for P2 7 data 2
ot 5 process P, "
ed?2 4
9
ed3 e
= 10
data 3 page table
for P, 11
process P,

Each process has its own copy of registers and data storage to hold the data for the
process’s execution. The data for two different processes will, of course, be different. Only
onecopyoftheeditorneedbekeptinphysical memory.Each user’s page tablemapsontothe same
physical copy of the editor, but data pages are mapped onto different frames. Thus, to support
40 users, we need onlyone copyof the editor (150 KB), plus 40 copies of the 50 KB of data
space per user. The total space required is now 2,150 KB instead of 8,000 KB—a significant
savings.

Other heavily used programs can also be shared—compilers, window systems, run-
time libraries, database systems, and so on.

SegmentationwithPaging

Pure segmentation is not very popular and not being used in many of the operating
systems. However, Segmentation can be combined with Paging to get the best features out of
both the techniques.

In Segmented Paging, the main memory is divided into variable size segments which
are further divided into fixed size pages. Pages aresmaller than segments. Each Segment hasa
page table which means every program has multiple page tables.

The logical address is represented as Segment Number (base address), Page number
and page offset.

SegmentNumber—ItpointstotheappropriateSegmentNumber. Page
Number — It Points to the exact page within the segment

CSE, NRCM Pagel101




OPERATINGSYSTEM(23CS403)

PageOffset—Usedasanoffset withinthepage frame

Each Page table contains the various information about every page of the segment.
The Segment Table contains the information about every segment. Each segment table entry
points to a page table entry and every page table entry is mapped to one of the page within a

segment.
Page Table 1 Segment 1
Page Table Entry 1 Page 1
Page Table Entry 2 Page 2
Page Table Entry 3 Page 3 .
Segment Table Main Memory
Page Table Entry Page Table 2 Segment 2 Segment 1
l Page Table Entry 1 Page 1
Page Tat2:|le Entry Page Table Entry 2 Page 2 Segment 2
P 3
Page Table Entry Page Table Entry 3 age Segment 3
3
Page Table 3 Segment 3
Page Table Entry 1 Page 1
Page Table Entry 2 Page 2
Page Table Entry 3 Page 3

Segment
Base

Page
Number

Page
Offset

Logical Address

Translationoflogicaladdresstophysicaladdress

The CPU generates a logical address which is divided into two parts:Segment Number
and Segment Offset. The Segment Offset must be less than the segment limit. Offset is
further divided into Page number and Page Offset. To map the exact page number in the page
table, the page number is added into the page table base.

The actual frame number with the page offset is mapped to the main memory toget the
desired word in the page of the certain segment of the process.

Segment Table

S —— Segment Table

SO — Segment Offset

Segment |Page Table
Limit Base P — Page Number

PO ————> Page Offset

f — Frame Number

Yes
N S

No

Invalid Address

Physical Memory

Page Table
(For Each Segment)

CSE, NRCM Page102




OPERATINGSYSTEM(23CS403)

AdvantagesofSegmented Paging
1. Itreducesmemoryusage.

2. Pagetablesizeis limitedbythesegmentsize.
3. gmenttablehasonlyoneentrycorrespondingtooneactualsegment.
4. ExternalFragmentationisnotthere.
5. Itsimplifies memoryallocation.
DisadvantagesofSegmented Paging
1. InternalFragmentationwillbethere.
2. Thecomplexitylevelwillbemuchhigherascomparetopaging.
3. PageTablesneedtobecontiguouslystoredinthememory.

DemandPaging
Definition

CSE, NRCM Page103




OPERATINGSYSTEM(23CS403)

Loading the entire program into memory results in loading the executable code for all
options, regardless of whether or not an option is ultimately selected by the user. An
alternative strategy is to load pages only as they are needed. This technique is known as
demand paging and is commonly used in virtual memory systems.

With demand-paged virtual memory, pages are loaded only when they are demanded
during program execution. Pages that are never accessed are thus never loaded into physical
memory.

LazySwapper

A demand-paging system is similar to a paging system with swappingwhere processes
reside in secondary memory (usually a disk). When we want to execute a process, we swap it
into memory. Rather than swapping the entire process into memory, though, we usealazy
swapper.Alazyswapperneverswaps apage intomemoryunlessthatpage willbe needed. In the
context of a demand-paging system, use of the term “swapper” is technically incorrect. We
thus use “pager,” rather than “swapper,” in connection with demand paging.

swap out o ) | (| _—

A ][ S s o 7R
- a2l ] sl ol J11[ ]
12181418 ]

JL\ swap in e 117 IS e .

20| 121 [(l=2z2 j2=2 (]

main
nemory

Transferofapagedmemoryto contiguousdisk space.
1. Basic Concepts
When a process is to be swapped in, the pager guesses which pages will beused before
the process is swapped out again. Instead of swapping in a whole process, the pager brings
onlythose pages into memory. Thus, it avoids readinginto memorypages that will not be used
anyway, decreasing the swap time and the amount of physical memory needed.

Valid-InvalidBit
e We need some form of hardware support to distinguish between the pages that are in
memoryand the pages that areon the disk. when this bit is set to “valid,” the associated
page is both legal and in memory.

o If thebitissetto “invalid,”’thepageeitherisnotvalid(thatis,notinthelogicaladdress space of
the process) or is valid but is currently on the disk. The page-table entry for a page that
is brought into memory is set as usual, but the page-table entry for a page thatis not
currently in memory is either simply marked invalid or contains the address ofthe page on disk.

CSE, NRCM Page104




OPERATINGSYSTEM(23CS403)

(o]
1
o A 2
valid—invalid
L = frame it 3 i
N d . - ..
2 [N S
+ a 0 s ¢ [ | E =l
5 F 4 i 7 _ e =
5|9 |v = = E]
6 G s i 8
7 H 74 i =) = ,?I ’E’ 'T]
P

logical age table

memory e N (.

15

physical memory

PageFault
Access to a page marked invalid causes a page fault. The paging hardware, in
translating the address through the page table, will notice that the invalid bit is set, causing a
trap to the operating system. This trap is the result of the operating system’s failure to bring
the desired page into memory.
Theprocedureforhandlingthispagefaultisstraightforward
1. We check an internal table (usually kept with the process control block) for this process
to determine whether the reference was a valid or an invalid memoryaccess.
2. Ifthe reference was invalid, we terminatethe process. Ifit was valid but wehave not yet
brought in that page, we now page it in.
3. Wefindafreeframe(bytakingonefromthefree-framelist, for example).
4. Wescheduleadisk operationtoreadthe desiredpageintothenewlyallocated frame.
5. When the disk read is complete, we modify the internal table kept with the process
andthe page table to indicate that the page is now in memory.
6. We restart the instruction that was interrupted by the trap. The process can now accessthe
page as though it had always been in memory.

< page is on
(§> backing store

\‘ -~ -
operating
system 2
@
reference —
trap
D)
load M = [
©)
restart page table
instruction
= free frame — =L
& @
reset page bring in
table | missing page
physical

memory

PureDemand Paging

In theextremecase, we can start executingaprocess with no pages in memory. When
the operating system sets the instruction pointer to the firstinstruction of the process, whichis
on a non-memory-residentpage, the process immediately faults for the page. After this
pageisbroughtintomemory,theprocesscontinuestoexecute,faultingasnecessaryuntil

CSE, NRCM Page105




OPERATINGSYSTEM(23CS403)

every page that it needs is in memory. At that point, it can execute with no more faults. This
scheme is pure demand paging: never bring a page into memoryuntil it is required.

