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Signal Processing

• Humans are the most advanced signal processors
– speech and pattern recognition, speech synthesis,…

• We encounter many types of signals in various 

applications
– Electrical signals: voltage, current, magnetic and electric fields,…

– Mechanical signals: velocity, force, displacement,…

– Acoustic signals: sound, vibration,…

– Other signals: pressure, temperature,…

• Most real-world signals are analog
– They are continuous in time and amplitude

– Convert to voltage or currents using sensors and transducers

• Analog circuits process these signals using
– Resistors, Capacitors, Inductors, Amplifiers,…

• Analog signal processing examples
– Audio processing in FM radios

– Video processing in traditional TV sets
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gLimitations of Analog Signal Processin

• Accuracy limitations due to
– Component tolerances

– Undesired nonlinearities

• Limited repeatability due to
– Tolerances

– Changes in environmental conditions

• Temperature

• Vibration

• Sensitivity to electrical noise

• Limited dynamic range for voltage and currents

• Inflexibility to changes

• Difficulty of implementing certain operations
– Nonlinear operations

– Time-varying operations

• Difficulty of storing information
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Digital Signal Processing
• Represent signals by a sequence of numbers

– Sampling or analog-to-digital conversions

• Perform processing on these numbers with a digital processor

– Digital signal processing

• Reconstruct analog signal from processed numbers

– Reconstruction or digital-to-analog conversion

digital

analog 
signal

digital

analog
signal

• Analog input – analog output

– recording of music

• Analog input – digital output

– Touch tone phone dialing

• Digital input – analog output

– Text to speech

• Digital input – digital output

– Compression of a file on computer

A/D
signal

DSP
signal

D/A
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Pros and Cons of Digital Signal Processing

• Pros
– Accuracy can be controlled by choosing word length

– Repeatable

– Sensitivity to electrical noise is minimal

– Dynamic range can be controlled using floating point numbers

– Flexibility can be achieved with software implementations

– Non-linear and time-varying operations are easier to implement

– Digital storage is cheap

– Digital information can be encrypted for security

– Price/performance and reduced time-to-market

• Cons
– Sampling causes loss of information

– A/D and D/A requires mixed-signal hardware

– Limited speed of processors

– Quantization and round-off errors
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Analog, digital, mixed signal 

processing
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Digital Signal Processing
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Sampling and reconstruction
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Sample and hold (S/H)circuit
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A/D converter
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A/D converter
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Quantization noise
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D/A convertion
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D/A convertion
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Reconstruction
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Reconstruction
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Reconstruction
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Reconstruction
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Signals

• Continuous-time signals are functions of a real argument

x(t) where t can take any real value

x(t) may be 0 for a given range of values of t

• Discrete-time signals are functions of an argument that

takes values from a discrete set

x[n] where n  {...-3,-2,-1,0,1,2,3...}

Integer index n instead of time t for discrete-time systems

• x may be an array of values (multi channel signal)

• Values for x may be real or complex
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Discrete-time Signals and Systems

• Continuous-time signals are defined over a 
continuum of times and thus are represented by a 
continuous independent variable.

• Discrete-time signals are defined at discrete times 
and thus the independent variable has discrete 
values.

• Analog signals are those for which both time and 
amplitude are continuous.

• Digital signals are those for which both time and 
amplitude are discrete.
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Analog vs. Digital

• The amplitude of an analog signal can take any real or complex value at each 

time/sample

• The amplitude of a digital signal takes values from a

discrete set

1

-1
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Periodic (Uniform) Sampling
• Sampling is a continuous to discrete-time conversion

-3 -2 -1 0 1 2 3 4

• Most common sampling is periodic

   n  xn  x nT 
c

• T is the sampling period in second

• fs = 1/T is the sampling frequency in Hz

• Sampling frequency in radian-per-seconds=2fs rad/sec

• Use [.] for discrete-time and (.) for continuous time signals

• This is the ideal case not the practical but close enough

– In practice it is implement with an analog-to-digital converters

– We get digital signals that are quantized in amplitude and time
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Periodic Sampling
• Sampling is, in general, not reversible

• Given a sampled signal one could fit infinite continuous signals 

through the samples

1

0.5

0

-0.5

-1
0 20 40 60 80 100

• Fundamental issue in digital signal processing
– If we loose information during sampling we cannot recover it

• Under certain conditions an analog signal can be sampled without
loss so that it can be reconstructed perfectly
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x
Convert impulse

train to discrete-

time sequence

Representation of Sampling
• Mathematically convenient to represent in two stages

– Impulse train modulator

– Conversion of impulse train to a sequence

s(t)

xc(t) x[n]=xc(nT)

xc(t)

-3T-2T-T 0 T 2T3T4T

s(t)

t

x[n]

n
-3 -2 -1 0 1 2 3 4
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… 1
…

Unit Sample Sequence

[n] = 0, n  0

= 1, n = 0.

0 n

The unit sample sequence plays the same role for discrete-time sequences and 

systems that the unit impulse (Dirac delta function) does for continuous-time 

signals and systems.
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Impulse Function

The impulse function, also known as Dirac’s delta function, is used to 

represented quantities that are highly localized in space. Examples include 

point optical sources and electrical charges.

The impulse function can be visualized as a narrow spike having infinite 

height and zero width, such that its area is equal to unity.
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Definition of Impulse Function

The impulse function may be defined from its basic properties.

δ( x  x 0 )  0 , x  x 0

x 2

f ( x ) δ( x  x 0 ) dx  f ( x 0 ),
x1

x1  x 0  x 2

Where f(x) is any complex-valued function of x. If f(x) is discontinuous at the 

point x0, the value of f(x0) is taken as the average of the limiting values as x 

approaches x0 from above and below.

This property is called the sifting property.


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Graphical Representation

On graphs we will represent (x-x0) as a spike of unit

height located at the point x0.

1

δ( x  x 0 )

x 0
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Sampling Operation

The delta function samples the function f(x).

The function f(x) (x-x0) is graphed as a spike of height f(x0) located at the point x0.

f(x0)

f ( x ) δ( x  x 0 )

x 0
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… 1
…

Unit Step Sequence

u[n] = 1, n  0

= 0, n < 0.

0 n

u[n ]   [n ]   [n  1]   [n  2 ] 



u [n ]    [n

k  0

n

u [ n ]    [ k ]

k  

 k ]
Conversely, the impulse sequence can be expressed 

as the first backward difference of the unit step 

sequence:
or

 [ n ]  u [n ]  u [n  1]
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Exponential Sequence

x[n] = A  n

n0

If we want an exponential sequence that is

zero for n < 0, we can write this as:

x [ n ]  A  n u [ n ]

…

…
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Geometric Series

A one-sided exponential sequence of the form

 n , for n ≥ 0 and  an arbitrary constant

is called a geometric series. The series converges for |a| < 1, and its sum converges

to



  n 

n  0

The sum of a finite number N of terms is

1

1  

1  
N 1N

  n

n  0 1  

A general form can also be written:

N 2

  n



N 1  
N 2 1

n  N 1
1   33



Sinusoidal Sequence

o
x [ n ]  A cos(  n   )

…

…
0 n
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-4 -2 0 4 6 n

a1

a-3

Sequence as a sum of scaled, delayed 

impulses

a2
a7

p [ n ]  a  3 δ[ n  3 ]  a 1 δ[ n  1]  a 2 δ[ n  2 ]  a 7 δ[ n  7 ]
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Sequence Operations

• The product and sum of two sequences are defined as the sample-by-
sample product and sum, respectively.

• Multiplication of a sequence by a number is defined as multiplication

of each sample value by this number.

• A sequence y[n] is said to be a delayed or shifted version of a sequence

x[n] if

y[n] = x[n – nd]

where nd is an integer.

• Combination of Basic Sequences

Ex 1 x[n] = K n, n  0,

= 0, n < 0,

or x[n] = K n u[n].
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Systems

x[n] y[n]

A discrete-time system is a transformation that maps an 

input sequence x[n] into an output sequence y[n].

