231T405: Java Programming

Topic: History of Java

Department of Information Technology

i NARSIMHA REDDY ENGINEERING COLLEGE }0¢; ttonemous rote o o

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

Birth of Java

* Year: 1991
* Initiators: James Gosling and team at Sun Microsystems.
* Project Name: "Oak”

* Objective: Create a platform-independent language for embedded
systems.

Java's Early Days

* Year: 1995
e Renamed: From "Oak" to "Java”

* Reason: Trademark issues and inspiration from Java coffee.
* Launch: First public release of Java (JDK 1.0).

Key Features at Launch

* Platform Independence (Write Once, Run Anywhere - WORA).
* Object-Oriented Programming.

* Automatic Garbage Collection.

* Robustness and Security.

Evolution of Java

e 1998: JDK 1.2 - Introduction of "Swing" and "Collections Framework”.
e 2004: JDK 5.0 - Added Generics and Enhanced for-loop.
e 2014: Java 8 - Introduced Lambdas and Streams.

Challenges and Criticism

* Verbose syntax compared to modern languages.
* Performance overhead of JVM.
* Competition from newer languages like Python and Kotlin.

The Future of Java

* Continued evolution with regular updates.
* Integration with emerging technologies like Al and loT.

231T405: Java Programming

Topic: Need for OOP Paradigm

Department of Information Technology

i NARSIMHA REDDY ENGINEERING COLLEGE }0¢; ttonemous rote o o

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

Programming and Programming Language

A process of creating a set of instructions for a computer to
perform tasks.

A programming language is a formal language used to
communicate instructions to a computer in software development.

Introduction to Java

How Java was Introduced?

What is Object-Oriented Programming
(OOP)?

Definition: OOP is a programming paradigm based on objects
representing real-world entities.

Purpose: Simplifies system design with modularity and reusability.

Real-life Analogy: A car object Attributes: color, model, engine size.
o)

has: Behaviors: accelerate, brake, turn.

Limitations of Procedural Programming (C as
an Example)

= Challenges:

e Poor scalability for large systems.
e Code duplication and low reusability.

e Library System in C:

e Functions like addBook() and removeBook() are standalone
and not linked to specific objects, leading to redundant code.

Computer Science and Engineering

12

e Procedural programming language.
W hy e Focuses on functions and processes.
e Suitable for system-level programming like

Tra n S |t|O n OS development.

fromCto

_J dVd ? e Object-oriented programming language.
e Models real-world entities using objects.

e Platform-independent and ideal for large-
scale applications.

Computer Science and Engineering 13

Core Differences Between C and Java

Feature C Java

Paradigm Procedural Object-Oriented
Platform-independent

Platform Dependence Platform-dependent (WORA)

Memory Management Manual Automqnc (Garbage
Collection)

Pointers Supports pointers No direct pointer access

Inheritance Not supported Fully supported

Application S)_/stem programming (OS, Web, mobile, enterprise

drivers) apps

Example:
» C: Focuses on writing functions like void calculateArea(int length, int breadth).
» Java: Uses objects like Rectangle with attributes (length, breadth) and methods (calculateArea()).

Java’s Key Features

Platform
Independence:

Runs on any device with JVM.

Memory

Garbage collection prevents memory leaks.
Management: © P Y

Applications: Web apps, Android apps, and enterprise systems.

(el DT | Powers Netflix, LinkedIn, and Spotify.

Computer Science and Engineering

Built-in features like bytecode verification and class loaders.

15

Advantages of Java and OOP

Modularity:

Reusability:

Maintainability:

Scalability:

Example: E-commerce platform with modular
classes for Product, Cart, Payment.

Example: Employee class reused across
departments.

Example: Debugging in a single class propagates
fixes to derived classes.

Used by Amazon and LinkedIn to handle millions
of users.

231T405: Java Programming

Topic: Need for OOP Paradigm

Department of Information Technology

i NARSIMHA REDDY ENGINEERING COLLEGE }0¢; ttonemous rote o o

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

Four Pillars of OOP

Encapsulation: Bundling data and methods operating on data
Abstraction: Hiding complexity and exposing only essential features

Inheritance: Creating new classes from existing ones

Polymorphism: Using a single interface to represent different types

Computer Science and Engineering 18

4 Concepts of OOP

i g
Encapsulation Abstraction Inheritance

Computer Science and Engineering

Polymorphism

19

Objects and Classes

Class:

Blueprint for creating objects; defines attributes and methods.
Object:

Instance of a class; represents real-world entities.

