
23IT405: Java Programming

Department of Information Technology

Topic: History of Java

Department of Information Technology 1

Birth of Java

• Year: 1991

• Initiators: James Gosling and team at Sun Microsystems.

• Project Name: "Oak“

• Objective: Create a platform-independent language for embedded
systems.

Department of Information Technology 2

Java's Early Days

• Year: 1995

• Renamed: From "Oak" to "Java”

• Reason: Trademark issues and inspiration from Java coffee.

• Launch: First public release of Java (JDK 1.0).

Department of Information Technology 3

Key Features at Launch

• Platform Independence (Write Once, Run Anywhere - WORA).

• Object-Oriented Programming.

• Automatic Garbage Collection.

• Robustness and Security.

Department of Information Technology 4

Evolution of Java

• 1998: JDK 1.2 - Introduction of "Swing" and "Collections Framework”.

• 2004: JDK 5.0 - Added Generics and Enhanced for-loop.

• 2014: Java 8 - Introduced Lambdas and Streams.

Department of Information Technology 5

Challenges and Criticism

• Verbose syntax compared to modern languages.

• Performance overhead of JVM.

• Competition from newer languages like Python and Kotlin.

Department of Information Technology 6

The Future of Java

• Continued evolution with regular updates.

• Integration with emerging technologies like AI and IoT.

Department of Information Technology 7

23IT405: Java Programming

Department of Information Technology

Topic: Need for OOP Paradigm

Programming and Programming Language

Computer Science and Engineering 9

A process of creating a set of instructions for a computer to
perform tasks.

A programming language is a formal language used to
communicate instructions to a computer in software development.

Introduction to Java

How Java was Introduced?

Computer Science and Engineering 10

What is Object-Oriented Programming
(OOP)?

Definition: OOP is a programming paradigm based on objects
representing real-world entities.

Purpose: Simplifies system design with modularity and reusability.

Real-life Analogy: A car object
has:

Attributes: color, model, engine size.

Behaviors: accelerate, brake, turn.

Computer Science and Engineering 11

Limitations of Procedural Programming (C as
an Example)

Computer Science and Engineering 12

• Poor scalability for large systems.

• Code duplication and low reusability.

Challenges:

• Library System in C:

• Functions like addBook() and removeBook() are standalone
and not linked to specific objects, leading to redundant code.

Example:

Why
Transition
from C to
Java?

Computer Science and Engineering 13

• Procedural programming language.

• Focuses on functions and processes.

• Suitable for system-level programming like
OS development.

C:

• Object-oriented programming language.

• Models real-world entities using objects.

• Platform-independent and ideal for large-
scale applications.

Java:

Core Differences Between C and Java

Computer Science and Engineering 14

Feature C Java

Paradigm Procedural Object-Oriented

Platform Dependence Platform-dependent
Platform-independent

(WORA)

Memory Management Manual
Automatic (Garbage

Collection)

Pointers Supports pointers No direct pointer access

Inheritance Not supported Fully supported

Application
System programming (OS,

drivers)

Web, mobile, enterprise

apps

Example:

• C: Focuses on writing functions like void calculateArea(int length, int breadth).

• Java: Uses objects like Rectangle with attributes (length, breadth) and methods (calculateArea()).

Java’s Key Features

Computer Science and Engineering 15

Runs on any device with JVM.
Platform

Independence:

Garbage collection prevents memory leaks.
Memory

Management:

Built-in features like bytecode verification and class loaders. Security:

Web apps, Android apps, and enterprise systems. Applications:

Powers Netflix, LinkedIn, and Spotify. Real-life Usage:

Advantages of Java and OOP

Computer Science and Engineering 16

Modularity:
Example: E-commerce platform with modular
classes for Product, Cart, Payment.

Reusability:
Example: Employee class reused across
departments.

Maintainability:
Example: Debugging in a single class propagates
fixes to derived classes.

Scalability:
Used by Amazon and LinkedIn to handle millions
of users.

23IT405: Java Programming

Department of Information Technology

Topic: Need for OOP Paradigm

Four Pillars of OOP

Computer Science and Engineering 18

Encapsulation: Bundling data and methods operating on data

Abstraction: Hiding complexity and exposing only essential features

Inheritance: Creating new classes from existing ones

Polymorphism: Using a single interface to represent different types

Computer Science and Engineering 19

Objects and Classes

Computer Science and Engineering 20

Class:

Blueprint for creating objects; defines attributes and methods.