System Characteristics

1. Linear vs. non-linear

2. Causal vs. non-causal

3. Time invariant

T{}
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System Characteristics

x[n] y[n]

1. Linear vs. non-linear

2. Time invariant vs. time variant

3. Causal vs. non-causal

4. Stable vs. unstable

5. Memoryless vs. state-sensitive

6. Invertible vs. non-invertible

T{}
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Discrete-Time Systems

• Discrete-Time Sequence is a mathematical operation that maps a given 

input sequence x[n] into an output sequence y[n]

y[n]  T { x[n]} x[n] y[n]

• Example Discrete-Time Systems

– Moving (Running) Average

y[n]  x[n]  x[n  1]  x[n  2]  x[n  3]

– Maximum

y[n]  max x[n],

– Ideal Delay System

y[n] 

x[n  1], x[n  2]

x[n  n o ]

T{.}
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Linearity

A linear system is one that obeys the principle of 

superposition,

T a x [n ]  a x [n ]  a y [ n ]  a y [ n ]
1 2 1 1 2 2

where the output of a linear combination of inputs is the 

same linear combination applied to the individual outputs. 

This result means that a complicated system can be 

decomposed into a linear combination of elementary 

functions whose transformation is known, and then taking 

the same linear combination of the results. Linearity also 

implies that the behavior of the system is independent of 

the magnitude of the input.
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x 2 [n]}  Tx [n] 
1

Tx [n]
2

 Tx [n]
1

Linear Systems
• Linear System: A system is linear if and only if

T {x 1[n] 

and

(additivit y)

Tax [n]   aT x[n] (scaling)

• Examples

– Ideal Delay System

y[n]  x[n  n o ]

T {x 1[n]  x 2 [n]}

T {x 2 [n]}

 x 1[n  n o ] 

 x 1[n  n o ] 

 ax 1[n

 ax 1[n

x 2[n  n o ]

x 2[n  n o ]

 n o ]

 n o ]

Tax [n]

aT x[n]
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A system is said to be shift invariant if the only effect caused by

a shift in the position of the input is an equal shift in the position

of the output, that is

T x[n  n ]  y [n  n ]
0 0

The magnitude and shape of the output are unchanged, only the

location of the output is changed.

Time (Shift) Invariance

42



Time-Invariant Systems
• Time-Invariant (shift-invariant) Systems

– A time shift at the input causes corresponding time-shift at output

y[n]  T {x[n]}  y[n  n o ] 

• Example

– Square

T x[n  n o]

y[n]  x[n]2

• Counter Example

– Compressor System

Delay

y[n]  x[Mn ]

y n  x[Mn  n ]
1 o

Delay the output gives yn - no   xMn no 

the input the output is

Delay the input the output is y n  x[n  n ]2

1 o

Delay the output gives yn - n   x[n  n ]2

o o
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Impulse Response

When the input to a system is a single impulse, the output is called

the impulse response. Let h[n] be the impulse response, given by

T [n ]  h [n ]

A general sequence f [x] can be represented as a linear combination 

of impulses, since



f ( x )  f ( x )   ( x )   



f ( u ) ( x  u ) du

f [ n ]  f [ n ]   [ n ]  
k  

f [ k ] [ n  k ]
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Linear Shift-Invariant Systems
Suppose that T{} is a linear, shift-invariant system with h[n] as its 

impulse response.

Then, using the principle of superposition,

   

T s[ n ]  T   s[ k ] [n  k ]   s [ k ]T

 

 [ n  k ]

 k    k  

and finally after invoking shift-invariance


T s[n ]   s[ k ]T  [n

k  



 k ]   s [ k ]h [ n

k  

 k ]

T s[n ]  s[ n ]  h [n ]

This very important result says that the output of any linear, shift-

invariant system is given by the convolution of the input with the

impulse response of the system. 46



Causality

A system is causal if, for every choice of n0, the output

sequence at the index n = n0 depends only on the input

sequence values for n  0.

All physical time-based systems are causal because they are 

unable to look into the future and anticipate a signal value 

that will occur later.
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Causal System
• Causality

– A system is causal it’s output is a function of only the current and

previous samples

• Examples

– Backward Difference

y[n]  x[n]

• Counter Example

– Forward Difference

 x[n  1]

y[n]  x[n  1]  x[n]
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A system is stable in the bounded-input, bounded-output 

(BIBO) sense if and only it every bounded input produces a 

bounded output sequence.

The input x[n] is bounded if there exists a fixed positive finite 

value Bx such that

x[n ]  B   for all n
x

Stability requires that for any possible input sequence there exist 

a fixed positive value By such that

y [n ]  B  
y

Stability
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x

1

Stable System
• Stability (in the sense of bounded-input bounded-output BIBO)

– A system is stable if and only if every bounded input produces a bounded 

output

x[n]  B x    y[n]  B y  

• Example

– Square

if input  B x  x[n]

y[n]  x[n]2

is bounded by

is bounded by y[n] output

• Counter Example
– Log

B 2  

y[n]  log 10  x[n] 

is bounded by x[n]even if input  B x  

output not bounded for xn  0  y0  log xn  
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Memory (State)

A system is referred to as memoryless if the output y[n] at every 

value of n depends only on the input x[n] at the same value of n.

If the system has no memory, it is called a static system. Otherwise 

it is a dynamic system.
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Memoryless System
• Memoryless System

– A system is memoryless if the output y[n] at every value of n depends 

only on the input x[n] at the same value of n

• Example Memoryless Systems

– Square

y[n]  x[n]2

–
Sign

y[n]  sign x[n]

• Counter Example

– Ideal Delay System

y[n]  x[n  n o ]
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Invertible System

A system is invertible if for each output sequence we can find a

unique input sequence. If two or more input sequences produce

the same output sequence, the system is not invertible.
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2

Passive and Lossless Systems

A system is said to be passive if, for every finite energy input 

sequence x[n], the output sequence has at most the same energy:




n  

2

y [ n ]




n  

 x [ n ]  

If the above inequality is satisfied with an equal sign for every 

input signal, the system is said to be lossless.
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Examples of Systems

Ideal Delay System y [n ]  x [n  n d ]

MovingAverage System y[n ] 
1

2 1

M 2

M  M  1 k   M

 x[n  k ]

1

Memoryless non-linear System y [n ]  x [ n ]2

Accumulator System

n

y [n ]   x[k ]

k  

where M is a 

positive integerCompressor System

Backward Difference System

y [n ] 

y [n ]  x[n ]  x[n  1]

x [ Mn ]
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Impulse Response of LTI Systems

Find the impulse response by computing the response to [n].

Systems whose impulse responses have only a finite number of 

nonzero samples are called finite-duration impulse response 

(FIR) systems.

Systems whose impulse responses are of infinite duration are 

called infinite-duration impulse response (IIR) systems.

If h[n] = 0 for n < 0, the system is causal.
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Impulse Response for Examples

Find the impulse response by computing the response to [n]

Ideal Delay System y [n ]  δ[ n  n ]
d

 1
 , -M 1  n  M 2

FIR

MovingAverage System
2

y [n ]   M



n

 M  1

0 , otherwise

FIR

Accumulator System y[n ]   δ[ k ]  

k 

 1, n  0

0, n  0
IIR

y [ n ]  u [ n ]

Backward Difference System y [n ]  δ[ n ]  δ[ n  1] FIR
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Stability Condition for LTI Systems

An LTI system is BIBO stable if and only if its impulse response

is absolutely summable, that is




k 

S  h [ k ]  
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Stable and Causal LTI Systems
• An LTI system is (BIBO) stable if and only if

– Impulse response is absolute summable



k  

– Let’s write the output of the system as

hk   



 hkxn  k  



 hk xn  k 
k  

yn 

k  

– If the input is bounded

– Then the output is bounded by

x[n]  B x



yn  B x 
k  

hk 

– The output is bounded if the absolute sum is finite

• An LTI system is causal if and only if

hk   0 for k  0
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Difference Equations

An important subclass of LTI systems are defined by

an Nth-order linear constant-coefficient difference equation:

N

 a k y [ n

M

 k ]  bm x [ n m ]

0

Often the leading coefficient a0 = 1. Then the output y[n] can be 

computed recursively from

y [ n ] 

N

  a k

k 1

M


m  0

y [ n  k ]  bm x [ n  m ]

A causal LTI system of this form can be simulated in 

MATLAB using the function filter

y = filter(a,b,x);
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Total Solution Calculation

N

 a k

k  0

M


m  0

y [ n  k ]  bm x [ n  m ]

The output sequence y[n] consists of a homogeneous solution yh[n] and a 

particular solution yp[n].

y [ n ]  y h [ n ]  y p [ n ]

where the homogenous solution yh[n] is obtained from the homogeneous equation:

N


k  0

a k y h [ n  k ]  0
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Homogeneous Solution

y h [ n ] 

n  N

 k

n  k

a  a  N
 a  N  1

0 1

 n

Given the homogeneous equation:
N

 k ha y [ n  k ]  0

k  0

Assume that the homogeneous solution is of the form

 n

then

hy [ n ] 

N


k  0

N  a   0

defines an Nth order characteristic polynomial with roots 1, 2 … N

The general solution is then a sequence yh[n]

N

h
y [ n ]  A

m m
1

(if the roots are all distinct) The coefficients Am may be found from the
initial conditions. 63



Particular Solution

The particular solution is required to satisfy the difference equation for a specific

input signal x[n], n ≥ 0.