Real-world Scenario:

Class: "Car" with attributes like brand, model, and

. Object: Specific car instance (e.g., "Toyota Corolla 2022").
methods like start, stop.

T ————

Sonata

Caprice

- e T e e e T e e R e e e W e e e R e e B e

Benz

Camaro

Camry

| B
8
4
)
:
T
3]
-
)

21

Computer Science and Engineering

Encapsulation

 Combines data and methods into a single unit (class)
» Access control using access modifiers (private, public, protected)
* Example:

Real-world scenario: A bank account hides sensitive details like
account number and balance but provides access through secure
methods like depositing or withdrawing money.

ENCAPSULATION

Variables

Methods

Abstraction

* Focus on "what" an object does, not "how"
* Implementation details are hidden from the user
* Example:

Real-world scenario: When using an ATM, users only interact
with a simplified interface (insert card, enter PIN, withdraw cash)
without knowing the underlying technical processes.

Inheritance

* Mechanism to derive a new class from an existing one
* Reuses code, promotes consistency
* Example:

Real-world scenario: A vehicle classification where a general
"Vehicle" category has common attributes (e.g., engine type, wheels),
and specific types like "Car" or "Truck" inherit these attributes while
adding unique features.

®

Computer Science and Engineering

Polymorphism

e Objects of different classes can be treated as objects of a common
superclass

* Two types: Compile-time and Run-time polymorphism
* Example:

Real-world scenario: A universal remote can operate various
devices (TV, AC, DVD player) through a consistent set of buttons, but
the specific actions depend on the device.

I Bird |

N \<

<4

| Parakeet |

Computer Science and Engineering

Owl

28

Real-world Examples

* Banking Systems: Accounts, transactions, users
 Gaming: Characters, behaviors, environments
e E-commerce: Products, users, orders

231T405: Java Programming

Topic: Java Buzzwords

Department of Information Technology

i NARSIMHA REDDY ENGINEERING COLLEGE }0¢; ttonemous rote o o

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

What are Java Buzzwords?

* Buzzwords are terms used to describe the design philosophy and
features of Java.

* These define why Java became a preferred programming language.

1.Simple "Easy to Learn and Use"

* Intuitive syntax similar to C++.

* Eliminates complex concepts like pointers and multiple inheritance.

2.0Object-Oriented "Everything is an Object”

* Follows principles of encapsulation, inheritance, and polymorphism.
* Promotes code reuse and modularity.

3.Portable "Write Once, Run Anywhere"

* Bytecode compiled by the Java compiler can run on any platform with
a JVM.

* Independence from hardware or operating systems.

4 .Platform-Independent "Runs Across
Devices”

* Code compiled on one system can execute on another.

* Ensures consistency across environments.

5.Secured "Safe from Vulnerabilities"

* No explicit pointers.

e Robust security features like bytecode verification, class loader, and
security manager.

6.Robust "Handles Errors Gracefully"

* Automatic garbage collection prevents memory leaks.
* Exception handling mechanisms ensure stability.
 Strong type checking during compilation.

7.Multithreaded "Enables Concurrent
Execution”

e Supports threads for performing multiple tasks simultaneously.
» Simplifies interactive applications like games and multimedia.

8.High Performance "Optimized for Speed"

 JIT (Just-In-Time) compiler enhances execution speed.
* Efficient memory management through garbage collection.

9.Architecture Neutral "Independent of
Underlying Systems”

* Designed to be architecture-agnostic.

* Ensures a consistent runtime environment.

10.Distributed "Built for Networked
Applications”

* Facilitates distributed computing using technologies like RMI and EJB.
e Supports internet-based applications seamlessly.

11.Dynamic "Adapts to Evolving Needs"

* Loads classes at runtime as needed.
e Simplifies upgrades and integrates new libraries.

231T405: Java Programming

Topic: Variables and Data Types

Department of Information Technology

i NARSIMHA REDDY ENGINEERING COLLEGE }0¢; ttonemous rote o o

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

What are Variables?

* Variables are containers for storing data valu
* Each variable has:

Name: Identifier used in code.

Type: Defines the kind of data it can hold.

Value: Actual data assigned to the variable.
Ex: int age;

]

Declaring Variables in Java

How to Declare Variables?

