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Birth of Java 

• Year: 1991 

• Initiators: James Gosling and team at Sun Microsystems. 

• Project Name: "Oak“ 

• Objective: Create a platform-independent language for embedded 
systems. 
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Java's Early Days 

• Year: 1995 

• Renamed: From "Oak" to "Java” 

• Reason: Trademark issues and inspiration from Java coffee. 

• Launch: First public release of Java (JDK 1.0). 
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Key Features at Launch 

• Platform Independence (Write Once, Run Anywhere - WORA). 

• Object-Oriented Programming. 

• Automatic Garbage Collection. 

• Robustness and Security. 
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Evolution of Java 

• 1998: JDK 1.2 - Introduction of "Swing" and "Collections Framework”. 

• 2004: JDK 5.0 - Added Generics and Enhanced for-loop. 

• 2014: Java 8 - Introduced Lambdas and Streams. 
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Challenges and Criticism 

• Verbose syntax compared to modern languages. 

• Performance overhead of JVM. 

• Competition from newer languages like Python and Kotlin. 
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The Future of Java 

• Continued evolution with regular updates. 

• Integration with emerging technologies like AI and IoT. 
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Programming and Programming Language 
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A process of creating a set of instructions for a computer to 
perform tasks. 

A programming language is a formal language used to 
communicate instructions to a computer in software development. 



Introduction to Java 

How Java was Introduced? 

Computer Science and Engineering 10 



What is Object-Oriented Programming 
(OOP)? 

Definition: OOP is a programming paradigm based on objects 
representing real-world entities. 

Purpose: Simplifies system design with modularity and reusability. 

Real-life Analogy: A car object 
has: 

Attributes: color, model, engine size. 

Behaviors: accelerate, brake, turn. 
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Limitations of Procedural Programming (C as 
an Example) 
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• Poor scalability for large systems. 

• Code duplication and low reusability. 

Challenges: 

• Library System in C: 

• Functions like addBook() and removeBook() are standalone 
and not linked to specific objects, leading to redundant code. 

Example: 



Why 
Transition 
from C to 
Java? 
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• Procedural programming language. 

• Focuses on functions and processes. 

• Suitable for system-level programming like 
OS development. 

C: 

• Object-oriented programming language. 

• Models real-world entities using objects. 

• Platform-independent and ideal for large-
scale applications. 

Java: 



Core Differences Between C and Java 
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Feature C Java 

Paradigm Procedural Object-Oriented 

Platform Dependence Platform-dependent 
Platform-independent 

(WORA) 

Memory Management Manual 
Automatic (Garbage 

Collection) 

Pointers Supports pointers No direct pointer access 

Inheritance Not supported Fully supported 

Application 
System programming (OS, 

drivers) 

Web, mobile, enterprise 

apps 

Example: 

• C: Focuses on writing functions like void calculateArea(int length, int breadth). 

• Java: Uses objects like Rectangle with attributes (length, breadth) and methods (calculateArea()). 

 



Java’s Key Features 
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Runs on any device with JVM. 
Platform 

Independence: 

Garbage collection prevents memory leaks. 
Memory 

Management: 

Built-in features like bytecode verification and class loaders. Security: 

Web apps, Android apps, and enterprise systems. Applications: 

Powers Netflix, LinkedIn, and Spotify. Real-life Usage: 



Advantages of Java and OOP 
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Modularity: 
Example: E-commerce platform with modular 
classes for Product, Cart, Payment. 

Reusability: 
Example: Employee class reused across 
departments. 

Maintainability: 
Example: Debugging in a single class propagates 
fixes to derived classes. 

Scalability: 
Used by Amazon and LinkedIn to handle millions 
of users. 
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Four Pillars of OOP 
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Encapsulation: Bundling data and methods operating on data 

Abstraction: Hiding complexity and exposing only essential features 

Inheritance: Creating new classes from existing ones 

Polymorphism: Using a single interface to represent different types 
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Objects and Classes 
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Class:  

Blueprint for creating objects; defines attributes and methods. 