N

 a k

k  0

M


m  0

y [ n  k ]  bm x [ n  m ]

To find the particular solution we assume for the solution yp[n] a form that depends 

on the form of the specific input signal x[n].

y [ n ]  y h [ n ]  y p [ n ]
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General Form of Particular Solution

Input Signal

x[n]

Particular Solution

yp[n]

A (constant) K

AMn KMn

AnM K0nM+K1nM-1+…+KM

AnnM An(K0nM+K1nM-1+…+KM)

 A cos(  o n )
 

 A sin(  o n ) 

K cos(  n )  K sin(  n )
1 o 2 o
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Example

n

y h [ n ]  

Determine the homogeneous solution for

y [ n ]  y[ n  1]  6 y[ n  2 ]  0

Substitute

 n  n 1  6 n  2   n  2  2
   6   0

  n  2   3   2   0

Homogeneous solution is then

y [ n ] 
h

 n

2

A  n  A
1 1

 A  3 n

1

 A 2 n

22
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Example

Determine the particular solution for

y [ n ]  y[ n  1]  6 y[ n  2]  x[ n ]

with x[ n ]  8u [ n ] and y[-1] = 1 and y[-2] = -1

The particular solution has the form y p [ n ]  

    6   8

which is satisfied by  = -2
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Example (68

A  3n
 A 2 n

 2
1 2

1 2

2

Determine the total solution for

y [ n ]  y[ n  1]  6 y[ n  2]  x[ n ]

with x[ n ]  8u [ n ] and y[-1] = 1 and y[-2] = -1

The total solution has the form

y[n ]  y h [n ]  y p [ n ] 

then 1 1
y [  1]   A   2  1

1 A 2

3 2

1 1

A   1 .8

y [  3 ]  A  A  2   1
9 4

1

A  4 .8

y [ n ]   1 .8  3 n
 4 .8 2 n

 2
66



Initial-Rest Conditions

The output for a given input is not uniquely specified. 

Auxiliary information or conditions are required.

Linearity, time invariance, and causality of the system will 

depend on the auxiliary conditions. If an additional condition is 

that the system is initially at rest (called initial-rest conditions), 

then the system will be linear, time invariant, and causal.
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Zero-input, Zero-state Response

An alternate approach for determining the total solution y[n] of a difference equation 

is by computing its zero-input response yzi[n], and zero-state response yzs[n]. Then 

the total solution is given by y[n] = yzi[n] + yzs[n].

The zero-input response is obtained by setting the input x[n] = 0 and satisfying the 

initial conditions. The zero-state response is obtained by applying the specified input 

with all initial conditions set to zero.
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Example (1/2)
 1]  6 y[ n  2 ]  0y [ n ]  y[ n

y [ 0 ] 
zi

A  A   y [  1]  6 y [  2 ]   1  6   7
1 2

A
1

 
27

5

  5 .4

y [1] 
zi

A ( 3 )  A2 ( 2 )   y [ 0 ]  6 y [  1]  7  6  13
1 A

2
 

8

5
  1 .6

h 1 1 2
 A  2

y [ 1]  1

y [ 2 ]   1
y [ n ]  A 

n n n A  3   A 2 
n

1 2

Zero-input response:

Zero-state response: y[n ]  y[ n  1]  6 y[n  2 ]  x[ n ]

with x[ n ]  8 u [ n ]

18

y [ 0 ] 
zs

A  A  2  x[ 0 ]  8
1 2

A1  5  3 .6

y zs [1]  A1 (  3 )  A 2 ( 2 )  2  x[1]  y [ 0 ]  8  8  0
A 

2

32

5
 6 .471



Mitra Example (2/2)
Zero-input response:

zi

zs

Total solution is

y [n ]  y [n ]  y [ n ]
z zs

y [ n ]  1 .8 ( 3) n  4 .8 ( 2 ) n  2

This is the same as before

y [ n ]   5 .4 ( 3) n  1 .6 ( 2 ) n

Zero-state response:

y [ n ]  3 .6 ( 3) n  6 .4 ( 2 ) n  2
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Impulse Response

The impulse response h[n] of a causal system is the output 

observed with input x[n] = [n].

For such a system, x[n] = 0 for n >0, so the particular solution is 

zero, yp[n]=0. Thus the impulse response can be generated from the 

homogeneous solution by determining the coefficients Am to satisfy 

the zero initial conditions (for a causal system).
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Example
Determine the impulse response for

y [n ]  y[ n  1]  6 y[ n  2]  x[ n ]

The impulse response is obtained from the homogenous solution:

h [ n ]  A  3 n
 A 2 n

1 2

For n=0

A1  A 2  1

 3 A  2 A  A  A   0
1 2 1 2

3 2

y[0 ]  y[ 1]  6 y[ 2 ]  x[ 0 ]

h[ 0 ]  δ[ 0 ]  1

For n=1
y[1]  y[ 0 ]  6 y [ 1]  x[1]

h[1]  h[ 0 ]  δ[1]  0

5 5

n  0

A 1  , A 2

3
h [ n ]   3 n


2
2 n

725 5



DSP Applications

• Image Processing

– Pattern recognition

– Robotic vision

– Image enhancement

– Facsimile

– Satellite weather map

– Animation

• Instrumentation/Control

– Spectrum analysis

– Position and rate control

– Noise reduction

– Data compression

• Speech/audio

– Speech recognition/synthesis

– Text to speech

– Digital audio

– equalization

• Military

– Secure communication

– Radar processing

– Sonar processing

– Missile guidance

• Telecommunications

– Echo cancellation

– Adaptive equalization

– ADPCM transcoders

– Spread spectrum

– Video conferencing

– Data communication

• Biomedical

– Patient monitoring

– Scanners

– EEG brain mappers

– ECG analysis

– X-ray storage/enhancement
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Some. Applications of DSP

• Noi,se removal from image.



Image enhancement
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More Examples of Applications

• Sound Recording
Applications
– Compressors and Limiters

– Expanders and Noise Gates

– Equalizers and Filters

– Noise Reduction Systems

– Delay and Reverberation 
Systems

– Special Effect Circuits

• Speech Processing
– Speech Recognition

– Speech Communication

• Telephone Dialing 

Applications

• FM Stereo Applications

• Electronic Music 

Synthesis

– Subtractive Synthesis

– Additive Synthesis

• Echo Cancellation in 

Telephone Networks

• Interference Cancellation 

in Wireless 

Telecommunication
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Reasons for Using DSP

• Signals and data of many types are 

increasingly stored in digital 

computers, and transmitted in 

digital form from place to place. In 

many cases it makes sense to 

process them digitally as well.

• Digital processing is inherently

stable and reliable. It also offers

certain technical possibilities not

available with analog methods.

• Rapid advances in IC design and 

manufacture are producing ever 

more powerful DSP devices at 

decreasing cost.