Syntax : datatype va riabIeNamﬁew‘;w

Example: double salary

Rules: u -

— |

Variable names must start with a letter, S, or _.Cannot be a keyword or

contain sp -

Variable Types

* Local Variables: Declared inside methods, constructors, or blocks.
* Instance Variables: Declared inside a class but outside methods.
 Static Variables: Declared with the static keyword.

Computer Science and Engineering

46

Data Types in Java

* Java is a statically typed language.
* Two categories:

Primitive Data Types: byte, short, int, long, float, double, char,
boolean.

Reference Data Types: Objects, Arrays, etc.

JAVA DATA TYPES

Data Typles in java

l l

Primitive Data Types Non-primitive Data Types
byte |
—— String
@ Integers short —— Array
ik L List
long — set
—— Stack
@ Floating-Point < —
Dictionary
Character —— — All user-defined classes
—etc,,
Boolean —

Computer Science and Engineering

48

Primitive Data Types

* Numeric Types:
* Integer: byte, short, int, long
* Floating-point: float, double

* Character Type:

char

* Boolean Type:
* boolean (true/false)

Reference Data Types

e Used to store references to objects.
* Examples: Arrays, Strings, User-defined classes

int[] numbers = {1, 2, 3};

231T405: Java Programming

Topic: Operators and Expressions

Department of Information Technology

i NARSIMHA REDDY ENGINEERING COLLEGE }0¢; ttonemous rote o o

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

JAVA OPERATORS

An operator is a symbol used to perform arithmetic and logical
operations. Java provides a rich set of operators. In java, operators are
classified into the following types.

* Arithmetic Operators

 Relational (or) Comparison Operators
* Logical Operators

* Assignment Operators

* Bitwise Operators

* Conditional Operators

Arithmetic Operators

Operator Example
expression

¥

/

3

Multiplication
Division

Remainder
(modulus)

Addition

Subtraction

a¥h
a/b

akh

a2+ 0

=0

Computer Science and Engineering

Meaning

atimes b
a divided by b

the remainder after dividing a
by b

a plus b

a MiNus o

53

Relational Operators (<, >, <=, >=, ==, |=)

value otherwise returns FALSE

Operator | Meaning Example

< Returns TRUE if the first value is smaller than second value | 10 <5 is FALSE
otherwise returns FALSE

> Returns TRUE if the first value is larger than second value| 10> 5 is TRUE
otherwise returns FALSE

<= Returns TRUE if the first value is smaller than or equal to second | 10 <=5 is FALSE
value otherwise returns FALSE

>= Returns TRUE if the first value is larger than or equal to second | 10>=351s TRUE

Returns TRUE if both values are equal otherwise returns FALSE

10==75 is FALSE

Returns TRUE if both values are not equal otherwise returns
FALSE

10 !=51s TRUE

Computer Science and Engineering

54

Logical Operators

Logical operators
* Tests can be combined using /ogical operators:
Operator Description Example Result
& & and (2 == 3)y && (=1 < 5) false
|| or (2 G) true
: not 1 (2 == 3) true

 "Truth tables" for each, used with logical values p and qg:

P q Pssq (PIIq P 'p
Erue true true true txrue false
true false | false true fals true
Tallser| true false true 5
false | fFalse | £false false

" Copyright 2010 by Pearson Education

Computer Science and Engineering

Assignment Operators

Assignment Operator

Assignment operators are used to assigning value
to a variable.

X is assign with value of vy

Equivalent to, X = X+vy

Equivalent to, x xX-y/

Equivalent to, X* s

Equivalent to, >/

Computer Science and Engineering

56

Bitwise Operators

—> Java Bitwise Operators

- Java has six bitwise operators:

Symbol Operator

& Bitwise AND
| Bitwise OR
N Bitwise XOR
~ Bitwise NOT
<< LEFT SHIFT
>> RIGHT SHIFT

CS 160, Spring Semester 2014 2

Computer Science and Engineering

Conditional Operator

* The conditional operator is also called a ternary operator
because it requires three operands.

* This operator is used for decision making. In this operator, first, we
verify a condition, then we perform one operation out of the two
operations based on the condition result.

* If the condition is TRUE the first option is performed, if the condition
is FALSE the second option is performed.