Object:  

Instance of a class; represents real-world entities. 

Real-world Scenario:  

Class: "Car" with attributes like brand, model, and 
methods like start, stop. 

Object: Specific car instance (e.g., "Toyota Corolla 2022"). 
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Encapsulation 

• Combines data and methods into a single unit (class) 

• Access control using access modifiers (private, public, protected) 

• Example:  

 Real-world scenario: A bank account hides sensitive details like 
account number and balance but provides access through secure 
methods like depositing or withdrawing money. 
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Abstraction 

• Focus on "what" an object does, not "how" 

• Implementation details are hidden from the user 

• Example:  

 Real-world scenario: When using an ATM, users only interact 
with a simplified interface (insert card, enter PIN, withdraw cash) 
without knowing the underlying technical processes. 
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Inheritance 

• Mechanism to derive a new class from an existing one 

• Reuses code, promotes consistency 

• Example:  

 Real-world scenario: A vehicle classification where a general 
"Vehicle" category has common attributes (e.g., engine type, wheels), 
and specific types like "Car" or "Truck" inherit these attributes while 
adding unique features. 
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Polymorphism 

• Objects of different classes can be treated as objects of a common 
superclass 

• Two types: Compile-time and Run-time polymorphism 

• Example:  

 Real-world scenario: A universal remote can operate various 
devices (TV, AC, DVD player) through a consistent set of buttons, but 
the specific actions depend on the device. 
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Real-world Examples 

• Banking Systems: Accounts, transactions, users 

• Gaming: Characters, behaviors, environments 

• E-commerce: Products, users, orders 
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What are Java Buzzwords? 

• Buzzwords are terms used to describe the design philosophy and 
features of Java. 

• These define why Java became a preferred programming language. 
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1.Simple "Easy to Learn and Use" 

• Intuitive syntax similar to C++. 

• Eliminates complex concepts like pointers and multiple inheritance. 
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2.Object-Oriented "Everything is an Object" 

• Follows principles of encapsulation, inheritance, and polymorphism. 

• Promotes code reuse and modularity. 
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 3.Portable "Write Once, Run Anywhere" 

• Bytecode compiled by the Java compiler can run on any platform with 
a JVM. 

• Independence from hardware or operating systems. 
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4.Platform-Independent "Runs Across 
Devices" 
• Code compiled on one system can execute on another. 

• Ensures consistency across environments. 
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5.Secured "Safe from Vulnerabilities" 

• No explicit pointers. 

• Robust security features like bytecode verification, class loader, and 
security manager. 
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6.Robust "Handles Errors Gracefully" 

• Automatic garbage collection prevents memory leaks. 

• Exception handling mechanisms ensure stability. 

• Strong type checking during compilation. 
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 7.Multithreaded "Enables Concurrent 
Execution" 
• Supports threads for performing multiple tasks simultaneously. 

• Simplifies interactive applications like games and multimedia. 
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 8.High Performance "Optimized for Speed" 

• JIT (Just-In-Time) compiler enhances execution speed. 

• Efficient memory management through garbage collection. 
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9.Architecture Neutral "Independent of 
Underlying Systems" 
• Designed to be architecture-agnostic. 

• Ensures a consistent runtime environment. 
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10.Distributed "Built for Networked 
Applications" 
• Facilitates distributed computing using technologies like RMI and EJB. 

• Supports internet-based applications seamlessly. 
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11.Dynamic "Adapts to Evolving Needs" 

• Loads classes at runtime as needed. 

• Simplifies upgrades and integrates new libraries. 
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What are Variables? 
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• Variables are containers for storing data values. 

• Each variable has: 

  Name: Identifier used in code. 

  Type: Defines the kind of data it can hold. 

  Value: Actual data assigned to the variable. 

Ex: int age; 



Declaring Variables in Java 

How to Declare Variables? 

Syntax : datatype  variableName ;  

Example: double salary 

 

Rules: 

Variable names must start with a letter, $, or _.Cannot be a keyword or 
contain spaces. 
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Variable Types 

• Local Variables: Declared inside methods, constructors, or blocks. 