HardwaretoSupportDemandPaging

e Page table. This table has the ability to mark an entry invalidthrough a valid—invalid bit
or a special value of protection bits.

e Secondary memory. This memory holds those pages that are not present in main
memory. The secondary memory is usually a high-speed disk. It is known as the swap
device, and the section of disk used for this purpose is known as swap space.

A crucial requirement for demand pagingis the abilityto restart anyinstruction after a
page fault. Because we save the state (registers, condition code, andinstruction counter) of the
interrupted process when the page fault occurs, we must be able to restart the process in
exactly the same place and state, except that the desired page is now in memory and is
accessible. In most cases, this requirement is easy to meet.

A page fault may occur at any memory reference. If the page fault occurs on the
instruction fetch, we can restart by fetching the instruction again. If a page fault occurs while
wearefetchingan operand, wemust fetchand decodetheinstruction again and thenfetchthe
operand.

2. PerformanceofDemandPaging

Demand paging can significantly affect the performance of a computer system let’s
compute the effective access time for a demand-paged memory. For most computer systems,
the memory-access time, denoted ma, ranges from 10 t0200 nanoseconds. As long as we have
no page faults, the effective access time is equal to the memory access time.If,however, a
page fault occurs, we must first read the relevant page from disk and then access the desired
word.

Let p be the probability of a page fault (0 <p < 1). We would expect p to be close to
zero—that is, we would expect to have only a few page faults.

Theeffectiveaccesstimeisthen

EffectiveAccess Time= (1-p)xma+ p xpagefaulttime

To compute the effective access time, we must know how much time is needed to
service a page fault.
Example:

With an averagepage-faultservice time of 8milliseconds anda memory access time of
200 nanoseconds, the effective access time in nanoseconds is

Effective AccessTime=(1—p)x(200) +p(8milliseconds)

=(1 —p)*200+px8,000,000
=200 +7,999,800xp.

Wesee, then,thattheeffectiveaccesstimeisdirectlyproportionaltothepage-fault
rate.

Anadditionalaspectofdemandpagingisthehandlingandoveralluseof swapspace.
Disk 1/0 to swap space is generallyfaster than that to the file system. It is a faster file system
because swap space is allocated in much larger blocks, and file lookups andindirect allocation
methods are not used. However, swap space must still be used for pages not associated with a
file (known as anonymous memory).

CSE, NRCM Page106




OPERATINGSYSTEM(23CS403)

Mobile operating systems typically do not support swapping. Instead, these systems
demand-page from the file system and reclaim read-only pages (such as code) from
applications if memory becomes constrained. Such data can be demand-paged from the file
system if it is later needed. Under iOS, anonymous memory pages are never reclaimed from
an application unless the application is terminated or explicitlyreleases the memory.

PageReplacement
In Demand Paging,pages are only broughtintomemory only when needed. This has two
benefits,
1. Savesl/Onecessarytoloadunusedpages.
2. Increasesthedegreeof multiprogramming.
Butincreasingdegreeofmultiprogrammingmayarisenewproblemcalled “Over allocating of
memory”.

Over-AllocatingMemory

For example, there are 10 processes and each has 10 pages out of which only 5may be
used. If there are 50 frames then we can allocate only 5 processes if all the 10 pages are
loaded. But by using demand paging (we load only used or demanded pages) we can
accommodate 10 processes as only 5 pages are in demand. Problem arises when suddenly a
process needs all 10 pages but no frames are free.

Over-allocation of memory manifests itself as follows. While a user process is
executing, a page fault occurs. The operating system determines where the desired page is
residing on the disk but then finds that there are no free frames on the free-frame list; all
memory is in use. The operating system has several options at this point.It could terminate the
user process. This option is not the best choice. The operating system could instead swap out
a process, freeing all its frames and reducing the level of multiprogramming. This option is a
good one but requires page replacement.

valid—invalid
ol H frame bit 0| monitor S
v ~ ~
1| load M 1 \\__—_—//
PC — 3 v
2| J 4 |v 2| D
5 |v
logical memory ~ Page table 4| loadM
for user 1 for user 1
5 J
B A
valid—invalid 7 E @
0 A frame bit
v physical
1 B memory
6 v -
2 D !
2 |v
3 E 7 |y

logical memory page table
for user 2 for user 2

Need for page replacement.

CSE, NRCM Page107




OPERATINGSYSTEM(23CS403)

1. BasicPageReplacement
Pagereplacementtakesthefollowingapproach,
1. Findthelocationofthedesiredpageonthedisk.
2. Findafree frame:

a. Ifthereisafreeframe,useit.
b. Ifthereisnofreeframe,useapage-replacementalgorithmtoselectavictim frame.
C. Writethevictimframetothedisk;changethepageandframetablesaccordingly.
3. Readthedesiredpageintothenewlyfreedframe;changethepageandframetables.
4. Continuetheuser processfromwherethepagefault occurred.

frame  valid-invalid bit E—————
N ~ T
\\_\———_'_'__,_/
page out
—, change victim
2 A - age
0 |i _)to invalid (Ij pag "D
f|v ~
@ f| wvictim
reset page
table for
page table new page ®page . :%.::%H
desired El
page
- -
physical
memaory

Page replacement.

ModifyBit (orDirtyBit).

e If no frames are free, two page transfers (one out and one in)are required.This situation
effectively doubles the page-fault service time and increases the effective access time
accordingly. We can reduce this overhead by using a modify bit (or dirty bit).

e When this scheme is used, each page or frame has a modifybit associated with it in the
hardware. The modify bit for a page is set by the hardware whenever any byte in the
page is written into, indicating that the page has been modified.

e When we select a page for replacement, we examine it’s modifybit. If the bit is set, we
know that the page has been modified since itwas read in from the disk. In this case,we
must write the page to the disk. If the modify bit is not set, however, the page has not
been modified since it was read into memory. In this case, we need not write the
memory page to the disk: it is already there.

MajorProblemstolmplementDemand Paging
Wemustsolvetwomajorproblemstoimplementdemandpaging:wemustdevelopa
frame-allocationalgorithmandapage-replacementalgorithm.

CSE, N1 Page108




OPERATINGSYSTEM(23CS403)

That is, if we have multiple processes in memory, we must decide how many frames
toallocatetoeachprocess;andwhenpagereplacementisrequired,wemust selecttheframes that are
to be replaced.

ReferenceString
There are many different page-replacement algorithms. We evaluate an algorithm by
running it on a particular string of memory references and computing the number of page
faults. The string of memory references is called a reference string.
Wecangeneratereferencestrings
e Atrtificially(byusingarandom-numbergenerator,for example).
e We can trace a given system and record the address of each memory reference. But this
produces large amount of data.
Toreducethis,weusetwo facts
a. First, for a given page size (and the page size is generally fixed bythe hardware or
system),we need to consider only the page number, rather than the entire address.
b. Second,ifwehaveareferencetoapagep,thenanyreferencestopagepthat
immediately  followwillnevercauseapagefault.
Example
Ifwetraceaparticularprocess,wemightrecordthefollowingaddresssequence: 0100, 0432,
0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,
0104, 0101,0610, 0102,0103, 0104, 0101, 0609, 0102, 0105
At 100 bytes per page, this sequence is reduced to the following reference string:
1,4,1,6,1,6,1,6,1,6,1

PageReplacementAlgorithms

FIFOPageReplacement

e Thesimplestpage-replacementalgorithmisafirst-in,first-out(FIFO)algorithm.

e A FIFO replacement algorithm associates with each page the time when that page was
brought into memory. When a page must be replaced, the oldest page is chosen.

e We can create a FIFO queue to hold all pages in memory. We replace the page atthe head
of the queue. When a page is brought into memory, we insert it at the tail of the queue.

e TheFIFOpage-replacementalgorithmiseasytounderstandand program.

e However, its performance is not always good. a bad replacement choice increases the
page-fault rate and slows process execution. If we place an active page, some other page
should be replaced to bring it back.