* Syntax
e Condition ? TRUE Part : FALSE Part;

Expressions

* An expression is a combination of variables, constants, operators, and
method calls that evaluates to a single value.

e Used to perform computations and logic in a program.
* Example: int result = 10 + 20;

Computer Science and Engineering 59

Types of Expressions

* Arithmetic Expressions: Perform mathematical calculations.
* Relational Expressions: Compare values.

* Logical Expressions: Combine boolean conditions.

 Bitwise Expressions: Perform bit-level operations.

* Assignment Expressions: Assign values to variables.

Computer Science and Engineering

60

231T405: Java Programming

Topic: Control Statements

Department of Information Technology

i NARSIMHA REDDY ENGINEERING COLLEGE }0¢; ttonemous rote o o

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

JAVA CONTROL STATEMENTS

Control Statements
I | I
Selection Statements [Fiterative Statements Jump Statements
—if Statement
| —Simple if — while — break
——if-else — do-while ——continue
—nested if —— for — return
—if-else-if — for-each
—switch Statement

I—§witch

Computer Science and Engineering

Decision-Making Statements

e if statement

Syntax - Flow of execution

iflcondition){

if-block of statements;

statement after if-block;

Computer Science and Engineering

Decision-Making Statements

e if-else statement

Syntax Flow of execution

iftcondition)
true-block of statements:;

}
elsel

false-block of statements:

I

statement after if-block:

Computer Science and Engineering

64

Decision-Making Statements

e Switch statement

Flow Diagram

Syntax mut
Mol.cvlmtom.hcm]
switch (expression or value)

{ FALSE
case valuel: set of statements;

R LR rm
case value2: set of statements; @ Sierts enocvion bom b cese

case value3: set of statements; -

case valued: set of statements; 0, . Starts execution rom ths case |
case valuves:

: set of statements;

: - Starts execution Yom his uuo]
default: set of statements;

) - !

dqu' Siatements out of ywiich

Computer Science and Engineering

65

Looping Statements

 while statement

Syntax Flow of execution

while(boolean-expression)|

block of statements;

}
statement after while;

Computer Science and Engineering 66

Looping Statements

e do-while statement

Syntax Flow of execution

dol
block of statements:;

lwhile(boolean-expression):

statement after do-while;

Computer Science and Engineering

67

Looping Statements

e for statement

Syntax

Computer Science and Engineering

68

Looping Statements

e for-each statement

Syntax Flow of execution

for(dataType variableName : Arraiy X
block of statements;
|

statement after for;

Computer Science and Engineering

69

Branching Statements

e break statement

while (condition)

{

|::break i for (initilization; condition; modification)
} .

break;
do
{ }
break ;
I:while (condition) ;

Computer Science and Engineering

70

Branching Statements

e continue statement

while (condition)

{

continue;

for (initilization; condition; modification)
{
} T
do continue;
{ ;
}
continue;

} while (condition) ;

Computer Science and Engineering

71

231T405: JAVA PROGRAMMING

Topic: Elements of Java: Class and Objects

Department of Information Technology

i NARSIMHA REDDY ENGINEERING COLLEGE }0¢; ttonemous rote o o

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

What is a Class?

* - A blueprint or template for creating objects
* - Defines properties (fields) and behaviors (methods)
e - Example:

What is an Object?

* - An instance of a class
* - Represents real-world entities with states and behaviors
e - Example:

Class vs Object

Computer Science and Engineering 75

HanAdc-nn Fvamnle

class Student {
String name;
int age;

void displayInfo() A
System.out.println("Name:
System.out.println("Age:

+ name);

+ age);

public class Main {
public static void main(String[] args) {
Student studentl = new Student();
studentl.name = "John";
studentl.age = 20;
studentl.displayInfo();

Computer Science and Engineering

76

Real-World Analogy

- Class: Blueprint of a house

- Object: Actual house built using the blueprint
- Example:

- Class: Car blueprint (design)

- Object: A specific car (red, 120 km/h speed)

Why Use Classes and Objects?

- Promotes reusability and modularity
- Encapsulation of data and behavior
- Simplifies maintenance and debugging

- Enables real-world modeling

231T405: JAVA PROGRAMMING

Topic: Elements of Java -Methods, Constructors

Department of Information Technology

i NARSIMHA REDDY ENGINEERING COLLEGE }0¢; ttonemous rote o o

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

Why Methods and Constructors?

- Methods enable reusable, modular code.

- Constructors initialize objects when they are created.