Object:

Instance of a class; represents real-world entities.

Real-world Scenario:

Class: "Car" with attributes like brand, model, and
methods like start, stop.

Object: Specific car instance (e.g., "Toyota Corolla 2022").

Computer Science and Engineering 21

Encapsulation

• Combines data and methods into a single unit (class)

• Access control using access modifiers (private, public, protected)

• Example:

 Real-world scenario: A bank account hides sensitive details like
account number and balance but provides access through secure
methods like depositing or withdrawing money.

Computer Science and Engineering 22

C
o

m
p

u
te

r Scien
ce an

d
 En

gin
ee

rin
g

23

Abstraction

• Focus on "what" an object does, not "how"

• Implementation details are hidden from the user

• Example:

 Real-world scenario: When using an ATM, users only interact
with a simplified interface (insert card, enter PIN, withdraw cash)
without knowing the underlying technical processes.

Computer Science and Engineering 24

Inheritance

• Mechanism to derive a new class from an existing one

• Reuses code, promotes consistency

• Example:

 Real-world scenario: A vehicle classification where a general
"Vehicle" category has common attributes (e.g., engine type, wheels),
and specific types like "Car" or "Truck" inherit these attributes while
adding unique features.

Computer Science and Engineering 25

Computer Science and Engineering 26

Polymorphism

• Objects of different classes can be treated as objects of a common
superclass

• Two types: Compile-time and Run-time polymorphism

• Example:

 Real-world scenario: A universal remote can operate various
devices (TV, AC, DVD player) through a consistent set of buttons, but
the specific actions depend on the device.

Computer Science and Engineering 27

Computer Science and Engineering 28

Real-world Examples

• Banking Systems: Accounts, transactions, users

• Gaming: Characters, behaviors, environments

• E-commerce: Products, users, orders

Computer Science and Engineering 29

23IT405: Java Programming

Department of Information Technology

Topic: Java Buzzwords

What are Java Buzzwords?

• Buzzwords are terms used to describe the design philosophy and
features of Java.

• These define why Java became a preferred programming language.

Computer Science and Engineering 31

1.Simple "Easy to Learn and Use"

• Intuitive syntax similar to C++.

• Eliminates complex concepts like pointers and multiple inheritance.

Computer Science and Engineering 32

2.Object-Oriented "Everything is an Object"

• Follows principles of encapsulation, inheritance, and polymorphism.

• Promotes code reuse and modularity.

Computer Science and Engineering 33

 3.Portable "Write Once, Run Anywhere"

• Bytecode compiled by the Java compiler can run on any platform with
a JVM.

• Independence from hardware or operating systems.

Computer Science and Engineering 34

4.Platform-Independent "Runs Across
Devices"
• Code compiled on one system can execute on another.

• Ensures consistency across environments.

Computer Science and Engineering 35

5.Secured "Safe from Vulnerabilities"

• No explicit pointers.

• Robust security features like bytecode verification, class loader, and
security manager.

Computer Science and Engineering 36

6.Robust "Handles Errors Gracefully"

• Automatic garbage collection prevents memory leaks.

• Exception handling mechanisms ensure stability.

• Strong type checking during compilation.

Computer Science and Engineering 37

 7.Multithreaded "Enables Concurrent
Execution"
• Supports threads for performing multiple tasks simultaneously.

• Simplifies interactive applications like games and multimedia.

Computer Science and Engineering 38

 8.High Performance "Optimized for Speed"

• JIT (Just-In-Time) compiler enhances execution speed.

• Efficient memory management through garbage collection.

Computer Science and Engineering 39

9.Architecture Neutral "Independent of
Underlying Systems"
• Designed to be architecture-agnostic.

• Ensures a consistent runtime environment.

Computer Science and Engineering 40

10.Distributed "Built for Networked
Applications"
• Facilitates distributed computing using technologies like RMI and EJB.

• Supports internet-based applications seamlessly.

Computer Science and Engineering 41

11.Dynamic "Adapts to Evolving Needs"

• Loads classes at runtime as needed.

• Simplifies upgrades and integrates new libraries.

Computer Science and Engineering 42

23IT405: Java Programming

Department of Information Technology

Topic: Variables and Data Types

What are Variables?