Example:

reference string

i o 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 A+
2| [2] [4] [4] [4] [9] o] [o]
| o] o] [o] 1] [o] |°]
LI LB [ [ [of [of [of [3] [3]

page frames

FIFO page-replacement algorithm.

CSE, NRCM Page109




OPERATINGSYSTEM(23CS403)

Belady’s anomaly:Forsomepage-replacementalgorithms,thepage-faultratemayincrease
asthenumberofallocatedframes increases.

Considerthefollowingreferencestring: 12,34,1,2,5,1,2,3,4,5
Numberoffaultsforfourframes(ten)isgreaterthanthenumberoffaultsforthreeframes (nine)

OptimalPageReplacement
e |tsaysthat,Replacethepagethatwillnotbeusedforthelongestperiodoftime.
e [thasthelowestpage-faultrateofallalgorithmsandwillneversufferfromBelady’s anomaly.

e Unfortunately,theoptimalpage-replacement algorithmisdifficulttoimplement,because it
requires future knowledge of the reference string.

e Asaresult,theoptimalalgorithmisusedmainlyforcomparisonstudies.
Example:

reference string

7 0 H

7 01 2 0 3 0 4 2 3 0 3 2 1 2 0 A1
| [o] [o] [o] o] o o o
M EREINE

page frames
Optimal page-replacement algorithm.

LRUPageReplacement

e LRUreplacementassociateswitheachpagethetimeofthatpage’slastuse.

e Whenapagemustbereplaced,LRUchoosesthepagethathasnotbeenusedforthe longest period
of time.

e Wecanthinkofthisstrategyastheoptimalpage-replacementalgorithmlooking backward in
time, rather than forward.

¢ Likeoptimalreplacement,LRUreplacementdoesnotsufferfromBelady’sanomaly. Both
belong to a class of page-replacement algorithms, called stack algorithms.

Example:
0 4 2 3 0 3 2 1 2 0 1 7
4] [4] [4] [o] 1
o] o] [3] |3] 0]

LRU page-replacement algorithm.
e The major problem is how to implement LRU replacement. An LRU page-replacement

algorithm may require substantial hardware assistance. The problem is to determine an
order for the frames defined by the time of last use.
e Twoimplementationsare feasible:

reference string

7 0 1 2 0 3
ol [o] |o]
HREinEl

page frames

CSE, NRCM Pagel10




OPERATINGSYSTEM(23CS403)

» Counters. In the simplest case, we associate with each page-table entry a time-of-
use field and add to the CPU a logical clock or counter. The clock is incremented for
every memory reference.Whenever a reference to a page is made,the contents of the
clock register are copied to the time-of-use field in the page-table entry for that page.
In this way, we always have the “time” of the last reference to each page. We replace
the page with the smallest time value. This scheme requires a search of the page
table to find the LRU page and a write to memory (to the time-of-use field in the
page table) for each memory access.

» Stack. Another approach to implementing LRU replacement is to keep a stack of
page numbers. Whenever a page is referenced, it is removed from the stack and put
on the top. In this way, the most recently used page is always at the top of the stack
and the least recently used page is always at the bottom. Because entries must be
removed from the middle of the stack, it is best to implement this approach by using
a doubly linked list with a head pointer and a tail pointer.

reference string
4 7 o] 7 1 (o] 1 2 1 2 7 1 2

2 ; I 1
a b

1 =2

(o] 1

v 0

4 4

stack stack
before after
a b

Use of a stack to record the most recent page references

LRU-ApproximationPageReplacement

e Few computer systems provide sufficient hardware support for true LRU page
replacement. In fact, some systems provide no hardware support, and other page-
replacement algorithms (such as a FIFO algorithm) must be used. Many systems provide
some help, however, in the form of a reference bit.

e The reference bit for a page is set by the hardware whenever that page is referenced
(either a read or a write to any byte in the page). Reference bits are associated with each
entry in the page table.

e Initially, all bits are cleared (to 0) by the operating system.As a user process executes, the
bit associated with each page referenced is set (to 1) by the hardware. After some time,
we can determine which pages have been used and which have not been used by
examining the reference bits, although we do not know the order of use.Thisinformation
is the basis for many page-replacement algorithms that approximate LRU replacement.

Additional-Reference-BitsAlgorithm
e Wecangainadditional orderinginformationby recording thereferencebits atregular
intervals.
e Wecankeep an8-bitbyteforeachpageinatablein memory.
e At regularintervals (say, every 100 milliseconds), a timer interrupt transfers control tothe
operating system.

CSE, NRCM Pagelll




OPERATINGSYSTEM(23CS403)

e Theoperatingsystemshiftsthereferencebitforeachpageintothehigh-orderbitofits8- bit byte,
shifting the other bits right byl bit and discarding the low-order bit. These 8-bit shift
registers contain the historyof page use for the last eight time periods.

e If the shift register contains 00000000, for example, then the page has not been used for
eight time periods.

e A page that is used at least once in each period has a shift register value of 11111111. A
page with a history register value of 11000100 has been usedmore recently than onewith
a value of 01110111.

e If we interpret these 8-bit bytes as unsigned integers, the page with the lowest number is
the LRU page, and it can be replaced. Notice that the numbers are not guaranteed to be
unique, however. We can either replace (swap out) all pages with the smallest value or
use the FIFO method to choose among them.

Second-ChanceAlgorithmORclock algorithm

e The basic algorithm of second-chance replacement is a FIFO replacement algorithm.
When a page has been selected, we inspect its reference bit.

e |f the value is 0, we proceed to replace this page; but if the reference bit is set to 1, we
give the page a second chance and move on to select the next FIFO page.

e When apage gets asecond chance, its referencebit is cleared, and its arrival timeis reset to
the current time. Thus, a page that is given a second chance will not be replaced until all
other pages have been replaced (or given second chances).

e In addition, if a page is used often enough to keep its reference bit set, it will never be
replaced.

e One way to implement the second-chance algorithm is as a circular queue.A pointer(that
is, a hand on the clock) indicates which page is to be replaced next.

e When a frame is needed, the pointer advances until it finds a page with a O reference bit.
As it advances, it clears the reference bits. Once a victim page is found, the page is
replaced, and the new page Is inserted in the circular queue in that position.

reference pages reference pages

g =%

~ircular queue of pages circular queue of pages
(a) (b)

next
victim

EE-EE%BB
I%@BBB%

Second-chance (clock) page-replacement algorithm.

EnhancedSecond-ChanceAlgorithm

e We can enhance the second-chance algorithm by considering the reference bit and the
modify bit as an ordered pair. With these two bits, we have the following four possible
classes:

CSE, NRCM Pagel12




OPERATINGSYSTEM(23CS403)

> (0,0)neitherrecentlyused normodified—Dbest pageto replace.

> (0, 1)not recentlyused but modified—not quite as good, because the page will need
to be written out before replacement.

> (1,0)recentlyused butclean—probablywillbeused againsoon.