- Essential for building structured, maintainable programs.

What are Methods?

* - A block of code that performs a specific task.
- Can accept input (parameters) and return output.
* - Syntax:

Different Types of Methods

Built-in Methods: Predefined methods in Java (e.g., Math.max()).

User-defined Methods: Created by programmers for specific tasks.

void greet() {

Exam p|€: System.out.println(“Hello, World!");
¥

What are
Constructors?

e Special methods used to
initialize objects.

e Same name as the class and
no return type.

e Automatically called when an
object is created.

 Example:

class Car {
String color;

Car(String color) {

this.color

Computer Science and Engineering

color;

83

Different Types of Constructors

e Default Constructor: Provided by Java if no constructor is defined.

class Car {

Car() {

System.out.println("Car object created!");

e Parameterized Constructor: Accepts arguments to initialize fields.

Car(String color) {
this.color = color;

}

Computer Science and Engineering

84

Difference Between Methods and
Constructors

m

Purpose Performs a task Initializes objects
Name Any valid name Same as class name
Return Type Must have a return type No return type
Explicit Call Called explicitly Called automatically

Computer Science and Engineering 85

Methods and Constructors in Action

class Student {
String name;
int age;

// Constructor

Student(String name, int age) { public class Main {
this.name = name; public static void main(String[] args) {
this.age = age; Student student = new Student("Alice", 22);
} student.displayInfo();
}
// Method }
void displayInfo() {
System.out.println("Name: " + name);
System.out.println("Age: " + age);

Computer Science and Engineering 86

Writing Effective Methods and Constructors

Keep methods small and focused on a single task.
Use meaningful names for methods and parameters.
Use constructors to enforce mandatory fields.

Overload methods and constructors for flexibility.

231T405: JAVA PROGRAMMING

Topic: Elements of Java -Access Modifiers, Generics

Department of Information Technology

i NARSIMHA REDDY ENGINEERING COLLEGE }0¢; ttonemous rote o o

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

Why Learn Access Modifiers and Generics?

Access Modifiers control visibility and access to
classes, methods, and fields.

Generics enable type-safe and reusable code.

Essential for robust and maintainable Java
applications.

What Are Access Modifiers?

» Keywords used to define the scope of accessibility.

* Four levels of access:
* Private: Accessible within the same class only.
» Default (Package-private): Accessible within the same package.
* Protected: Accessible within the same package and by subclasses.
* Public: Accessible from everywhere.

public class Example {
private int id;
protected String name;
public void display() {
System.out.println("Access Modifiers Example");

}

Access Levels at a Glance

Modifier
private

(default)
protected

public

Class

NN A

Package

Computer Science and Engineering

Subclass

Global

91

Generics

Generics means parameterized types. The idea is to allow a type
(like Integer, String, etc., or user-defined types) to be a parameter
to methods,

classes, and interfaces. Using Generics, it is possible to create
classes that work with different data types. An entity such as a
class,

interface, or method that operates on a parameterized type is

a generic entity.

Computer Science and Engineering 92

Understanding Generics in Java

* Introduced in Java 5 for type

class Box<T> {
safety.

private T item;
public void setItem(T i
this.item = item;

* Enables the definition of classes,
methods, and interfaces with
type parameters.

}
public T getItem() {

return item;

* Syntax example:

Computer Science and Engineering 93

Why Use Generics?

* Type Safety: Prevents runtime errors.

* Code Reusability: Single definition for multiple data types.
* Readability: Explicit types make code easier to understand.
* Performance: Reduces the need for type casting.

Example of Generics

import java.util.Arraylist;

public class GenericExample {
public static void main(String[] args) {
ArraylList<String> list = new ArraylList<>();
list.add("Java");

list.add("Generics");

for (String item : list) {
System.out.println(item);

Computer Science and Engineering

95

Access Modifiers vs Generics

Aspect Access Modifiers Generics

Purpose Control access/visibility Type safety and reusability
Focus Security Flexibility

Usage Classes, methods, and fields Classes, methods, and interfaces

Computer Science and Engineering

96

Using Access Modifiers and Generics
Effectively

Use the least permissive access modifier possible.

Prefer protected over public for inheritance.

Use Generics for type-safe collections.

Avoid raw types when using Generics.