Computer Science and Engineering 44

• Variables are containers for storing data values.

• Each variable has:

 Name: Identifier used in code.

 Type: Defines the kind of data it can hold.

 Value: Actual data assigned to the variable.

Ex: int age;

Declaring Variables in Java

How to Declare Variables?

Syntax : datatype variableName ;

Example: double salary

Rules:

Variable names must start with a letter, $, or _.Cannot be a keyword or
contain spaces.

Computer Science and Engineering 45

Variable Types

• Local Variables: Declared inside methods, constructors, or blocks.

• Instance Variables: Declared inside a class but outside methods.

• Static Variables: Declared with the static keyword.

Computer Science and Engineering 46

Data Types in Java

Computer Science and Engineering 47

• Java is a statically typed language.

• Two categories:

Primitive Data Types: byte, short, int, long, float, double, char,
boolean.

Reference Data Types: Objects, Arrays, etc.

Computer Science and Engineering 48

Primitive Data Types

• Numeric Types:
• Integer: byte, short, int, long

• Floating-point: float, double

• Character Type:
char

• Boolean Type:
• boolean (true/false)

Computer Science and Engineering 49

Reference Data Types

• Used to store references to objects.

• Examples: Arrays, Strings, User-defined classes

 String greeting = "Hello, Java!";

 int[] numbers = {1, 2, 3};

Computer Science and Engineering 50

23IT405: Java Programming

Department of Information Technology

Topic: Operators and Expressions

JAVA OPERATORS

An operator is a symbol used to perform arithmetic and logical
operations. Java provides a rich set of operators. In java, operators are
classified into the following types.

• Arithmetic Operators

• Relational (or) Comparison Operators

• Logical Operators

• Assignment Operators

• Bitwise Operators

• Conditional Operators

Computer Science and Engineering 52

Arithmetic Operators

Computer Science and Engineering 53

Relational Operators (<, >, <=, >=, ==, !=)

Computer Science and Engineering 54

Logical Operators

Computer Science and Engineering 55

Assignment Operators

Computer Science and Engineering 56

Bitwise Operators

Computer Science and Engineering 57

Conditional Operator

• The conditional operator is also called a ternary operator
because it requires three operands.

• This operator is used for decision making. In this operator, first, we
verify a condition, then we perform one operation out of the two
operations based on the condition result.

• If the condition is TRUE the first option is performed, if the condition
is FALSE the second option is performed.

• Syntax

• Condition ? TRUE Part : FALSE Part;

Computer Science and Engineering 58

Expressions

• An expression is a combination of variables, constants, operators, and
method calls that evaluates to a single value.

• Used to perform computations and logic in a program.

• Example: int result = 10 + 20;

Computer Science and Engineering 59

Types of Expressions

• Arithmetic Expressions: Perform mathematical calculations.

• Relational Expressions: Compare values.

• Logical Expressions: Combine boolean conditions.

• Bitwise Expressions: Perform bit-level operations.

• Assignment Expressions: Assign values to variables.

Computer Science and Engineering 60

23IT405: Java Programming

Department of Information Technology

Topic: Control Statements

JAVA CONTROL STATEMENTS

Computer Science and Engineering 62

Decision-Making Statements

• if statement

Computer Science and Engineering 63

Decision-Making Statements

• if-else statement

Computer Science and Engineering 64

Decision-Making Statements

• Switch statement

Computer Science and Engineering 65

Looping Statements

• while statement

Computer Science and Engineering 66

Looping Statements

• do-while statement

Computer Science and Engineering 67

Looping Statements

• for statement

Computer Science and Engineering 68

Looping Statements

• for-each statement

Computer Science and Engineering 69

Branching Statements

• break statement

Computer Science and Engineering 70

Branching Statements

• continue statement

Computer Science and Engineering 71

231T405: JAVA PROGRAMMING

Department of Information Technology

Topic: Elements of Java: Class and Objects

What is a Class?

• - A blueprint or template for creating objects

• - Defines properties (fields) and behaviors (methods)

• - Example:
class Car {

 String color;

 int speed;

 void accelerate() {

 System.out.println("Car is accelerating");

 }

}

Computer Science and Engineering 73

What is an Object?