> (1, 1) recently used and modified—yprobably will be used again soon, and the
pagewill be need to be written out to disk before it can be replaced.

Counting-BasedPageReplacement

There are many other algorithms that can be used for page replacement. For example,
we can keep a counter of the number of references that have been made to each page and
develop the following two schemes,

LeastFrequentlyUsed(LFU)

e The least frequently used (LFU) page-replacementalgorithm requires that the page with
the smallest count be replaced. The reason for this selection is that an actively used page
should have a large reference count.

e A problem arises, however, when a page is used heavily during the initial phase of a
process but then is never used again.

e Since it was used heavily, it has a large count and remains in memoryeven though it isno
longer needed.

e One solution is to shift the counts right by 1 bit at regular intervals, forming an
exponentially decaying average usage count.

MostFrequentlyUsed(MFU)
e The most frequently used (MFU) page-replacement algorithm is based on the argument
thatthe pagewiththe smallest count wasprobablyjust brought inand has yet to beused.

CSE, NRCM Pagel13




OPERATINGSYSTEM(23CS403)

UNIT-5

File system interface and operation- Access methods, directory structure, Protection,
File system structure, Allocation methods, Free space management, Usage of Open, Create,
Read, Write, Close, Iseek, Stat, ioctl System calls

File:-

Afileisanamedcollectionofrelatedinformationthatisrecordedonsecondary storage.

(or)Afileisthesmallestallotmentoflogicalsecondarystorage.

(on)A file is a sequence of bits, bytes, lines, or records, the meaning of which is
defined bythe file’s creator and user. Many different types of information may be stored in a

file.

FileAttributes

FileAttributesgivestheOperatingSysteminformationaboutthefileandhowitisintended to use.

Afile’sattributesvaryfromoneoperatingsystemto another but typicallyconsistofthese:

e Name.Thesymbolicfilenameistheonlyinformationkeptinhumanreadableform.

e ldentifier. This unique tag, usuallya number, identifies the file within the file system; it
is the non-human-readable name for the file.

e Type.Thisinformationisneededforsystemsthatsupportdifferenttypesoffiles.

e Location. This information is a pointer to a device and to the location of the file on that
device.

e Size. The current size of the file (in bytes, words, or blocks) and possibly the maximum
allowed size are included in this attribute.

e Protection. Access-control information determines who can do reading, writing,
executing, and so on.

e Time, date, and user identification. This information may be kept for creation, last
modification, and last use. These data can be useful for protection, security, and usage
monitoring.

Some newer file systems also supportextended file attributes, including
characterencoding of the file and security features such as a file checksum.

FileTypes

When we design a file system we always consider whether the operating system
should recognizeand supportfiletypes. Ifan operatingsystem recognizes thetypeofafile, it can
then operate on the file in reasonable ways. A common technique for implementing file types
is to include the type as part of the file name. The name is split into two parts—a name and an
extension, usuallyseparated bya period. Examples include resume.docx, server.c, and
ReaderThread.cpp.

CSE, NRCM Page109




OPERATINGSYSTEM(23CS403)

file type usual extension function
executable exe, com, bin ready-to-run machine-
or none language program
object obj, o compiled, machine
language, not linked
source code c, cc, java, perl, source code in various
asm languages
batch bat, sh commands to the command
interpreter
markup xml, html, tex textual data, documents
word processor | xml, rtf, various word-processor
docx formats
library lib, a, so, dll libraries of routines for
programmers
print or view gif, pdf, jpg ASCIl or binary file in a
format for printing or
viewing
archive rar, zip, tar related files grouped into

one file, sometimes com-
pressed, for archiving

or storage
multimedia mpeg, mov, mp3, | binary file containing
mp4, avi audio or A/V information

Common file types.
FileStructure
Filetypesalso canbeused to indicatethe internalstructureofthe file. Someoperating
systems extend this idea by supporting their own file structures. But it has the following
disadvantages
1. If operating system support multiple file structures: the resulting size of the operating
system is large.
2. Some applications may require information structured in a way that is not supported by
the OS some operating systems impose (and support) a minimal number offile structures.
This approach has been adopted in UNIX, Windows, and others.

InternalFileStructure

Block Structure

Disksystemstypicallyhaveawell-definedblocksizedeterminedbythesizeofa
sector.Alldiskl/Oisperformedinunitsofoneblock(physicalrecord),andallblocksarethe same size.
RecordStructure

Files contain a sequence of fixed length records. Physical records may or may not get
exact match with the logical record. Logical records even vary in length.

Accessmethods
Files store information. When it is used, this information must be accessed and read
into computer memory. The information in the file can be accessed in the following ways,
1. Sequential Access
e The simplest access method is sequential access. Information in the file is processed
in order, one record after the other. It is based on a tape model of a file and works as
well on sequential-access devices.

CSE, NRCM Pagel10




OPERATINGSYSTEM(23CS403)

e Example:EditorsandCompilersusuallyaccessfiles inthis fashion.

e Operations
> A read operation—read next ()—reads the next portion of the file and
automaticallyadvances a filepointer, which tracksthe 1/0 location.Similarly, the
writeoperation—write next ()—appends to the end ofthe file and advances to the
end of the newly written material (the new end of file). On some systems, a
program maybe able to skip forward or backward n records for some integer n—
perhaps only for n = 1.

current position

beginning end

< rewind

E——read or write =p>

Sequential-access file.

2. DirectAccess(orRelativeAccess)

e Another method is direct access (or relative access). Here, a file is made up of fixed-
length logical records that allow programs to read and write records rapidly in no
particular order. The direct-access method is based on a disk model of a file, since
disks allow random access to any file block.

e For direct access, the file is viewed as a numbered sequence of blocks or records.
Thus, we may read block 14, then read block 53, and then write block 7. There are no
restrictions on the order of reading or writing for a direct-access file.

e Examples:
> Direct-access files are of great use for immediate access to large amounts of

information. Databases are often of this type. When a query concerning a
particular subject arrives, we compute which block contains the answer and then
read that block directly to provide the desired information.

» On an airline-reservation system, we might store all the information about a
particular flight (for example, flight 713) in the block identified by the flight
number. Thus, the number of available seats for flight 713 is stored in block 713
of the reservation file. To store information about a larger set, such as people, we
might compute a hash function on the people’s names or search a small in-
memory index to determine a block to read and search.

e Operations
» For the direct-access method, the file operations must be modified to include the

block number as a parameter. Thus, we have read (n), where n is the block
number, rather than read next (), and write (n) rather than write next ().

» An alternative approach is to retain read next () and write next (), as with
sequential access, and to add an operation position file (n) where n is the block
number. Then, to affect a read (n), we would position file (n) and then read next().

CSE, NRCM Pagelll




OPERATINGSYSTEM(23CS403)

3. IndexedAccess
e |t involves the construction of an index for the file. The index, like an index in the
back of a book, contains pointers to the various blocks. To find a record in the file, we
first search the index and then use the pointer to access the file directlyand to find the
desired record.

e Example:

A retail-price file might list the universal product codes (UPCs) for items, with the
associated prices. Each record consists of a 10-digit UPC and a 6-digit price, for a 16-
byte record. If our disk has 1,024 bytes per block, we can store 64 records per block.A
file of 120,000 records would occupy about 2,000 blocks (2 million bytes). By
keeping the file sorted by UPC, we can define an index consisting of the first UPC in
each block. This index wouldhave 2,000 entries of 10 digits each, or 20,000 bytes, and
thus could be kept in memory. To find the price of a particular item, we can make a
binary search of the index. From this search, we learn exactly which block contains
the desired record and access that block. This structure allows us to search a large file
doing little 1/0.