• Flexibility in reconfiguring

• Better control of accuracy 

requirement

• Easily transportable and possible 

offline processing

• Cheaper hardware in some case

• In many case DSP is used to 

process a number of signals 

simultaneously. This may be done 

by interlacing samples (technique 

known as TDM) obtained from the 

various signal channels.

• Limitation in speed & Requirement 

in larger bandwidth
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System Analysis
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Frequency Response
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Ideal lowpass filter-example
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Non causal to causal
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Phase distortion and delay
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Phase delay
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Phase delay
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Group delay
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Group delay
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The Z-Transform
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Z-Transform Definition
-Counterpart of the Laplace transform for discrete-time signals

-Generalization of the Fourier Transform

-Fourier Transform does not exist for all signals

The z-transform of a sequence x[n] is defined as


Z { x [n ]}   x[n ]z  n  X ( z )

n  

The inverse z-transform is given by

1

x [ n ] 
2 j

X ( z ) z n 1dz
C

This expression denotes a closed contour integral taken counterclockwise 

about the origin and in the region of convergence (ROC). It incorporates the 

Cauchy integral theorem from the theory of complex variables. This result is 

not given directly in Oppenheim, but may be found in Proakis.


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Relationship to Fourier Transform

The z-transform of a sequence x[n] is defined as



X ( z )   x [n ] z  n

n  

The Fourier transform of a sequence x[n] is defined as

X e j  


 x[ n ]e  j n

n 

For z  e tjhez-transform reduces to the Fourier transform

This domain is a circle of unit radius in the complex plane, that is

|z| = 1.
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   n 

Convergence of the z-Transform


• DTFT does not always converge

Xe j   xn e  jn

n 

– Infinite sum not always finite if x[n] no absolute summable

– Example: x[n] = anu[n] for |a|>1 does not have a DTFT

• Complex variable z can be written as r ej so the z-transform

     jj 
X re

n 


 j n

  x n re   x n r e
n   n  

• DTFT of x[n] multiplied with exponential sequence r -n

– For certain choices of r the sum maybe made finite




n 

xn r -n  
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Unit Circle in Complex Z-Plane
-The z-transform is a function of the complex z variable

-Convenient to describe on the complex z-plane

-If we plot z=ej for =0 to 2we get the unit circle

Im

z  e  j

Unit Circle



Re
1

z-plane
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Region of Convergence (ROC)


 n

 x [n ] z  

For any given sequence, the set of value of z for which the z-transform converges 
is called the region of convergence, ROC. The criterion for convergence is that 
the z-transform be absolutely summable:

 

If some value of z, say, z = z1, is in the ROC, then all values of z on the circle defined 
by |z| = |z1| will also be in the ROC. So, the ROC will consist of a ring in the z-plane 
centered about the origin. Its outer boundary will be a circle (or the ROC may extend 
outward to infinity), and its inner boundary will be a circle (or it may extend inward 
to include the origin).
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Region of Convergence
Im

r1

r2

Re

z-plane

The region of convergence (ROC) as a ring in the z-plane. For specific cases, the inner boundary 

can extend inward to the origin, and the ROC becomes a disk. In other cases, the outer boundary

can extend outward to infinity. 96



Laurent Series



X ( z )   x [n ] z  n

n  

A power series of this form is a Laurent series. A Laurent series, and therefore

a z-transform, represents an analytic function at every point within the region

of convergence. This means that the z-transform and all its derivatives must be

continuous functions of z within the region of convergence.

P ( z )
X ( z ) 

Q ( z )

Among the most useful z-transforms are those for which X(z) is a rational 

function inside the region of convergence, for example where P(z) and Q(z) 

are polynomials. The values of z for which X(z) are zero are the zeros of X(z) 

and the values for which X(z) is infinite are the poles of X(z).
95



1. The ROC is a ring or disk in the z-plane centered at the origin

0  r  z  r  
R L

2. The Fourier transform of x[n] converges absolutely if and only if the ROC of the z-

transform of x[n] includes the unit circle.

3. The ROC cannot contain any poles.

4. If x[n] is a finite-duration sequence, then the ROC is the entire z-plane except possibly

z=0 or z=.

5. If x[n] is a right-handed sequence (zero for n < N1 < ), the ROC extends outward from 

the outermost (largest magnitude) finite pole in X(z) to (and possibly including infinity).

6. If x[n] is a left-handed sequence (zero for n > N2 > - ), the ROC extends inward from

the innermost (smallest magnitude) nonzero pole in X(z) to (and possibly including) zero.

7. A two-sided sequence is an infinite-duration sequence that is neither right-sided or left-

sided. If x[n] is a two-sided sequence, the ROC will consist of a ring in the z-plane, 

bounded on the interior and exterior by a pole and , consistent with property 3, not 

containing any poles.

8. The ROC must be a connected region.

Properties of the ROC
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Properties of ROC Shown Graphically
Finite-Duration Signals

Causal Entire z-plane 
Except z = 0

Anticausal Entire z-plane

Except z = infinity

Two-sided Entire z-plane

Except z = 0 and z = 

Infinite-Duration Signals

Causal
|z| > r2

Anticausal
|z| < r1

Two-sided
r2 < |z| < r1
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Example: Right-Sided Sequence

x [ n ]  a n u [ n ]



X ( z )   x[n ] z  n

n  

 n

X ( z )   az 1
n 0

1


1  az 1

ROC 1az  1

or z  a
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Example: Left-Sided Sequence

x [ n ]   a n u [ n  1]

nonzero for n   1



X ( z )   x[ n ] z  n

n  

 1 

X ( z )    az 1 n
 1   a 1z n

n 

1

n 0

1
 1 

1  a 1 z


1  az 1

ROC a 1 z  1

or z  a
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1  2 3

z  1

2

z  11
2 3

Example: Sum of Two Exponential 

Sequences


u [ n ]   



n

 1 
x [ n ]   

 2 

n

1 

 u [ n ] 

3 


 x[n ] z  n

n  

X ( z ) 

1
X ( z ) 

1


1 z1
1 

1 z 1

ROC and

X ( z ) 
2  1 z 1  1 z 1 2 z z  1 

3

1 1
12

z  1 z  1 1 z 1
2 

1 z 1
2 32 3

Poles at ½ and -1/3, zeros at 0 and 1/12 102

 1 z  1



3

 

2

 1  n

   u [n ] 

 3 

Example: Two-Sided Sequence



x [n ]   

 3 

1 
n

 1 

u [n ]   

 2 

u [ n  1]

1 1

z 

3
1

1  1 z

n

 1 
u [ n

1

 1] 
1

z 

2 2  1  1 z 1

2 zz  1 
X ( z )  12

z  1 z 
2

1
3

ROC
1 1

 z 
3 2
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Example: Finite Length Sequence

x [ n ]  
a n

0  n  N  1

 0 otherwise



 x[n ] z  n

n  

X ( z ) 

nN 1

X ( z )   az 1
n  0

1  az 1 N

 1

1  az

Pole-zero plot for N = 16

The sum is finite, so

ROC a   and z  0
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Z-transforms with the same pole-zero locations 

illustrating the different possibilities for the ROC. 