• Instance Variables: Declared inside a class but outside methods. 

• Static Variables: Declared with the static keyword. 
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Data Types in Java 
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• Java is a statically typed language. 

• Two categories: 

Primitive Data Types: byte, short, int, long, float, double, char,     
boolean. 

Reference Data Types: Objects, Arrays, etc. 
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Primitive Data Types 

• Numeric Types: 
• Integer: byte, short, int, long 

• Floating-point: float, double 

• Character Type:  
char 

• Boolean Type:  
• boolean (true/false) 
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Reference Data Types 

• Used to store references to objects. 

• Examples: Arrays, Strings, User-defined classes 

 String greeting = "Hello, Java!";  

 int[] numbers = {1, 2, 3}; 
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JAVA OPERATORS 

An operator is a symbol used to perform arithmetic and logical 
operations. Java provides a rich set of operators. In java, operators are 
classified into the following  types. 

• Arithmetic Operators 

• Relational (or) Comparison Operators 

• Logical Operators 

• Assignment Operators 

• Bitwise Operators 

• Conditional Operators 
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Arithmetic Operators 
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Relational Operators (<, >, <=, >=, ==, !=) 
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Logical Operators 
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Assignment Operators 
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Bitwise Operators 
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Conditional Operator 

• The   conditional   operator   is   also   called   a   ternary operator 
because it requires three operands. 

• This operator is used for decision making. In this operator, first, we 
verify a condition, then we perform one operation out of the two 
operations based on the condition result. 

• If the condition is TRUE the first option is performed, if the condition 
is FALSE the second option is performed. 

• Syntax 

• Condition ? TRUE Part : FALSE Part; 
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Expressions 

• An expression is a combination of variables, constants, operators, and 
method calls that evaluates to a single value. 

• Used to perform computations and logic in a program. 

• Example: int result = 10 + 20; 
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Types of Expressions 

• Arithmetic Expressions: Perform mathematical calculations. 

• Relational Expressions: Compare values. 

• Logical Expressions: Combine boolean conditions. 

• Bitwise Expressions: Perform bit-level operations. 

• Assignment Expressions: Assign values to variables. 
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JAVA CONTROL STATEMENTS 
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Decision-Making Statements 

• if statement 
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Decision-Making Statements 

• if-else statement 
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Decision-Making Statements 

• Switch statement 
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Looping Statements 

• while statement 
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Looping Statements 

• do-while statement 
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Looping Statements 

• for statement 
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Looping Statements 

• for-each statement 
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Branching Statements 

• break statement 
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Branching Statements 

• continue statement 
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What is a Class? 

• - A blueprint or template for creating objects 

• - Defines properties (fields) and behaviors (methods) 

• - Example: 
class Car { 

    String color; 

    int speed; 

    void accelerate() { 

        System.out.println("Car is accelerating"); 

    } 

} 
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What is an Object? 

• - An instance of a class 

• - Represents real-world entities with states and behaviors 

• - Example: 

• Car myCar = new Car(); 

• myCar.color = "Red"; 

• myCar.speed = 120; 

• myCar.accelerate(); 

Computer Science and Engineering 74 



Class vs Object 
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Aspect Class Object 

Definition 
Blueprint for creating 
objects 

Instance of a class 

Memory No memory allocated Memory allocated 

Example class Car 
Car myCar = new 
Car(); 



Hands-on Example 
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Real-World Analogy 
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- Class: Blueprint of a house 

- Object: Actual house built using the blueprint 

- Example: 

- Class: Car blueprint (design) 

- Object: A specific car (red, 120 km/h speed) 



Why Use Classes and Objects? 
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- Promotes reusability and modularity 

- Encapsulation of data and behavior 

- Simplifies maintenance and debugging 

- Enables real-world modeling 
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Why Methods and Constructors? 
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- Methods enable reusable, modular code. 

- Constructors initialize objects when they are created. 

- Essential for building structured, maintainable programs. 



What are Methods? 

• - A block of code that performs a specific task. 