With large files, the index file itself may become too large to be kept in memory. One

solutionistocreate anindex forthe index file.Theprimaryindex file containspointersto

secondary index files, which point to the actual data items. For example, IBM’s indexed

sequential-access method (ISAM)usesasmallmasterindexthat pointsto disk blocksofa

secondary index.

DirectoryOverview

Afilesystem canbecreatedoneachofthese parts ofthedisk. Anyentitycontaininga file
system is generally known as a volume. Each volume thatcontains a file system must also
contain information about the files in the system. This information is kept in entries in a
device directory or volume table of contents. The device directory (or directory) records
information—such as name, location, size, and type—for all files on that volume.

The directory can be viewed as a symbol table that translates file names into their
directoryentries. The following are the operations that are to be performed on a directory:

e Searchforafile.

e Createafile

o Deleteafile.

e Listadirectory.

e Renameafile

e Traversethefilesystem

Directory Structure
Themostcommonschemesfordefiningthelogicalstructureofadirectoryare
thefollowing,

1. Single-LevelDirectory
e The simplest directory structure is the single-level directory. All files are contained
in the same directory, which is easyto support and understand.

CSE, NRCM Pagel12




OPERATINGSYSTEM(23CS403)

e Limitations
> All files are in the same directory, theymust have unique names. If two users call
their data file test.txt, then the unique-name rule is violated.
» Even a single user on a single-level directory may find it difficult toremember the
names of all the files as the number of files increases. Keeping track of so many
files is a problem.

directory| cat _I bo }l a test: data mall cont hex wreoor

CILLE6888 S

Single-level directory.

2. Two-LevelDirectory
e The standard solution to eliminate confusion of file names among different users isto
create a separate directory for each user.

Sothe two leveldirectorystructurecontains2 directories

» MasterFile Directory(MFD) atthetoplevel.

» UserFileDirectory(UFD)atthesecondleveland

» Actualfilesareatthethirdlevel.

e Each user has his own user file directory (UFD). When a user job starts or a user

logs in, the system’s master file directory (MFD) is searched. The MFD is indexed
byuser name or account number, and each entrypoints to the UFD for that user

e Whenauserreferstoaparticularfile,onlyhisownUFDis searched.

e To create a file for a user, the operating system searches only that user’s UFD to
ascertain whether another file of that name exists.

e To delete a file, the operating system confines its search to the local UFD; thus, it
cannot accidentally delete another user’s file that has the same name.

master file

directory | user 1 ’ userz‘ users‘ user4‘

user file

directory cat | bo a test a data a test X data a

SILTITETELT

Two-level directory structure.

e Although the two-level directory structure solves the name-collision problem, it still
has disadvantages.

e This structure effectively isolates one user from another. Isolation is an advantage
when the users are completely independent butis a disadvantage when the users want
to cooperate on some task and to access one another’s files. Some systems simply do
not allow local user files to be accessed byother users.

CSE, NRCM Pagel21




OPERATINGSYSTEM(23CS403)

e If access is permitted one user must have the abilityto name a file in another user’s
directory. To name a file uniquely, the user must give both user name and file name
as Path Name.

e If user A wishes to access her own test file named test.txt, she can simply refer to
test.txt. Toaccess thefile namedtest.txt ofuserB (with directory-entrynameuserb),
however,shemighthavetoreferto/userb/test.txt(windowsos)and/u/pbg/test(Unix,

Linux).

e A special situation occurs with the system files. If a user wants them, they are
searched in USD if found ok if not found we should copy the system files into each
UFD but copying all the system files would waste an enormous amount of space.

e The standard solution is to use special user directory. Whenever a file name is given
to be loaded, the operatingsystem first searches the local UFD. If the file is found, it
is used. If it is not found, the system automatically searches the specialuserdirectory
that contains the system files.

e The sequenceofdirectories searchedwhenafileis namediscalledthesearchpath.

3. Tree-StructuredDirectories

e A tree is the most common directory structure. The tree has a root directory, and
every file in the system has a unique path name.

e A directory (or subdirectory) contains a set of files or subdirectories. A directory is
simply another file, but it is treated in a special way. All directories have the same
internal format. One bit in each directory entry defines the entry as a file (0) or as a
subdirectory(1). Special system calls are used to create and delete directories.

e CurrentDirectory

» Each process has a current directory. The current directoryshould contain most
of the files that are of current interest to the process.

» When reference is made to a file, the current directory is searched. If a file is
needed that is not in the current directory, then the user usually must either
specify a path name or change the current directory (using change directory ()
system call) to be the directory holding that file.

root| spell | bin ‘programs|

[t [t [ ot | ot [coumt| e foom] | p [ o [ ot ]
o \ ® 0000 / \ ®
(oo [coov | ot [aw | foordo] sot [ e | [pox | o]
N T[]
[t [ oty [open |[ e | [Jost | et |
o

Tree-structured directory structure.

e PathNames

CSE, NRCM Pagel21




OPERATINGSYSTEM(23CS403)

ItdescribesthepaththeOSmust taketogettosomepoint.

Pathnamescanbeoftwo types: absoluteand relative.

An absolute path name begins at the root and follows a path down to the
specified file, giving the directory names on the path.

> Arelativepathnamedefinesapathfromthecurrentdirectory.

> If the current directory is root/spell/mail, then the relative path name prt/first
refers to the same file as does the absolute path name root/spell/mail/prt/first.

e Deletionofadirectory

> If a directory is empty, its entry in the directory that contains it can simply be
deleted.

» However, suppose the directory to be deleted is not empty but contains several
files or subdirectories.

» One of two approaches can be taken. Some systems will not delete a directory
unless it is empty. Thus, to delete a directory, the user must first delete all the
files in that directory. If any subdirectories exist, this procedure must be applied
recursivelyto them, so that theycan be deleted also. This approach can result in a
substantial amount of work.

» An alternative approach, such as that taken by the UNIX rm command, is to

provide an option: when a request is made to delete a directory, all that
directory’s files and subdirectories are also to be deleted.

Y V V

4. Acyclic-GraphDirectories
e A tree structure prohibits the sharing of files or directories. An acyclic graph i.e., a
graph with no cycles which allows directories to share subdirectories and files.
e The same file or subdirectory may be in two different directories. An acyclic-graph
directory structure is more flexible than a simple tree structure, but it is also more
complex.

=

words

o

Acyclic-graph directory structure.

e Implementation
a. Link: A common way is to create a new directory entry called a link. A link is
effectively a pointer to another file or subdirectory. A link may be implemented
as an absolute or a relative path name. When a reference to a file is made, we
searchthedirectory.Ifthe directory entry ismarkedasa link,then thename of

CSE, NRCM Pagel21




OPERATINGSYSTEM(23CS403)

therealfile is included inthe link information. We resolve the link byusingthat
path name to locate the real file.

b. Duplication:Sharedfilesduplicateallinformationabouttheminbothsharing
directories. Thus, both entries are identical and equal. A major problem with
duplicate directoryentries is maintaining consistencywhen a file is modified.

e Problems
» A file may now have multiple absolute path names creating problem in
traversing.
> Deletion: When can the space allocated to a shared file be deallocated and
reused?

o One possibility is to remove the file whenever anyone deletes it, but this
action may leave dangling pointers to the now-nonexistent file.

o Another possibility occurs when symbolic links are used. The deletion of a
link need not affect the original file; only the link is removed. If the file
entry itself is deleted, the space for the file is deallocated, leaving the links
dangling.Wecansearch fortheselinksandremovethemas well,butunless a list
of the associated links is kept with each file, this search can be expensive.
Alternatively, we can leave the links until an attempt is made to use them.
At that time, we can determine that the file of the name given by the link
does not exist and can fail to resolve the link name; the access is treated just
as with any other illegal file name.

o Another approach to deletion is to preserve the file until all references to it
are deleted. To implement this approach, we musthave some mechanism
fordetermining that the last reference to the file has been deleted. We could
keep a list of all references to a file (directory entries or symbolic links).
When a link or a copy of the directory entry is established, a new entry is
added to the file-reference list. When a link or directoryentryis deleted, we
remove its entry on the list. The file is deleted when its file-reference list is
empty.