Each ROC corresponds to a different sequence.

c) A left-sided sequenceb) A right-sided sequence

d) A two-sided sequence
e) A two-sided sequence

103



Common Z-Transform Pairs

*All z except 0 (if m > 0) or  (if m<0)
106

Sequence Transform ROC

[cos  n ]u [n ]
0

1  [cos  ] z 1

0

1  [2 cos  ]z 1  z 2

0

z  1

[sin n ]u [n ]
0

[sin ]z 1

0

1  [2 cos  ]z 1  z 2

0

z  1

[cos  n ]u [n ]
0

1  [ r cos ] z 1

0

1  [2 r cos  ]z 1  r 2 z  2

0

z  r

[sin n ]u [n ]
0

[r sin  ]z 1

0

1  [2 r cos  ]z 1  r 2 z  2

0

z  r

a n , 0  n  N  1

0, otherwise

1  a N z  N

1  az 1
z  0

Sequence Transform ROC

 [ n ] 1 All z

u[n ]
1

1  z 1
z  1

 u [  n  1]
1

1  z 1
z  1

 [n  m ]
z  m

*

a n u [n ]

1

1  az 1

z  a

 a n u [ n  1]

1

1  az 1
z  a

na n u [ n ]

az  1

1  az 1 2 z  a

 na n u [ n  1]

az  1

1 az 1 2
z  a



Z-Transform Properties (1/2)

ax [ n ]  bx [ n ] Z aX 1 ( z )  bX 2 ( z )
1 2

R  R
x1 x 2

Linearity

ROC contains

Time Shifting

x [ n  n ]Z z  n 0 X ( z )
ROC = Rx (except for possible addition 

or deletion of 0 or )0

Multiplication by an Exponential Sequence

n Z  z 
z x [n ] X  

0

0 

Differentiation of X(z)

0
ROC  z R

x

Z

nx [n ]  z

dX ( z )

dz
ROC  R x 107

 z



Z-Transform Properties (2/2

x [n ]  x [ n ]Z X 1 ( z ) X 2 ( z )
1 2

R  R
x1 x2

Conjugation of a Complex Sequence

x [n ]Z X * ( z * ) ROC  R
x

Time Reversal

x *[ n ]Z X
*  1 


 z
* 



1
ROC 

R x

Convolution of Sequences

ROC contains

Initial-Value Theorem

x [0 ]  lim
z 

X ( z ) provided that x[n] is zero for n < 0, i.e. that x[n] is causal.
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Inverse z-Transform

M

N


k 1

1 d z
k

Method of inspection – recognize certain transform pairs.

Partial Fraction Expansion

M  1
 k  1  c z

k bk z b 
X ( z )  0

a 0

k 1

X ( z )  k  0

N

 a k z
 k

k 0

Factor to

1 

X ( z ) 
N


k  0

A
k where A  1  d z 1 X ( z )

1  d z
1 k k

z  d k

k
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4

1
2

1 1 z 11

4

1  4 2

4 2

Example: Second-Order Z-Transform

X ( z ) 
1

z 1  z 

A1
X ( z )  

1  1

A
2

z 1 1  12 z
1

1
A  

1
1 11  2 4 

1

A 

2

1

1 1 1

 1

 2

 1 2
X ( z )  

1  1 1  1z 1 z 1

1

2
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M  N

 B z  r

r

r  0

N Ak
s C m

k 1,k  i 1  d
k
z

Partial Fraction Expansion

If M > N
M  N

X ( z ) 
r

N Akz  rB  
r  0 k 1

1  d z
1

k

Br can be obtained by long division of numerator by denominator, stopping

when the remainder is of lower degree than the denominator.

If M > N and X(z) has multiple-order poles, specifically a pole of order s at z=di

X ( z )    
1

m 1
11 d z 

m

1 



s  md  s 1

C m 
( s  m )! (  d )

i

s m

 dw
sm i

i


1  d w X w

 w  d  1

i
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12

1
2 2

2

2

2

2
1 z 2



Example

X ( z )  1
1

2


11  2 z  z  2

z  1
z 

1  3
z 1  1 z  21 1 z 11 z 1

2 2 2

A
1

A
2

B 

0

z 2
  2

X ( z ) 

1 

A

z
0 1

B  
1  z 1

A



321 ( 1 ) 1 2

2X ( z )  B  1  2 A     9
0 1  z 1

1  z 1
1

1  1 1  1

X ( z )  2 
8 9

1
(1  1) 2

A   8
1  1 z 1  z 1

2 11  11

x [n ]  2 [ n ]  1 n
u [n ]  8u [n ]
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1
2 2

x [ n ]  2 [ n  2 ]  1  [ n  1]   [ n ]  1  [ n  1]
2 2

1
2

Power Series Expansion


X ( z )   x [n ] z  n

n  

Note that  [n  m ]Z z  m

Example :

X ( z )  z 2 1 z 1 1  z 2   z 2  1 z  1  z  1
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Example

X ( z )  log 1 az 1  z  a

Expand in power series:

 1
log 1  az

 (  1) n 1 a n z  n

 
n 1 n

( 1) n 1 a n

, 
n

n

1
x [ n ]  

 0 , n  0
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Contour Integration

Cauchy integral theorem

1

2 j
z  k dz

C

 1, k  1
 

0 . k  1

C is a counterclockwise contour that encircles the origin.

Then one can show that

x [ n ] 
1

2 j
X ( z ) z n 1dz

C

x[n ]   residues of X(z)z n 1 at the poles inside C




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Residue Calculation

0

0 0

If X(z) is a rational function of z, we can write

X z z n 1   ( z )

z  d s

s  1!

Then one can show that

Res X ( z ) z n 1 at z  d  1  d 
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Quick Review of LTI Systems
• LTI Systems are uniquely determinedby their impulse response

yn   xk  hn  k   xk  hk

• We can write the input-ouk tputrelation also in the z-domain

Y z  HzXz

• Or we can define an LTI system with its frequency response

Y e j  He j Xe j 

• H(ej) defines magnitude and phase change at each frequency

• We can define a magnitude response

Ye j   He j Xe j
• And a phase response

Y e j   He j   Xe j
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Phase Distortion and Delay
• Remember the ideal delay system

h i n  n  n d DTFT H i e j   e  jn d

• In terms of magnitude and phase response

H id e j   1

H id e j    n d   

• Delay distortion is generally acceptable form of distortion

– Translates into a simple delay in time

• Also called a linear phase response

– Generally used as target phase response in system design

• Ideal lowpass or highpass filters have zero phase response

– Not implementable in practice
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 k  

System Functions for Difference Equations
• Ideal systems are conceptually useful but not implementable

• Constant-coefficient difference equations are

– general to represent most useful systems

– Implementable

– LTI and causal with zero initial conditions

N M

 a k yn  b k xn  k 
k 0 k 0

• The z-transform is useful in analyzing difference equations

• Let’s take the z-transform of both sides

N


k  0

ka z Y z  
M

k

k

 N  k   


k  0

 M

b z X z 
k

 k   

 k  0   k  0

  ak z Y z    b kz X z


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k k

System Function
• Systems described as difference equations have system functions of the 

form


M
b

k z
 k

M

Y z

X z

1  c z 1 
k


Hz  k N0  

 b 

0

a


k 1 
N

 0 
k  0

a z
 k


k  1

1  d 1z 

• Example

Hz 



1



1  z 1 2

z 1 1 




3

4


1  2z 1

 1 z 1

4





z 2

3
z  2

8


Y z
X z 1

2

z 1 





1



1




1

4

1
z 

3

8
z

 2 Yz 



1 2z 1  z 2 Xz 

yn  1 y n  1  3 yn
4 8

 2  xn  2xn  1  xn  2
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Stability and Causality
• A system function does not uniquely specify a system

– Need to know the ROC

• Properties of system gives clues about the ROC

• Causal systems must be right sided

– ROC is outside the outermost pole

• Stable system requires absolute summable impulse response


 hn  

k  

– Absolute summability implies existence of DTFT

– DTFT exists if unit circle is in the ROC

– Therefore, stability implies that the ROC includes the unit circle

• Causal AND stable systems have all poles inside unit circle

– Causal hence the ROC is outside outermost pole

– Stable hence unit circle included in ROC

– This means outermost pole is inside unit circle

– Hence all poles are inside unit circle
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

1


Example
• Let’s consider the following LTI system

yn  5 yn
2

• System function can be written as

 1  yn  2   xn

Hz 
1

1

2

1


 z 1


2z 1 

• Three possibilities for ROC

– If causal ROC1but not stable

– If stable ROC2but not causal

– If not causal neither stable ROC3 ROC

ROC

1
ROC : z  2

1
:  z  2

2

: z 

2

1

2
3
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Structures for Discrete-Time Systems

• Block Diagram Representation of Linear Constant-Coefficient

Difference Equations

• Signal Flow Graph Representation of Linear Constant-Coefficient 
Difference Equations

• Basic Structures for IIR Systems

• Transposed Forms

• Basic Network Structures for FIR Systems

• Lattice Structures
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• Example: The system function of a discrete-time system is

H ( z ) 
b

0

 b z  1

1
, |z| > |a|

1  az 1

• Its impulse response will be

h[n] = b0anu[n] + b1an-1u[n-1]