• - Can accept input (parameters) and return output. 

• - Syntax: 
  returnType methodName(parameters) { 

      // code to be executed 

  } 
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Different Types of Methods 
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Built-in Methods: Predefined methods in Java (e.g., Math.max()). 

User-defined Methods: Created by programmers for specific tasks. 

Example: 



What are 
Constructors? 

• Special methods used to 
initialize objects. 

• Same name as the class and 
no return type. 

• Automatically called when an 
object is created. 

• Example: 
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Different Types of Constructors 
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Difference Between Methods and 
Constructors 
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Aspect Methods Constructors 

Purpose Performs a task Initializes objects 

Name Any valid name Same as class name 

Return Type Must have a return type No return type 

Explicit Call Called explicitly Called automatically 



Methods and Constructors in Action 
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Writing Effective Methods and Constructors 
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Keep methods small and focused on a single task. 

Use meaningful names for methods and parameters. 

Use constructors to enforce mandatory fields. 

Overload methods and constructors for flexibility. 



231T405: JAVA PROGRAMMING  

Department of Information Technology 

Topic: Elements of Java -Access Modifiers, Generics 



Why Learn Access Modifiers and Generics? 
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Access Modifiers control visibility and access to 
classes, methods, and fields. 

Generics enable type-safe and reusable code. 

Essential for robust and maintainable Java 
applications. 



What Are Access Modifiers? 

• Keywords used to define the scope of accessibility. 

• Four levels of access: 
• Private: Accessible within the same class only. 

• Default (Package-private): Accessible within the same package. 

• Protected: Accessible within the same package and by subclasses. 

• Public: Accessible from everywhere. 
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Access Levels at a Glance 
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Generics 
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Generics means parameterized types. The idea is to allow a type 

(like Integer, String, etc., or user-defined types) to be a parameter 

to methods, 

 classes, and interfaces. Using Generics, it is possible to create 

classes that work with different data types. An entity such as a 

class,  

interface, or method that operates on a parameterized type is 

a generic entity.  



Understanding Generics in Java 

• Introduced in Java 5 for type 
safety. 

• Enables the definition of classes, 
methods, and interfaces with 
type parameters. 

• Syntax example: 
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Why Use Generics? 

• Type Safety: Prevents runtime errors. 

• Code Reusability: Single definition for multiple data types. 

• Readability: Explicit types make code easier to understand. 

• Performance: Reduces the need for type casting. 
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Example of Generics 
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Access Modifiers vs Generics 
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Using Access Modifiers and Generics 
Effectively 
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Use the least permissive access modifier possible. 

Prefer protected over public for inheritance. 

Use Generics for type-safe collections. 

Avoid raw types when using Generics. 
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Why Learn These Concepts? 
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Inner classes encapsulate logic and simplify structure. 

The String class is fundamental for text manipulation in Java. 

Annotations provide metadata to enhance functionality. 



What Are Inner Classes? 

• A class defined within another class. 

• Types of inner classes: 
• Non-static (Member) Inner Class: 

Associated with an instance of the outer 
class. 

• Static Nested Class: Acts like a static 
member of the outer class. 

• Local Inner Class: Defined within a 
method or block. 

• Anonymous Inner Class: Used for 
implementing interfaces or abstract 
classes inline. 
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Types of Inner Classes 
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Type Characteristics Example Use Case 

Member Inner Class 
Non-static, tied to an 
instance 

Accessing instance 
members 

Static Nested Class 
Static, independent of 
outer instance 

Utility or helper 
functions 

Local Inner Class Defined within a method Method-specific logic 

Anonymous Inner Class No name, one-time use Inline implementation 



What Is the String Class? 
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•A sequence of characters, immutable by design. 

•Part of the java.lang package. 

•Commonly used methods: 
•length(), charAt(int index), substring(int start, int end). 