• - An instance of a class

• - Represents real-world entities with states and behaviors

• - Example:

• Car myCar = new Car();

• myCar.color = "Red";

• myCar.speed = 120;

• myCar.accelerate();

Computer Science and Engineering 74

Class vs Object

Computer Science and Engineering 75

Aspect Class Object

Definition
Blueprint for creating
objects

Instance of a class

Memory No memory allocated Memory allocated

Example class Car
Car myCar = new
Car();

Hands-on Example

Computer Science and Engineering 76

Real-World Analogy

Computer Science and Engineering 77

- Class: Blueprint of a house

- Object: Actual house built using the blueprint

- Example:

- Class: Car blueprint (design)

- Object: A specific car (red, 120 km/h speed)

Why Use Classes and Objects?

Computer Science and Engineering 78

- Promotes reusability and modularity

- Encapsulation of data and behavior

- Simplifies maintenance and debugging

- Enables real-world modeling

231T405: JAVA PROGRAMMING

Department of Information Technology

Topic: Elements of Java -Methods, Constructors

Why Methods and Constructors?

Computer Science and Engineering 80

- Methods enable reusable, modular code.

- Constructors initialize objects when they are created.

- Essential for building structured, maintainable programs.

What are Methods?

• - A block of code that performs a specific task.

• - Can accept input (parameters) and return output.

• - Syntax:
 returnType methodName(parameters) {

 // code to be executed

 }

Computer Science and Engineering 81

Different Types of Methods

Computer Science and Engineering 82

Built-in Methods: Predefined methods in Java (e.g., Math.max()).

User-defined Methods: Created by programmers for specific tasks.

Example:

What are
Constructors?

• Special methods used to
initialize objects.

• Same name as the class and
no return type.

• Automatically called when an
object is created.

• Example:

Computer Science and Engineering 83

Different Types of Constructors

Computer Science and Engineering 84

Difference Between Methods and
Constructors

Computer Science and Engineering 85

Aspect Methods Constructors

Purpose Performs a task Initializes objects

Name Any valid name Same as class name

Return Type Must have a return type No return type

Explicit Call Called explicitly Called automatically

Methods and Constructors in Action

Computer Science and Engineering 86

Writing Effective Methods and Constructors

Computer Science and Engineering 87

Keep methods small and focused on a single task.

Use meaningful names for methods and parameters.

Use constructors to enforce mandatory fields.

Overload methods and constructors for flexibility.

231T405: JAVA PROGRAMMING

Department of Information Technology

Topic: Elements of Java -Access Modifiers, Generics

Why Learn Access Modifiers and Generics?

Computer Science and Engineering 89

Access Modifiers control visibility and access to
classes, methods, and fields.

Generics enable type-safe and reusable code.

Essential for robust and maintainable Java
applications.

What Are Access Modifiers?

• Keywords used to define the scope of accessibility.

• Four levels of access:
• Private: Accessible within the same class only.

• Default (Package-private): Accessible within the same package.

• Protected: Accessible within the same package and by subclasses.

• Public: Accessible from everywhere.

Computer Science and Engineering 90

Access Levels at a Glance

Computer Science and Engineering 91

Generics

Computer Science and Engineering 92

Generics means parameterized types. The idea is to allow a type

(like Integer, String, etc., or user-defined types) to be a parameter

to methods,

 classes, and interfaces. Using Generics, it is possible to create

classes that work with different data types. An entity such as a

class,

interface, or method that operates on a parameterized type is

a generic entity.

Understanding Generics in Java

• Introduced in Java 5 for type
safety.

• Enables the definition of classes,
methods, and interfaces with
type parameters.

• Syntax example:

Computer Science and Engineering 93

Why Use Generics?

• Type Safety: Prevents runtime errors.

• Code Reusability: Single definition for multiple data types.

• Readability: Explicit types make code easier to understand.

• Performance: Reduces the need for type casting.

Computer Science and Engineering 94

Example of Generics

Computer Science and Engineering 95

Access Modifiers vs Generics

Computer Science and Engineering 96

Using Access Modifiers and Generics
Effectively

Computer Science and Engineering 97

Use the least permissive access modifier possible.

Prefer protected over public for inheritance.

Use Generics for type-safe collections.

Avoid raw types when using Generics.

231T405: JAVA PROGRAMMING

Department of Information Technology

Topic: Elements of Java -Inner classes, String class, Annotations

Why Learn These Concepts?

Computer Science and Engineering 99

Inner classes encapsulate logic and simplify structure.