• Its difference equation will be

y[n] –ay[n-1] = b0x[n] + b1x[n-1]

Since this system has an infinite-duration impulse response, it is not possible 

to implement the system by discrete convolution. However, it can be rewritten 

in a form that provides the basis for an algorithm for recursive computation.

y[n] = ay[n-1] + b0x[n] + b1x[n-1]

Introduction
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Block Diagram Representation of Linear Constant-coefficient

Difference Equations

z-1

x[n] a ax[n]

x[n] x[n-1]

Multiplication of a

sequence by a constant

Unit delay

Addition of two sequences

x1[n] + x1[n] + x2[n]

x2[n]
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Block Diagram Representation of Linear Constant-coefficient

Difference Equations

k

M

k  0



k
b z

 k

Y ( z )

X ( z )
H ( z )  

N

1  
k  1

1

a z  k






H 2 ( z ) H 1 ( z ) 

1


  M

H ( z ) 

V ( z ) 

Y ( z ) 

H ( z )  H

 1 



a

N


k 1

z  k

k

 k 


  bk z 
 k  0 





H 1 ( z ) X

H 2 ( z )V

( z )

( z ) 

2 M

1 2
( z ) H ( z )  


1 

k



 k  
b z 







 k  0 1 
a z  k

k

W ( z )  H 2 ( z ) X ( z )

Y ( z )  H 1 ( z )W ( z )







N


k 1
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Block diagram representation for a general Nth-order 

difference equation:

Direct Form 127

x[n] b0 v[n]+ + y[n]

z-1

x[n-1]

z-1

x[n-2]

z-1

x[n-M]

b1

bM-1 +

bM

+ + a1

+ aN-1

aN

z-1

y[n-1]

z-1

y[n-2]

z-1

y[n-N]
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Block diagram representation for a general Nth-order 

difference equation:

Direct Form 128

x[n] w[n] b0

+ + y[n]

z-1

a1

+ aN-1

z-1

w[n-2]

z-1

w[n-1] w[n-1]

z-1

w[n-2]

z-1

b1+ +

bM-1 +

aN w[n-N] w[n-M]
bM
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Combination of delay units (in case N = M)

x[n]
+

+ a1

+ aN-1

aN

w[n]

z-1

z-1

z-1

b0

+

b1 +

bN-1 +

bN

y[n]
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Block Diagram Representation of Linear Constant-

coefficient Difference Equations 2

• An implementation with the minimum number of delay elements is

commonly referred to as a canonic form implementation.

• The direct form I is a direct realization of the difference equation 

satisfied by the input x[n] and the output y[n], which in turn can be 

written directly from the system function by inspection.

• The direct form II or canonic direct form is an rearrangement of the 

direct form I in order to combine the delay units together.
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Signal Flow Graph Representation of Linear Constant-

coefficient Difference Equations

x[n] d e y[n]

a z-1

c

b

z-1

Delay Unit
z-1

a
Attenuator

Node:Adder, Separator, Source, or Sink
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Basic Structures for IIR Systems

• Direct Forms

• Cascade Form

• Parallel Form

• Feedback in IIR Systems
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Basic Structures for IIR Systems

• Direct Forms

a k

N

y [ n ]  
k  1

M


k  0

y [ n  k ]  bk x [ n  k ]

H ( z ) 

bk z
 k

M

k  0

N  k

1  
k  1

a z
k
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Direct Form I (M = N)
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Direct Form II (M = N)
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Direct Form II
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x[n]

x[n]

+

z-1

2 +
z-1

+

+

-0.125

z-1

+ 0.75

+

z-1

y[n]

y[n]

z-1

+ 0.75 2 +
z-1 1  2 z 1  z 2

-0.125 1  0 .75 z 1  0 .125 z  2

H ( z ) 
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x[n]

x[n]

y[n]

y[n]

0.75
z-1

2

z-1

-0.125

z-1 2 0.75
z-1

z-1 z-1

-0.125
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s
N


1 k

Basic Structures for IIR Systems 2

• Cascade Form

M 1

(1  g
M 2z 1 )

(1  h z 1 )( 1  h  z 1 ) k  k k

H ( z )  A k 1 k  1

(1  c N 2z 1 )N1

k 1

(1  d z 1 )( 1  d
k

 z  1 )
kk 

k 1

where M = M1+2M2 and N = N1+2N2 .

• A modular structure that is advantageous for many types of 
implementations is obtained by combining pairs of real factors and 
complex conjugate pairs into second-order factors.

z  1 b  b
b z

 2

H ( z ) 

k  1
1  a z 1  a z

0 k 1 k 2 k

 2

where Ns is the largest integer contained in (N+1)/2.

2 k
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x[n] y[n]

1  2 z  1  z  2 (1  z  1 )( 1  z  1 )
H ( z )  

1  0 .75 z 1  0 .125 z  2 (1  0 .5 z 1 )( 1  0 .25 z 1 )

x[n] y[n]

x[n] y[n]

z-1 z-1

0.5 0.25

w1[n] y1[n] 

b01

w2[n] y2[n] 

b02

w3[n] y3[n] 

b03

z-1 z-1 z-1

a11 b11 a12 b12 a13 b13

z-1 z-1 z-1

a b21 a b22 a b23

z-1
0.5 z-1 z-1 0.25

z-1
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k 1

Basic Structures for IIR Systems 3

• Parallel Form

N P N1 A B (1 e z 1 )

zk


k  k k

 1
(1 d z 1)(1  d z )

H ( z)  C

k0 k1

N 2


k1k k k

1  c z

where N = N1+2N2 . If M ณ N, then NP = M - N; otherwise, the first summation in 

right hand side of equation above is not included.

• Alternatively, the real poles of H(z) can be grouped in pairs :

H ( z )  
NP C

k  0

N S  ee z 1

0 k 1kz  k


k 

k 1 1  a1k z  a 2 k z

1  2

where NS is the largest integer contained in (N+1)/2, and if NP = M - N is 

negative, the first sum is not present.
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x[n]

a11

a21

a12

a22

a13

a23

C0

z-1

z-1

z-1

z-1

w1[n] b01

b11

w2[n] b02

b12
z-1

z-1

w3[n] b03

b13

y1[n]

y2[n]

y3[n]

y[n]

Parallel form structure for 

sixth order system (M=N=6).
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 1  2

H ( z )   8 
1   7  8 z  1

1  0 .75 z 1  0 .125 z 2 1  0 .75 z 1  0 .125

18 25
 8  

z  2

1  0 .5 z 1 1  0 .25 z 1

8

x[n] y[n]

-7 8

0.75
z-1

8 x[n] 18 y[n]

-0.125 z-1 0.5 z-1

-25

0.25 z-1
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Transposed Forms

• Transposition (or flow graph reversal) of a flow graph is accomplished by 

reversing the directions of all branches in the network while keeping the 

branch transmittances as they were and reversing the roles of the input and 

output so that source nodes become sink nodes and vice versa.

x[n] y[n] y[n] x[n]

x[n] y[n]

z-1 a

a
z-1

a z-1
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x[n] y[n]

x[n] y[n]

z-1

z-1

b0

b1

b2

a1

a2

z-1

z-1

z-1

bN-1

bN

aN-1

aN
z-1

z-1

z-1

a1

a2

b0

b1

b2

z-1

z-1

z-1

aN-1

aN

bN-1

bN
z-1
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x[n] y[n]

x[n] b0
y[n]

a1

a2

b0

1

z-1
b

z-1
b

2

aN-1 bN-1

aN

z-1
b

N

b1 1

b2

z-1
a

z-1
a

2

bN-1

bN

aN-1

z-1
a

N
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1k 2 k

Basic Network Structures for FIR Systems

• Direct Form

– It is also referred to as a tapped delay line structure or a transversal filter

structure.