Computer Science and Engineering

97

231T405: JAVA PROGRAMMING

Topic: Elements of Java -Inner classes, String class, Annotations

Department of Information Technology

i NARSIMHA REDDY ENGINEERING COLLEGE }0¢; ttonemous rote o o

UGC AUTONOMOUS INSTITUTION Approved by AICTE

Permanently affiliated to JNTUH

Why Learn These Concepts?

Inner classes encapsulate logic and simplify structure.

The String class is fundamental for text manipulation in Java.

Annotations provide metadata to enhance functionality.

What Are Inner Classes?

e A class defined within another class.

* Types of inner classes:

* Non-static (Member) Inner Class:
Associated with an instance of the outer (1ass outer ¢

class. class Inner {
* Static Nested Class: Acts like a static Hell cispdan
member of the outer class System.out.println("Inner Class Example");
' ¥
* Local Inner Class: Defined within a }
method or block. }

 Anonymous Inner Class: Used for
implementing interfaces or abstract
classes inline.

Types of Inner Classes

Type

Member Inner Class

Static Nested Class

Local Inner Class

Anonymous Inner Class

Characteristics

Non-static, tied to an
instance

Static, independent of
outer instance

Defined within a method

No name, one-time use

Example Use Case

Accessing instance
members

Utility or helper
functions

Method-specific logic

Inline implementation

What Is the String Class?

*A sequence of characters, iImmutable by design.
.Part Of the Javalang package.

Commonly used methods:
length(), charAt(int index), substring(int start, int end).
‘toLowerCase(), toUpperCase(), replace(), equals(),
equalsignoreCase()

String str = "Hello, Java!”;
System.out.println(str.toUpperCase());

Computer Science and Engineering 102

Common String Methods

Method

Description

Example

length()

Returns the length of the string

str.length()

substring()

Extracts a portion of the string

str.substring(0, 5)

equals()

Compares two strings for equality

strl.equals(str2)

toUpperCase()

Converts the string to uppercase

str.toUpperCase()

Computer Science and Engineering

103

What Are Annotations?

e Content:
¢ Provide metadata for Java code.
¢ Built-in annotations:
® @Override
® @Deprecated
® @SuppressWarnings
e (Custom annotations:

@interface MyAnnotation {
String value();

Computer Science and Engineering 104

Built-in Anhnotations in Java

Annotation Purpose Example
. Indicates method . -
@Override overriding @Override void display()
Marks a method as ,
@Deprecated @Deprecated void oldMethod()

deprecated

@SuppressWarnin
gs

Suppresses specific
warnings

@SuppressWarnings("unchecked
II)

Effective Use of Inner Classes, Strings, and
Annotations

Use inner classes to logically group classes.

Prefer StringBuilder or StringBuffer for mutable strings.

Use annotations for clarity and to reduce boilerplate code.

Understanding Packages in
Java

What is a Package in Java?

* - A package is a container for classes, interfaces, and sub-packages.
- It helps in organizing code logically.
- Prevents class name conflicts and provides access protection.

* Example:

* package mypackage;

* public class MyClass {

e public void show() {

. System.out.printin("Hello from MyClass");
* }

*}

Types of Packages in Java

1. Built-in Packages — Provided by Java (e.g., java.util, java.io).
e 2. User-defined Packages — Created by developers.

Advantages of Using Packages

. Code Organization — Groups related classes together.
. Encapsulation — Controls access using access modifiers.

. Avoids Name Conflicts — Different packages can have classes with
the same name.

. Reusability — Classes in a package can be reused across projects.

Built-in Packages in Java

 Common built-in packages:

e - java.lang: Basic classes (String, Math, Object, etc.)

e - java.util: Utility classes (ArrayList, HashMap, Scanner, etc.)
* - java.io: Input-output operations (File handling)

e - java.sql: Database connectivity (JDBC)

e - javax.swing: GUlI components (JFrame, JButton, etc.)