•toLowerCase(), toUpperCase(), replace(), equals(), 

equalsIgnoreCase() 



Common String Methods 

Method Description Example 

length() Returns the length of the string str.length() 

substring() Extracts a portion of the string str.substring(0, 5) 

equals() Compares two strings for equality str1.equals(str2) 

toUpperCase() Converts the string to uppercase str.toUpperCase() 
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What Are Annotations? 
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Built-in Annotations in Java 

Annotation Purpose Example 

@Override 
Indicates method 
overriding 

@Override void display() 

@Deprecated 
Marks a method as 
deprecated 

@Deprecated void oldMethod() 

@SuppressWarnin
gs 

Suppresses specific 
warnings 

@SuppressWarnings("unchecked
") 
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Effective Use of Inner Classes, Strings, and 
Annotations 
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Use inner classes to logically group classes. 

Prefer StringBuilder or StringBuffer for mutable strings. 

Use annotations for clarity and to reduce boilerplate code. 



Understanding Packages in 
Java 



What is a Package in Java? 

• - A package is a container for classes, interfaces, and sub-packages. 

• - It helps in organizing code logically. 

• - Prevents class name conflicts and provides access protection. 

 

• Example: 

• package mypackage; 

• public class MyClass { 

•    public void show() { 

•        System.out.println("Hello from MyClass"); 

•    } 

• } 



Types of Packages in Java 

• 1. Built-in Packages – Provided by Java (e.g., java.util, java.io). 

• 2. User-defined Packages – Created by developers. 



Advantages of Using Packages 

• ✅  Code Organization – Groups related classes together. 

• ✅  Encapsulation – Controls access using access modifiers. 

• ✅  Avoids Name Conflicts – Different packages can have classes with 
the same name. 

• ✅  Reusability – Classes in a package can be reused across projects. 



Built-in Packages in Java 

• Common built-in packages: 

 

• - java.lang: Basic classes (String, Math, Object, etc.) 

• - java.util: Utility classes (ArrayList, HashMap, Scanner, etc.) 

• - java.io: Input-output operations (File handling) 

• - java.sql: Database connectivity (JDBC) 

• - javax.swing: GUI components (JFrame, JButton, etc.) 

 

• Example: import java.util.Scanner; 



Creating a User-Defined Package 

• 1. Define a package: 

• package mypackage; 

• public class MyClass { 

•    public void show() { 

•        System.out.println("Hello from MyClass"); 

•    } 

• } 

 

• 2. Compile using: 

• javac -d . MyClass.java 

 

• 3. Use in another class: 

• import mypackage.MyClass; 

• public class Test { 

•    public static void main(String[] args) { 

•        MyClass obj = new MyClass(); 

•        obj.show(); 

•    } 

• } 



Importing Packages in Java 

• Ways to import packages: 

 

• - Importing a specific class: import java.util.Scanner; 

• - Importing the entire package: import java.util.*; 

• - Using fully qualified class name: java.util.Scanner sc = new 
java.util.Scanner(System.in); 



Package Hierarchy and Sub-Packages 

• A package can contain sub-packages: 

 

• Example structure: 

• com.company 

•    ├── finance 

•    │   ├── Invoice.java 

•    │   └── Tax.java 

•    ├── hr 

•    │   ├── Employee.java 

•    │   ├── Payroll.java 

 

• Accessing a sub-package class: import com.company.finance.Invoice; 



Access Control in Packages 

• | Access Modifier | Same Class | Same Package | Subclass (Different 
Package) | Other Packages | 

• |----------------|-----------|-------------|-----------------------------|---------------| 

• | public        | ✅  Yes    | ✅  Yes      | ✅  Yes                      | ✅  Yes        | 

• | protected     | ✅  Yes    | ✅  Yes      | ✅  Yes                      | ✅  No        | 

• | default       | ✅  Yes    | ✅  Yes      | ✅  No                        | ✅  No        | 

• | private       | ✅  Yes    | ✅  No       | ✅  No                        | ✅  No        | 



Best Practices for Using Packages 

• ✅  Use meaningful names (e.g., com.company.module). 

• ✅  Follow Java naming conventions (all lowercase). 

• ✅  Group related classes logically. 

• ✅  Use access modifiers to control visibility. 