• Transposed Form

• Cascade Form

H ( z ) 

M

 h[n ]z  n

M S

  0 k(b  b  bz 1 z  2 )

n  0 k 1

where MS is the largest integer contained in (M + 1)/2. If M is odd, one of 

coefficients b2k will be zero.
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Direct Form

• For causal FIR system, the system function has only zeros (except for

poles at z = 0) with the difference equation:

y[n] = SM b x[n-k]
k=0 k

• It can be interpreted as the discrete convolution of x[n] with the

impulse response

h[n] = bn

0

, n = 0, 1, …, M,

, otherwise.
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z-1
b1

z-1 b2

bN-1

z-1 bN

Direct Form (Tapped Delay Line or Transversal Filter)

x[n] b0
y[n]

x[n] z-1 z-1 z-1

h[0] h[1] h[2] h[M-1] h[M] y[n]
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Transposed Form of FIR Network

z-1 z-1 z-1 z-1 y[n]

x[n]

h[M] h[M-1] h[M-2] h[2] h[1] h[0]

148



Cascade Form Structure of a FIR System

x[n] b01 b02 b0Ms
y[n]

z-1 b11
z-1 b12

z-1 b1Ms

z-1 b21 z-1 b22 z-1 b2Ms
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• Structures for Linear Phase FIR Systems :

– h[M-n] = h[n] for n = 0, 1, ..., M

• For M is an even integer : Type I

y[n] = Sk=0
(M/2)-1 h[k](x[n-k] + x[n-M+k]) + h[M/2]x[n-M/2]

• For M is an odd integer : Type II

y[n] = Sk=0
(M-1)/2 h[k](x[n-k] + x[n-M+k])

– h[M-n] = -h[n] for n = 0, 1, ..., M

• For M is an even integer : Type III

y[n] = Sk=0
(M/2)-1 h[k](x[n-k] - x[n-M+k])

• For M is an odd integer : Type IV

y[n] = Sk=0
(M-1)/2 h[k](x[n-k] - x[n-M+k])

Structures for Linear-Phase FIR Systems
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Direct form structure for an FIR linear-phase when M is even.

x[n]

y[n]

z-1 z-1 z-1

z-1 z-1

h[0] h[1] h[2] h[(M/2)-1] h[M/2]

Direct form structure for an FIR linear-phase when M is odd.

x[n] z-1 z-1 z-1

z-1

z-1 z-1

y[n] h[0] h[1] h[2]

z-1

h[(M-3)/2] h[(M-1)/2]
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Lattice Structures

• Theory of autoregressive signal modeling :

– Lattice Structure

• Development of digital filter structures that are analogous to analog 

filter structures :

– Wave Digital Filters

• Another structure development approach is based on state-variable 

representations and linear transformations.
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Lattice Structures 2

• FIR Lattice

H ( z ) 
Y ( z )

X ( z )





N

 A( z )  1   am z

m 1

 m 




The coefficients {ki} in the lattice structures are referred 
to as the k-parameters, which are called reflection 
coefficients or PARCOR coefficients.
– When used in signal modeling, the k-parameters 

are estimated from a data signal .

– Given a set of k-parameters, the system function 
can be found and therefore the impulse response : 
by recurrence formula for computing A(z) in terms 
of the intermediate system functions
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Reflection coefficients or PARCOR coefficients structure

x[n] e0[n] e1[n] e2[n] eN-1[n] eN[n] y[n]

e~ [n]
1

e~ [n] e~ [n]
2 N-1 e~ [n]

Signal flow graph of an FIR lattice system

e0[n] = e~ [n] = x[n]
0

~ei~[n] = ei-1[n] – kie i-~1[n-1], i = 1, 2, …, N,
e [n] = -k e [n] + e [n-1]

i i i-1 i-1

y[n] = eN[n]

-kN

-kN

z-1

-k1

-k1

z-1

e~ [n]
0

-k2

-k2

z-1
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

m m i i-m

i

a

O

A recurrence formula for computing A(z) = H(z) = Y(z)/X(z) can be 

obtained in terms of intermediate system functions:

iE ( z )  
A ( z )  i  1   a m( i ) z  m 

E ( z )

m 1 

By recursive technique: 

a (i) = k ,
i i

a (i) = a (i-1) - k a (i-1) ,

m = 1, 2, ..., (i-1)

Or by reverse recursive technique: 

ki = a (i)

(i-1) = [a (i) + ka (i)]/[1 – k 2], m = 1, 2, …, (i – 1)
m m i i-m i

i
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1 2

= (1-0.8jz-1)(1+0.8jz-1)(1-0.9z-1) = 1 – 0.9z-1 + 0.64z-2 – 0.576z-3.

a (3) = 0.9, a (3) = -0.64, and a (3) = 0.576

Example:

A(z)

Then,

The k-parameter can be computed as follow:

k3 = a (3) = 0.576

a (2) = [a (3)(3) + k a

3

]/[1 – k 2] = 0.79518245
1 1 3 2 3

a (2) = [a (3) + k a (3)]/[1 – k 2] = - 0.18197491
2 2 3 1 3

2k2 = a (2) = - 0.18197491

a (1) = [a (2) + k a (2)]/[1 – k 2] = 0.67275747
1 1 2 1 2

(1)
k1 = a1 = 0.67275747
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-0.6728

-0.6728

z-1

+0.182

+0.182

z-1

-0.576

-0.576

z-1

x[n] y[n]

x[n]

y[n]

z–1 z–1 z-1

-0.9 0.64 -0.576
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All-Pole Lattice

eN[n] = x[n]

Ei-1[n] = ei[n] + kie~ [n-1], i = N, (N-1), …1,
i-1

~ z-1 z-1 

e~i i i-1
~

e [n] = -k e [n] + e~ [n-1]
i-1

[n]

ki

-ki

e~ [n]
iy[n] = e0[n] = e 0[n] i-1

x[n] e0[n] e2[n] eN-1[n] eN[n] y[n]

e~ [n]
N 160

• A lattice system with an all-pole system function H(z) = 1/A(z) can be 

developed from the FIR lattice .

– all roots of A(z) must be inside the unit circle: |ki| < 1, i = 1, ..., N

ei[n] ei-1[n]

kN

-kN

e1[n]

kN-2 

z--1kN-2

e~ [n]
N-1

z-1

k1

-k1

e~ [n]
1

z-1

e~ [n]




i

Basic all-pole lattice structures

• Three-multiplier form

• Four-multiplier, normalized form
N


i  1

c o s

H ( z ) 
A ( z )

• Four-multiplier, Kelly-Lochbaum form : was first derived as an acoustic tube 

model for speech synthesis.

N


i  1

(1  k i )

H ( z ) 
A ( z )
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ei[n] ei-1[n]

e’i[n] (1 - ki2) e’i-1[n]

ei[n] cos qi ei-1[n]

e’i[n] cos qi e’i-1[n]

Three-multiplier form

Four-multiplier, normalized 

form

ei[n] (1 + ki) ei-1[n]

e’i[n] (1 - ki) e’i-1[n]

Four-multiplier, Kelly-

Lochbaum form

-ki ki

-sin qi sin qi

-ki ki
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y[n]

Section

e’01[n]

Section 

N

Y ( z ) N  ic z A ( z  1 )


i  0

i i 
A ( z )

B ( z )

H ( z )  
A ( z )

B ( z )  b m

X ( z )

N


m  0

z
 m

m m
b  c 

N

 c

i  m  1

i

( i )

i  m
a

x[n] = eN[n] eN-1[n] eN-2[n] e1[n] e0[n]

Section

e’N[n] e’N-1[n] N - 1e’N-2[n] e’1[n]

cN cN-1 cN-2 c1 c0

Lattice Systems with Poles and Zeros
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y[n]

x[n] y[n]

x[n]

Example of lattice IIR filter with poles and zeros

0.576

-0.576

-0.182

0.182

0.6728

-0.6728

z-1
3.9 z-1 5.4612

z-1
4.5404

0.9
z-1

3

-0.64
z-1

3

0.576
z-1
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UNIT-2

DFS , DFT & FFT
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Fourier representation of signals
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Fourier representation of signals
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Fourier representation of signals
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Discrete complex exponentials
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X k e

Discrete Fourier Series
x [n]• Given a periodic sequence ~ with period N so that

~ ~
x [n]  x [n  rN ]

• The Fourier series~ repre1sentation can be written as

x [n]  
k

~  j2  / N kn

N

• The Fourier series representation of continuous-time 
periodic signals require infinite many complex exponentials