Protection

When information is stored in a computer system, we want to keep it safe from
physical damage (the issue of reliability) and improper access (the issue of protection).

Reliability is generally provided by duplicate copies of files. Many computers have
systems programs that automatically (or through computer-operator intervention) copy disk
files to tape at regular intervals (once per day or week or month) to maintain a copy should a
file system be accidentally destroyed.

File systems can be damaged by hardware problems (such as errors in reading or
writing), power surges or failures, head crashes, dirt, temperature extremes, and vandalism,
accidentaldeletion , Bugs in the file-system software etc.,

Protection can be provided in many ways. For a single-user laptop system, we might
provide protection by locking the computer in a desk drawer or file cabinet. In a larger
multiuser system, however, other mechanisms are needed.

CSE, NRCM Pagel21




OPERATINGSYSTEM(23CS403)

1. TypesofAccess

Protection mechanisms provide controlled access by limiting the types of file access
that can bemade. Access is permitted ordenieddependingon several factors, oneof which is
the type of access requested. Several different types of operations may be controlled:

e Read.Readfromthefile.

e Write.Writeorrewritethefile.

e Execute. Loadthefileintomemoryandexecuteit.

e Append.Writenewinformationattheend ofthefile.

e Delete.Deletethefileand freeitsspaceforpossiblereuse.

e List.List thenameandattributesofthefile.
Otheroperations,suchasrenaming,copying,andeditingthefile,mayalsobecontrolled.

2. AccessControl

Themost commonapproachtotheprotectionproblemistomakeaccessdependenton the
identity of the user. Different users may need different types of access to a file or directory.
The most general scheme to implement identity dependent access is to associate with each
file and directory an access-control list (ACL)specifying user names and thetypes of access
allowed for each user.

Whenauserrequestsaccesstoaparticularfile,theoperatingsystemchecksthe access list
associated with that file. Ifthat user is listed forthe requested access, the access is allowed.
Otherwise, aprotection violationoccurs,andtheuser job isdenied accesstothefile.

This approach has the advantage of enabling complex access methodologies. The main
problem with access lists is their length. If we want to allow everyone to read a file, we must
list all users with read access. This technique has two undesirable consequences:

e Constructing such a list may be a tedious and unrewarding task, especially if we do not
know in advance the list of users in the system.

e The directory entry, previously of fixed size, now must be of variable size, resulting in
more complicated space management.

These problems can be resolved by use of a condensed version of the access list. To
condense thelength oftheaccess-control list, manysystems recognizethreeclassifications of
users in connection with each file:

e Owner.Theuserwhocreatedthefileistheowner.
e Group.Asetofuserswhoaresharingthefileandneedsimilaraccessisagroup,or work group.
e Universe.Allother usersinthesystemconstitutetheuniverse.

The most common recent approach is to combine access-control lists with the more
general (and easier to implement) owner, group, and universe access control scheme.

For this scheme to work properly, permissions and access lists must be controlled
tightly. This control can be accomplished in several ways. For example, in the UNIX system,
groups can be created and modified onlybythe manager of the facility(or byanysuperuser).
Thus, control is achieved through human interaction.

CSE, NRCM Pagel21




OPERATINGSYSTEM(23CS403)

With the more limited protection classification, only three fields are needed to define
protection. Often, each field is a collection of bits, and each bit either allows or prevents the
access associated with it. For example, the UNIX systemdefines three fields of3 bits each—

rwx, where r controls read access, w controls write access, and x controls execution. A
separate field is kept for the file owner, for the file’s group, and for all other users. In this
scheme, 9 bits per file are needed to record protection information.

Example:

19-rw-r--r--+1jimstaff130May2522:13 filel

3. OtherProtectionApproaches

Another approach to the protection problem is to associate a password with each file.
Just as access to the computer system is often controlled by a password, access to each file
can be controlled in the same way. If the passwords are chosen randomly and changed often,
this scheme may be effective in limiting access to a file. The use of passwords has a few
disadvantages, however.

First, the number of passwords that a user needs to remember may become large,
making the scheme impractical.

Second, if only one password is used for all the files, then once it is discovered, all
files are accessible; protection is on an all-or-none basis. Some systems allow a user to
associate a password with a subdirectory, rather than with an individual file, to address this
problem.

FileSystemStructure
Disksprovidemostofthesecondarystorageonwhichfilesystemsaremaintained. Two characteristics
make them convenient for this purpose are,

1. Adisk canberewritten.
2. Adisk canaccessdirectlyanyblock ofinformation itcontains.

File systems provide efficient and convenient access to the disk by allowing data tobe
stored, located, and retrieved easily.

DesignProblemsinaFile System

1. Howthefilesystemshouldlooktotheuseri.e.file,andthedirectorystructurefor organizing files.

2. Creating algorithms and data structures to map the logical file system onto the physical
secondary-storage devices.

Layereddesign ofaFilesystems
Eachlevelin thedesignusesthefeaturesoflowerlevelstocreatenewfeaturesforuse by higher
levels.

Application Programs

Itcontainsuser codethatismakingarequest.
LogicalFile System

The logical file system manages metadata information. Metadata includes all of
thefile-systemstructureexcepttheactualdata. Thelogicalfilesystemmanagesthedirectory

CSE, NRCM Pagel21




OPERATINGSYSTEM(23CS403)

structuretoprovidethefile-organizationmodulewiththisinformation.

File-OrganizationModule application programs
Thefile-organization moduleknowsaboutfiles andtheir Jl

logical blocks and physical blocks. By knowing the type of file

allocation used and the location of the file, the file organization logical file system

module can translate logical block addresses to physical block ‘[L

addresses for the basic file system to transfer. asiie
file-organization module

BasicFileSystem @
The basic file system needs only to issue generic commands basic file system
to the appropriate device driver to read and write physical blocks on
thedisk. Eachphysicalblock is identified byitsnumericdiskaddress. @
I/0 control
1/0 control @
Thel/Ocontrol  levelconsistsofdevicedrivers — andinterrupts
handlers to transfer information between the main memory and the devices
disk system. It acts like a translator, inputting high-level commands
such as “retrieve block 123.”And outputting low-level, hardware Layered file system

-specific instructionsthatareusedbythehardware controller

Devices
Thesearetheactualhardwaredeviceslikedisk.