• ✅  Avoid too many nested packages. 



Conclusion 

• - Packages help in organizing Java programs efficiently. 

• - Java provides many built-in packages for common tasks. 

• - User-defined packages improve reusability and modularity. 

• - Proper use of access modifiers ensures security and encapsulation. 



String Tokenizer in Java 



What is StringTokenizer? 

• - `StringTokenizer` is a class in `java.util` package. 

• - Used to split (tokenize) a string into smaller parts called tokens. 

• - It is an alternative to `split()` method. 

 

• Example: 

• ```java 

• import java.util.StringTokenizer; 

 

• public class Test { 

•     public static void main(String[] args) { 

•         StringTokenizer st = new StringTokenizer("Java is fun"); 

•         while (st.hasMoreTokens()) { 

•             System.out.println(st.nextToken()); 

•         } 

•     } 

• } 

• ``` 

• Java   

• is   

• fun  



Why Use StringTokenizer? 

• ✅  Efficient for simple string splitting. 

• ✅  Does not create extra arrays (unlike `split()`). 

• ✅  Useful for parsing structured data (e.g., CSV, logs). 



Constructors of StringTokenizer 

• | Constructor | Description | 

• |------------|-------------| 

• | `StringTokenizer(String str)` | Splits `str` using default delimiter 
(whitespace). | 

• | `StringTokenizer(String str, String delim)` | Splits `str` using a custom 
delimiter `delim`. | 

• | `StringTokenizer(String str, String delim, boolean returnDelims)` | If 
`returnDelims` is `true`, delimiters are also returned as tokens. | 



Tokenizing with Custom Delimiters 

• Example (Using `,` as a delimiter): 

• ```java 

• import java.util.StringTokenizer; 

 

• public class Test { 

•     public static void main(String[] args) { 

•         StringTokenizer st = new StringTokenizer("Apple,Banana,Cherry", ","); 

•         while (st.hasMoreTokens()) { 

•             System.out.println(st.nextToken()); 

•         } 

•     } 

• } 

• ``` 

• Apple   

• Banana   

• Cherry  



Returning Delimiters as Tokens 

• Use `true` as the third argument to include delimiters as tokens. 

 

• Example: 

• ```java 

• StringTokenizer st = new StringTokenizer("A,B;C", ",;", true); 

• while (st.hasMoreTokens()) { 

•     System.out.println(st.nextToken()); 

• } 

• ``` 

• A   

• ,   

• B   

• ;   

• C 



Important Methods in StringTokenizer 

• | Method | Description | 

• |--------|-------------| 

• | `hasMoreTokens()` | Returns `true` if more tokens are available. | 

• | `nextToken()` | Returns the next token. | 

• | `nextToken(String delim)` | Returns the next token, using a new 
delimiter. | 

• | `countTokens()` | Returns the number of tokens left. | 



Counting Tokens 

• Example: 
• ```java 
• StringTokenizer st = new StringTokenizer("Hello World Java"); 
• System.out.println("Total tokens: " + st.countTokens()); 
• ``` 

 
• **Output:** 
• ``` 
• Total tokens: 3 
• ``` 



StringTokenizer vs split() 

• | Feature | StringTokenizer | `split()` | 

• |---------|---------------|----------| 

• | Performance | Faster for simple tokenization | Slower due to regex 
processing | 

• | Returns | Individual tokens one by one | Array of tokens | 

• | Delimiter Handling | Can choose to return delimiters | Always 
removes delimiters | 

• | Flexibility | Less flexible | More flexible with regex | 



Best Practices 

• ✅  Use `StringTokenizer` for simple splitting tasks. 

• ✅  Prefer `split()` when using regex-based splitting. 

• ✅  Use `returnDelims = true` if delimiters should be preserved. 

• ✅  Use `countTokens()` to pre-check token count before iteration. 



Conclusion 

• - `StringTokenizer` is useful for simple and efficient string splitting. 

• - Supports custom delimiters and delimiter return mode. 

• - Alternative to `split()`, but lacks regex support. 