The String class is fundamental for text manipulation in Java.

Annotations provide metadata to enhance functionality.

What Are Inner Classes?

• A class defined within another class.

• Types of inner classes:
• Non-static (Member) Inner Class:

Associated with an instance of the outer
class.

• Static Nested Class: Acts like a static
member of the outer class.

• Local Inner Class: Defined within a
method or block.

• Anonymous Inner Class: Used for
implementing interfaces or abstract
classes inline.

Computer Science and Engineering 100

Types of Inner Classes

Computer Science and Engineering 101

Type Characteristics Example Use Case

Member Inner Class
Non-static, tied to an
instance

Accessing instance
members

Static Nested Class
Static, independent of
outer instance

Utility or helper
functions

Local Inner Class Defined within a method Method-specific logic

Anonymous Inner Class No name, one-time use Inline implementation

What Is the String Class?

Computer Science and Engineering 102

•A sequence of characters, immutable by design.

•Part of the java.lang package.

•Commonly used methods:
•length(), charAt(int index), substring(int start, int end).

•toLowerCase(), toUpperCase(), replace(), equals(),

equalsIgnoreCase()

Common String Methods

Method Description Example

length() Returns the length of the string str.length()

substring() Extracts a portion of the string str.substring(0, 5)

equals() Compares two strings for equality str1.equals(str2)

toUpperCase() Converts the string to uppercase str.toUpperCase()

Computer Science and Engineering 103

What Are Annotations?

Computer Science and Engineering 104

Built-in Annotations in Java

Annotation Purpose Example

@Override
Indicates method
overriding

@Override void display()

@Deprecated
Marks a method as
deprecated

@Deprecated void oldMethod()

@SuppressWarnin
gs

Suppresses specific
warnings

@SuppressWarnings("unchecked
")

Computer Science and Engineering 105

Effective Use of Inner Classes, Strings, and
Annotations

Computer Science and Engineering 106

Use inner classes to logically group classes.

Prefer StringBuilder or StringBuffer for mutable strings.

Use annotations for clarity and to reduce boilerplate code.

Understanding Packages in
Java

What is a Package in Java?

• - A package is a container for classes, interfaces, and sub-packages.

• - It helps in organizing code logically.

• - Prevents class name conflicts and provides access protection.

• Example:

• package mypackage;

• public class MyClass {

• public void show() {

• System.out.println("Hello from MyClass");

• }

• }

Types of Packages in Java

• 1. Built-in Packages – Provided by Java (e.g., java.util, java.io).

• 2. User-defined Packages – Created by developers.

Advantages of Using Packages

• ✅ Code Organization – Groups related classes together.

• ✅ Encapsulation – Controls access using access modifiers.

• ✅ Avoids Name Conflicts – Different packages can have classes with
the same name.

• ✅ Reusability – Classes in a package can be reused across projects.

Built-in Packages in Java

• Common built-in packages:

• - java.lang: Basic classes (String, Math, Object, etc.)

• - java.util: Utility classes (ArrayList, HashMap, Scanner, etc.)

• - java.io: Input-output operations (File handling)

• - java.sql: Database connectivity (JDBC)

• - javax.swing: GUI components (JFrame, JButton, etc.)

• Example: import java.util.Scanner;

Creating a User-Defined Package

• 1. Define a package:

• package mypackage;

• public class MyClass {

• public void show() {

• System.out.println("Hello from MyClass");

• }

• }

• 2. Compile using:

• javac -d . MyClass.java

• 3. Use in another class:

• import mypackage.MyClass;

• public class Test {

• public static void main(String[] args) {

• MyClass obj = new MyClass();

• obj.show();

• }

• }

Importing Packages in Java

• Ways to import packages:

• - Importing a specific class: import java.util.Scanner;

• - Importing the entire package: import java.util.*;

• - Using fully qualified class name: java.util.Scanner sc = new
java.util.Scanner(System.in);

Package Hierarchy and Sub-Packages

• A package can contain sub-packages:

• Example structure:

• com.company

• ├── finance

• │ ├── Invoice.java

• │ └── Tax.java

• ├── hr

• │ ├── Employee.java

• │ ├── Payroll.java

• Accessing a sub-package class: import com.company.finance.Invoice;

Access Control in Packages

• | Access Modifier | Same Class | Same Package | Subclass (Different
Package) | Other Packages |

• |----------------|-----------|-------------|-----------------------------|---------------|

• | public | ✅ Yes | ✅ Yes | ✅ Yes | ✅ Yes |

• | protected | ✅ Yes | ✅ Yes | ✅ Yes | ✅ No |

• | default | ✅ Yes | ✅ Yes | ✅ No | ✅ No |

• | private | ✅ Yes | ✅ No | ✅ No | ✅ No |

Best Practices for Using Packages

• ✅ Use meaningful names (e.g., com.company.module).