Allocationmethods
Manyfiles can be stored on the same disk. Themain problem is how to allocate space
to these files so that disk space is utilized effectively and files can be accessed quickly. The
following are the three major methods of allocating disk space that are in wide use:
1. ContiguousAllocation

e Contiguous allocation requires that each file occupy a set of contiguous blocks on
the disk. Disk addresses define a linear ordering on the disk.

e Contiguous allocation of a file is defined by the disk address and length (in block
units) of the first block. If the file is n blocks long and starts at location b, then it
occupies blocks b, b + 1, b + 2, b + n — 1. The directory entry for each file indicates
the address of the starting block and the length of the area allocated for this file.

e Accessingafile:

Accessing a file that has been allocated contiguously is easy. It supports both
sequential and random access. For sequential access, the file system remembers the
disk address of the last block referenced and, when necessary, reads the next block.
For direct access to block i of a file that starts at block b, we can immediatelyaccess
block b +i.

CSE, NRCM Pagel21




OPERATINGSYSTEM (23CS5403)

Q directory

count file start length
o1 1 =21 =2 count o 2
f tr 14 3
4[] s e[ 71 mail 1o p
81 e[ 1o 111 list 28 4
tr f 6 2
12 1412l 114 J1s[ ]
16171814191
mail
202122 ]2z3[]
2a[ ]2s[]2e[]27[]
list
2g[]ze[Jzo[031[]
\._h‘k s

Contiguous allocation of disk space.

Drawbacks

>

Finding space for a new file. The system chosen to manage free space determine
show this task is accomplished. First fit and best fit are the most common
strategies used to select a free hole fromthe set of available holes.
ExternalFragmentation

As files are allocated and deleted, the free disk space is broken into little
pieces. External fragmentation exists whenever free space is broken into chunks.lIt
becomes a problem when the largest contiguous chunk is insufficient for a
request; storage is fragmented into a number of holes, none of which is large
enough to store the data.
Solutiontoexternalfragmentation

Copy an entire file system onto another disk. The original disk is then
freed completely, creatingonelargecontiguous freespace. Wethencopythefiles
back onto the original disk by allocating contiguous space from this one large
hole. This scheme effectively compacts all free space into one contiguous space,
solving the fragmentation problem.

Determining how much space is needed for a file. When the file is created, the
total amount of space it will need must be found and allocated. If we allocate too
little space to a file, we may find that the file cannot be extended.

Two possibilities then exist. First, the user program can be terminated,
with an appropriate error message. The user must then allocate more space and
run the program again. These repeated runs may be costly. To prevent them, the
user will normally overestimate the amount of space needed, resulting in
considerable wasted space. The other possibility is to find a larger hole, copy the
contentsofthefiletothenewspace, and releasethe previous space.Thisseriesof
actions can be repeated as long as space exists, although it can betime consuming.
The user need never be informed explicitly about what is happening, however; the
system continues despite the problem, although more and more slowly. Even if
the total amount of space needed for a file is known in advance, preallocation may
be inefficient. A file that will grow slowlyover a long period.

ModifiedContiguous-Allocation
» To minimize these drawbacks, some operating systems use a modified

contiguous-allocationscheme.Here,acontiguouschunkofspaceisallocated

CSE, NRCM

Page12?2




OPERATINGSYSTEM(23CS403)

initially. Then,ifthatamountprovesnottobelargeenough,anotherchunkof contiguous
space, known as an extent, is added.

2. LinkedAllocation

e Linked allocation solves all problems of contiguous allocation. With linked
allocation, each file is a linked list of disk blocks; the disk blocks may be scattered
anywhere on the disk. The directory contains a pointer to the first and last blocks of
the file. For example, a file of five blocks might startat block 9 and continue at block
16, then block 1, then block 10, and finally block 25.

e To create a new file, we simply create a new entry in the directory. With linked
allocation, each directory entry has a pointer to the first disk block of the file. This
pointer is initialized to null (the end-of-list pointer value) to signify an empty file.
The size field is also set to 0.

e Awritetothefilecauses thefree-spacemanagementsystemto findafree block,and this
new block is written to and is linked to the end of the file.

e Toread afile,wesimplyreadblocks byfollowingthepointers fromblocktoblock.

T directory
— | file start end

jeep o 25

A e[ 1 71 I

1181191
zo[ =1 = J=2a[]
za[]=2s ze [ =7 [

28 J=2a 1o 1311
_— 7/

Linked allocation of disk space.

e Advantages

» There is no external fragmentation with linked allocation, and any free block on
the free-space list can be used to satisfy a request.

» Thesizeofafileneednotbedeclaredwhenthefileiscreated. Afilecan continue
togrowaslongasfreeblocksareavailable.Consequently,itisnevernecessaryto
compact disk space.

e Disadvantages

> The major problem is that it can be used effectively only for sequential-access
files. To find the i block of a file, we must start at the beginning of that file and
followthepointersuntilweget to the i block.Each access to apointerrequires a disk
read, and some require a disk seek. Consequently,it is inefficient to supporta
direct-access capability for linked-allocation files.

» Anotherdisadvantage is thespace required for the pointers. If apointerrequires 4
bytes out of a 512-byte block, then 0.78 percent of the disk is being used for
pointers,ratherthan forinformation. Each filerequires slightlymorespace thanit
would otherwise.

» The usual solution to this problem is to collect blocks into multiples, called
clusters, and to allocate clusters rather than blocks. For instance, the file system
maydefine a cluster as four blocks and operate on the disk only in cluster units.

» Another problem of linked allocation is reliability the files are linked together by
pointersscatteredallover thedisk,andconsiderwhatwouldhappenifapointer

CSE, NRCM Pagel27




OPERATINGSYSTEM(23CS403)

werelostordamaged.

» One partial solution is to use doubly linked lists, and another is to store the file
name and relative block number in each block. However, these schemes require
even more overhead for each file.

VariationonLinkedAllocation

e An important variation on linked allocation is the use of a file-allocation table (FAT).
This simple but efficient method of disk-space allocation was used by the MS-DOS
operating system.

e A section of disk at the beginning of each volume is set aside to contain the table. The
table has one entry for each disk block and is indexed byblock number.

e TheFAT is used in much the same wayas a linked list. Thedirectoryentrycontains the
block number of the first block of the file. The table entry indexed by thatblocknumber
contains the block number of the next block in the file. This chain continues until it
reaches the last block, which has a special end-of-file value as the table entry.

e Anunused block is indicated by a table value of 0. Allocating a new block to a file is a
simple matter of finding the first 0-valued table entry and replacing the previous end-
of-file value with the address of the new block. The 0 is then replaced with the end-of-

file value.
directory entry
[ test [ eee [ 217
name start block

217]_618
39
618|339

number of disk blocks -1

FAT
3. IndexedAllocation

e Linked allocation solvesthe external-fragmentation and size-declaration problems of
contiguous allocation. However, in the absence of a FAT, linked allocation cannot
support efficient direct access, since the pointers to the blocks are scattered with the
blocks themselves all over the disk and must be retrieved in order.

e Indexedallocation  solvesthisproblembybringingallthe  pointerstogetherintoone
location: the index block.

e Each file has its own index block, which is an array of disk-block addresses. The
i"entry in the index block points to the i™block of the file. The directory contains the
address of the index block.

e Tofindand readthei™block, weusethepointerinthei™index-blockentry.

e When the file is created, all pointers in the index block are set to null. When the
iblock is first written, a block is obtained from the free-space manager, andits
address is put in the i™index-block entry.

CSE, NRCM Pagel27




OPERATINGSYSTEM(23CS403)

CSE, NRCM

Indexed allocation supports direct access, without suffering from external
fragmentation, because any free block on the disk can satisfy a request for more
space.