* Example: import java.util.Scanner;

Creating a User-Defined Package

. 1. Define a package:

. package mypackage;
. public class MyClass {
. public void show() {

. System.out.printin("Hello from MyClass");

. 2. Compile using:

* javac-d.MyClass.java

. 3. Use in another class:
. import mypackage.MyClass;
. public class Test {

. public static void main(String[] args) {

. MyClass obj = new MyClass();
. obj.show();
. }

Importing Packages in Java
* Ways to import packages:

* - Importing a specific class: import java.util.Scanner;
* - Importing the entire package: import java.util.*;

- Using fully qualified class name: java.util.Scanner sc = new
java.util.Scanner(System.in);

Package Hierarchy and Sub-Packages

A package can contain sub-packages:

Example structure:
com.company

|— finance
|— Invoice.java
L Tax.java

|—hr

| F— Employee.java
| — Payroll.java

Accessing a sub-package class: import com.company.finance.lnvoice;

Access Control in Packages

* | Access Modifier | Same Class | Same Package | Subclass (Different
Package) | Other Packages |

* | public | Yes | Yes | Yes | Yes |
e | protected | Yes | Yes | Yes | No
| default | Yes | Yes | No | No |

| private | Yes |B No | @ No | B No |

Best Practices for Using Packages

. Use meaningful names (e.g., com.company.module).
. Follow Java naming conventions (all lowercase).

. Group related classes logically.

. Use access modifiers to control visibility.

. Avoid too many nested packages.

Conclusion

- Packages help in organizing Java programs efficiently.

e - Java provides many built-in packages for common tasks.

- User-defined packages improve reusability and modularity.

* - Proper use of access modifiers ensures security and encapsulation.

String Tokenizer in Java

What is StringTokenizer?

. - 'StringTokenizer" is a class in “java.util” package.

. - Used to split (tokenize) a string into smaller parts called tokens.
. - It is an alternative to ‘split()" method.

. Example:

. “java

. import java.util.StringTokenizer;

. public class Test {

. public static void main(String[] args) {

. StringTokenizer st = new StringTokenizer("Java is fun");
. while (st.hasMoreTokens()) {

. System.out.printIn(st.nextToken());

. }

. }

. }

. Java

. is

. fun

Why Use StringTokenizer?

. Efficient for simple string splitting.
. Does not create extra arrays (unlike “split()’).
. Useful for parsing structured data (e.g., CSV, logs).

Constructors of StringTokenizer

| Constructor | Description |

¢ | R |
| 'StringTokenizer(String str)” | Splits “str” using default delimiter

(whitespace). |

* | ‘StringTokenizer(String str, String delim) | Splits "str’ using a custom
delimiter ‘delim’. |

* | ‘StringTokenizer(String str, String delim, boolean returnDelims)" | If
‘returnDelims’ is "true’, delimiters are also returned as tokens. |

Tokenizing with Custom Delimiters

Example (Using °," as a delimiter):
* java

* import java.util.StringTokenizer;

public class Test {

public static void main(String[] args) {

StringTokenizer st = new StringTokenizer("Apple,Banana,Cherry", ",");

while (st.hasMoreTokens()) {

. System.out.printIn(st.nextToken());
. }

1

©}

* Apple

* Banana

Cherry

Returning Delimiters as Tokens

* Use ‘true’ as the third argument to include delimiters as tokens.

* Example:

* java

* StringTokenizer st = new StringTokenizer("A,B;C", ",;", true);
* while (st.hasMoreTokens()) {

System.out.printin(st.nextToken());

¢ }
N

* A

Important Methods in StringTokenizer

* | Method | Description |
¢ e R |

* | ThasMoreTokens()" | Returns “true’ if more tokens are available. |
* | 'nextToken() | Returns the next token. |

* | 'nextToken(String delim)" | Returns the next token, using a new
delimiter. |

* | ‘countTokens()" | Returns the number of tokens left. |

Counting Tokens

* Example:

* java

 StringTokenizer st = new StringTokenizer("Hello World Java");
* System.out.printIn("Total tokens: " + st.countTokens());

e **Qutput:**

AN
[]

e Total tokens: 3

StringTokenizer vs split()

* | Feature | StringTokenizer | “split()" |

* | Performance | Faster for simple tokenization | Slower due to regex
processing |

* | Returns | Individual tokens one by one | Array of tokens |

* | Delimiter Handling | Can choose to return delimiters | Always
removes delimiters |

* | Flexibility | Less flexible | More flexible with regex |

Best Practices

. Use StringTokenizer™ for simple splitting tasks.

. Prefer split()" when using regex-based splitting.

. Use returnDelims = true if delimiters should be preserved.

. Use ‘countTokens() to pre-check token count before iteration.

Conclusion

- ‘StringTokenizer is useful for simple and efficient string splitting.
e - Supports custom delimiters and delimiter return mode.
* - Alternative to ‘split()’, but lacks regex support.