• ✅ Follow Java naming conventions (all lowercase).

• ✅ Group related classes logically.

• ✅ Use access modifiers to control visibility.

• ✅ Avoid too many nested packages.

Conclusion

• - Packages help in organizing Java programs efficiently.

• - Java provides many built-in packages for common tasks.

• - User-defined packages improve reusability and modularity.

• - Proper use of access modifiers ensures security and encapsulation.

String Tokenizer in Java

What is StringTokenizer?

• - `StringTokenizer` is a class in `java.util` package.

• - Used to split (tokenize) a string into smaller parts called tokens.

• - It is an alternative to `split()` method.

• Example:

• ```java

• import java.util.StringTokenizer;

• public class Test {

• public static void main(String[] args) {

• StringTokenizer st = new StringTokenizer("Java is fun");

• while (st.hasMoreTokens()) {

• System.out.println(st.nextToken());

• }

• }

• }

• ```

• Java

• is

• fun

Why Use StringTokenizer?

• ✅ Efficient for simple string splitting.

• ✅ Does not create extra arrays (unlike `split()`).

• ✅ Useful for parsing structured data (e.g., CSV, logs).

Constructors of StringTokenizer

• | Constructor | Description |

• |------------|-------------|

• | `StringTokenizer(String str)` | Splits `str` using default delimiter
(whitespace). |

• | `StringTokenizer(String str, String delim)` | Splits `str` using a custom
delimiter `delim`. |

• | `StringTokenizer(String str, String delim, boolean returnDelims)` | If
`returnDelims` is `true`, delimiters are also returned as tokens. |

Tokenizing with Custom Delimiters

• Example (Using `,` as a delimiter):

• ```java

• import java.util.StringTokenizer;

• public class Test {

• public static void main(String[] args) {

• StringTokenizer st = new StringTokenizer("Apple,Banana,Cherry", ",");

• while (st.hasMoreTokens()) {

• System.out.println(st.nextToken());

• }

• }

• }

• ```

• Apple

• Banana

• Cherry

Returning Delimiters as Tokens

• Use `true` as the third argument to include delimiters as tokens.

• Example:

• ```java

• StringTokenizer st = new StringTokenizer("A,B;C", ",;", true);

• while (st.hasMoreTokens()) {

• System.out.println(st.nextToken());

• }

• ```

• A

• ,

• B

• ;

• C

Important Methods in StringTokenizer

• | Method | Description |

• |--------|-------------|

• | `hasMoreTokens()` | Returns `true` if more tokens are available. |

• | `nextToken()` | Returns the next token. |

• | `nextToken(String delim)` | Returns the next token, using a new
delimiter. |

• | `countTokens()` | Returns the number of tokens left. |

Counting Tokens

• Example:
• ```java
• StringTokenizer st = new StringTokenizer("Hello World Java");
• System.out.println("Total tokens: " + st.countTokens());
• ```

• **Output:**
• ```
• Total tokens: 3
• ```

StringTokenizer vs split()

• | Feature | StringTokenizer | `split()` |

• |---------|---------------|----------|

• | Performance | Faster for simple tokenization | Slower due to regex
processing |

• | Returns | Individual tokens one by one | Array of tokens |

• | Delimiter Handling | Can choose to return delimiters | Always
removes delimiters |

• | Flexibility | Less flexible | More flexible with regex |

Best Practices

• ✅ Use `StringTokenizer` for simple splitting tasks.

• ✅ Prefer `split()` when using regex-based splitting.

• ✅ Use `returnDelims = true` if delimiters should be preserved.

• ✅ Use `countTokens()` to pre-check token count before iteration.

Conclusion

• - `StringTokenizer` is useful for simple and efficient string splitting.

• - Supports custom delimiters and delimiter return mode.

• - Alternative to `split()`, but lacks regex support.