/’F—ﬁ——_ﬁ‘“\ directory

file index block
jeep 1 IQ

[ 10 |
| 25 |

\ —1 |
— \ -
HHH-- \ -

28 lz2e a0 lz1[] o
N _

Indexed allocation of disk space.

Disadvantages

» Indexedallocationdoessufferfromwasted space.

» The pointer overhead of the index block is generally greater than the pointer
overhead of linked allocation.

MechanismsforimplementingindexBlock

» Linked scheme. An index block is normally one disk block. Thus, it can be read
and written directlybyitself. To allow forlarge files, wecan link together several
index blocks.For example, an index block might contain a small header giving the
name of the file and a set of the first 100 disk-block addresses. The next address
(thelast wordin theindex block)isnull(forasmallfile) oris apointerto another index
block (for a large file).

» Multilevel index. A variant of linked representation uses a first-level index block
to point to a set of second-level index blocks, which in turn point to the file
blocks. To access a block, the operating system uses the first-level index to find a
second-level index block and then uses that block to find the desired data block.
This approach could be continued to a third or fourth level, depending on the
desired maximum file size. With 4,096-byte blocks, we could store 1,024 four-
byte pointers in an index block.Two levels of indexes allow 1,048,576 data blocks
and a file size of up to 4 GB.

» Combined scheme. Another alternative, used in UNIX-based file systems, is to
keep the first, say, 15 pointers of the index block in the file’s inode. The first 120f
these pointers point to direct blocks; that is, they contain addresses of blocks that
contain data of the file. Thus, the data for small files (of no more than 12 blocks)
do notneed a separate index block. If the block size is 4 KB, then up t048 KB of
data can be accessed directly. The next three pointers point to indirect blocks.
The first points to a single indirect block, which is an index block containing not
data but the addresses of blocks that do contain data. The second
pointstoadoubleindirectblock,whichcontainstheaddressofablockthat

Pagel28




OPERATINGSYSTEM(23CS403)

containstheaddressesofblocksthatcontainpointerstotheactualdatablocks. The last
pointer contains the address of a triple indirect block.

mode
owners (2)
timestamps (3)
size block count
direct blocks :
-
— = data =
single indirect ——»| = .
— dat: -
double indirect (data | [ L=———{ data ]
triple indirect |—. = data
|2t [ Gata ]

The UNIX inode.

Free-spaceManagement
To keep track of free disk space, the system maintains a free-space list. The free-
space list records all free disk blocks—those not allocated to some file or directory. The
following are implementations of free space list.
1. BitVector
e Free-space list is frequently implemented as a bit map or bit vector. Each block is
represented byl bit. If the block is free, the bitis 1; if the block is allocated, the bitis
0.
e For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25,
26, and 27 are free and the rest of the blocks are allocated. The free-space bit map
would be
001111001111110001100000011100000...
e Advantage
Themain advantageof this approach is its relativesimplicityand its efficiency in
finding the first free block or n consecutive free blocks on the disk. Indeed, many
computers supply bit-manipulation instructions that can be used effectively for that
purpose. One technique for finding the first free block on a system that uses a bit-
vector to allocate disk space is to sequentially check each word in the bit map to see
whether that value is not 0, since a0-valued word contains only 0 bits and represents
a set of allocated blocks. The first non-0 word is scanned for the first 1 bit, which is
the location of the first free block.
Thecalculationoftheblocknumberis
(numberofbitsper word)x(numberof0-valuewords)+offset offirst1 bit.
e Disadvantage
Bit vectors are inefficient unless the entire vector is kept in main memory (and is
written to disk occasionally for recovery needs). Keeping it in main memory is
possible for smaller disks but not necessarily for larger ones.

2. Linked List
e Another approach to free-space management is to link together all the free disk
blocks, keeping a pointer to the firstfree blockin a special location on the disk and

CSE, NRCM Pagel29




OPERATINGSYSTEM(23CS403)

caching it in memory. This first block contains a pointer to the next free disk block,
and so on.

e [For example, blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 were free
and the rest of the blocks were allocated.In this situation, we would keep a pointerto
block 2 as the first free block. Block 2 would contain a pointer to block 3, which
would point to block 4, which would point to block 5, which would point tom block
8, and so on.

e Disadvantages
This scheme is not efficient; to traverse the list, we must read each block, which
requires substantial 1/O time

free-space list head

16117

20 |21 |22

24|25
28 |29 120 |21 ]
N 7

Linked free-space list on disk.

3. Grouping
e A modification of the free-list approach stores the addresses of n free blocks in the
first free block. The first n—1 of these blocks are actually free. The last, block
contains the addresses of another n free block, and so on. The addresses of a large
number of free blocks can now be found quickly.

4. Counting
e Several contiguous blocks may be allocated or freed simultaneously, particularly
when space is allocated with the contiguous-allocation algorithm or through
clustering.
e Thus, rather than keeping a list of n free disk addresses, we can keep the address of
the first free block and the number (n) of free contiguous blocks that follow the first
block. Each entryin the free-space list then consists of a disk address and a count.

5. SpaceMaps

e Oracle’s ZFS file system was designed to encompass huge numbers of files,
directories, and even file systems.

¢ In its management of free space, ZFS creates metaslabs to divide the space on the
device into chunks of manageable size. Each metaslab has an associated space map.

e The space map is a log of all block activity(allocating and freeing), in time order, in
counting format. When ZFS decides to allocate or free space from a metaslab, it
loads the associated space map into memory in a balanced-tree structure (for very
efficient operation), indexed byoffset, and replays the login to that structure.

CSE, NRCM Pagel30




OPERATINGSYSTEM(23CS403)

e Thein-memoryspacemap is thenan accuraterepresentation oftheallocated and free
space in the metaslab.

Systemcallsforfileoperations-open(),read(),write(),close(),seek(),unlink()
(FileOperations)
create()

This is used to create a file. Two steps arenecessaryto create a file. First, space in the
file system must be found for the file. Second, an entry for the new file must be made in the
directory.
open ()

Many systems require that an open () system call be made before a file is first used.
When a file has been opened its entry is added in the open file table. It also contains open
count associated with each file to indicate how manyprocesses have the file open.

read()

To read from a file, we use a system call that specifies the name of the file and read
pointertothelocationin thefile wherethenextreadisto takeplace. Oncethe read has taken place,
the read pointer is updated.

write()

To write a file, we make a system call specifying both the name of the file and the
information to be written to the file. Given the name of the file, the system searches the
directory to find the file’s location.

The system must keep a write pointer to the location in the file where the next writeis
to take place. The write pointer must be updated whenever a write occurs.

close()

This closes a file. Each close () decrements the open countand when the count reaches
zero, the file is no longer in use so it can be closed.
delete()

To delete a file, we search the directory for the named file. Having found the
associated directoryentry, we release all file space, so that it can be reused byother files, and
erase the directory entry.
truncate()

The user may want to erase the contents of a file but keep its attributes. Rather than
forcing the user to delete the file and then recreate it, this function allows all attributes to
remain unchanged—except for file length—but lets the file be reset to length zero and its file
space released.
seek()

It is also called as Reposition. The directory is searched for the appropriate entry, and
the current-file-position pointer is repositioned to a given value. Repositioning within a file
need not involve any actual 1/0.

unlink()
Deletes a name from the file system. If that name was the last link to a file and no
processeshavethefileopenthefileisdeletedandthespaceitwasusingismadeavailablefor reuse.

CSE, NRCM Pagel31