• Not that for discrete-time periodic signals we have
e j2  / N k  mN n  e j2  / N kn e j2 mn   e j2  / N kn

• Due to the periodicity of the complex exponential we only 
need N exponentials for discrete time Fourier series

~ 1

N

N 1 ~
 

j2  / N kn

x [n] 
 X k e
k  0
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~

Discrete Fourier Series Pair
• A periodic sequence in terms of Fourier series coefficients

~
N 1 ~

 
j2  / N kn

x [n] 
 X k e

1

N k  0

• The Fourier series coefficients can be obtained via

~  N 1 ~  j2  / N kn

X k   x [n]e
n  0

• For convenience we sometimes use

• Analysis equation W N

~ 

 e  j2  / N 

N 1 kn

• Synthesis equation
X k  

n  0

x [n]W N

~ 1

N

N 1 ~
 

 kn

x [n] 
 X k W N
k  0
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cFourier series for discrete-time periodi

signals
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Discrete-time Fourier series 

(DTFS)
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Fourier representation of aperiodic 

signals
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Discrete-time Fourier transform 

(DTFT)
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Discrete Fourier Transform
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Discrete Fourier Transform
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Discrete Fourier Transform
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Discrete Fourier Transform
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Discrete Fourier Transform
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Summary of properties
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DFT Pair & Properties

• The Discrete Fourier Transform pair
N 1

Xk    x[n]e

n  0

N 1

 X ke j 2 / N  kn

k  0

 j2  / N kn
x[ n ] 

1

N
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Circular convolution
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Modulo Indices and Periodic 

Repetition
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Overlap During Periodic 

Repetition

183



Periodic repetition: N=4
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Periodic repetition: N=4
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Modulo Indices and the Periodic 

Repetition
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Modulo Indices and the Periodic 

Repetition
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Modulo Indices and the Periodic 

Repetition
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Modulo Indices and the Periodic 

Repetition
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Circular convolution
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Circular convolution
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Circular convolution-another 

interpretation
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Using DFT for Linear 

Convolution

193



Using DFT for Linear Convolution
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Using DFT for Linear Convolution
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Using DFT for Linear 

Convolution
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Using DFT for Linear 

Convolution
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Using DFT for cicular 

Convolution
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Using DFT for cicular 

Convolution
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Using DFT for cicular 

Convolution
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Filtering of Long Data Sequences
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Filtering of Long Data Sequences
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Over-lap Add
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Over-lap Add
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Over-lap Add
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Over-lap Add
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Over-lap Add

207



Over-lap Add
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Over-lap Add
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Over-lap save
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Over-lap save
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Over-lap save
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Over-lap save input segment stage
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Over-lap save input segment stage
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Over-lap save input segment stage
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Over-lap save filtering stage
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Over-lap save output blocks
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Over-lap save output blocks
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Over-lap save output blocks
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Over-lap save
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Over-lap save
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Relationships between CTFT, 

DTFT, & DFT
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Relationships between CTFT, 

DTFT, & DFT
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Relationships between CTFT, DTFT, 

& DFT
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Fast Fourier Transform



Discrete Fourier Transform
• The DFT pair was given as

N1 1

N

N  1
 
j 2  / N kn

Xk    x[n]e
 j 2  / N kn x[n]  

k  0
X k e

n  0

• Baseline for computational complexity:

– Each DFT coefficient requires

• N complex multiplications

• N-1 complex additions

– All N DFT coefficients require

• N2 complex multiplications

• N(N-1) complex additions

• Complexity in terms of real operations
• 4N2 real multiplications

• 2N(N-1) real additions

• Most fast methods are based on symmetry properties

– Conjugate symmetry

– Periodicity in n and k

e  j2  / N k N  n   e  j2  / N kN e  j2  / N k n 
 e j2  / N kn

e  j2  / N kn  e  j2  / N k n  N   e j2  / N k  N n
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Direct computation of DFT
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Direct computation of DFT
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FFT
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2rk
N N

rk
N / 2

Decimation-In-Time FFT Algorithms
• Makes use of both symmetry and periodicity

• Consider special case of N an integer power of 2

• Separate x[n] into two sequence of length N/2

– Even indexed samples in the first sequence

– Odd indexed samples in the other sequence

Xk  
N 1

 x[n]e

n  0

 j2  / N kn

N  1

 x[n]e

n even


 j2  / N kn

N 1

 x[n]e

n odd


 j 2  / N kn

• Substitute variables n=2r for n even and n=2r+1 for odd
N / 2  1

Xk  
r  0

x[2r]W  1]W 2r 1 k

N / 2 1

  x[2r

r  0

N / 2 1N / 2  1

 
r  0

x[2r]W
N

r  0

N / 2
 W k  x[2r  1]W rk

 Gk   W kHk 
N

• G[k] and H[k] are the N/2-point DFT’s of each subsequence
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Decimation In Time

• 8-point DFT example using

decimation-in-time

• Two N/2-point DFTs

– 2(N/2)2 complex multiplications

– 2(N/2)2 complex additions

• Combining the DFT outputs

– N complex multiplications

– N complex additions

• Total complexity

– N2/2+N complex multiplications

– N2/2+N complex additions

– More efficient than direct DFT

• Repeat same process

– Divide N/2-point DFTs into

– Two N/4-point DFTs

– Combine outputs
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Decimation In Time Cont’d
• After two steps of decimation in time

• Repeat until we’re left with two-point DFT’s
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Decimation-In-Time FFT Algorithm

• Final flow graph for 8-point decimation in time

• Complexity:

– Nlog2N complex multiplications and additions
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Butterfly Computation

• Flow graph constitutes of butterflies

• We can implement each butterfly with one multiplication

• Final complexity for decimation-in-time FFT

– (N/2)log2N complex multiplications and additions
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In-Place Computation

• Decimation-in-time flow graphs require two sets of registers

– Input and output for each stage

• Note the arrangement of the input indices

– Bit reversed indexing

X 0 0  x0  X 0 000   x 000 

X 0 1  x4  X 0 001   x100 

X 0 2  x2  X 0 010   x 010 

X 0 3  x6  X 0 011   x110 

X 0 4  x1  X 0 100   x 001 

X 0 5  x5  X 0 101   x 101 

X 0 6  x3  X 0 110   x 011 

X 0 7  x7  X 0 111   x111 
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Decimation-In-Frequency FFT Algorithm

nk
N

N N N

n2r
N N N / 2

N / 2

• The DFT equation
N 1

Xk    x[n]W

n  0

• Split the DFT equation into even and odd frequency indexes
N 1 N / 2 1 N  1

X2r   n2 rx[n]W  x[n]W n2r 
n  0

 x[n]W n2 r

n  0

• Substitute variables to get

n N / 2

N / 2  1

 x[n]W

n  0

N / 2 1

  x[n

n  0

N / 2 1

 x[n] 

n  0

X2r   N / 2]W n  N / 2 2r
 x[n  N / 2]W nr

• Similarly for odd-numbered frequencies
N / 2  1

X2r  1   x[n]  x[n  N / 2]W n 2 r  1 

n  0
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Decimation-In-Frequency FFT Algorithm
• Final flow graph for 8-point decimation in frequency
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UNIT-3

IIR filters



x n  y n

D/CH(ej)C/D

He j   H j / T 
c

Filter Design Techniques
• Any discrete-time system that modifies certain frequencies

• Frequency-selective filters pass only certain frequencies

• Filter Design Steps

– Specification

• Problem or application specific

– Approximation of specification with a discrete-time system

• Our focus is to go from spec to discrete-time system

– Implementation

• Realization of discrete-time systems depends on target technology

• We already studied the use of discrete-time systems to implement a 
continuous-time system

– If our specifications are given in continuous time we can use

xc(t) yr(t)

  
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Digital Filter Specifications

• Only the magnitude approximation problem

• Four basic types of ideal filters with magnitude responses 

as shown below (Piecewise flat)
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Digital Filter Specifications

• These filters are unealisable because (one of the 

following is sufficient)

– their impulse responses infinitely long non-

causal

– Their amplitude responses cannot be equal to a 

constant over a band of frequencies

Another perspective that provides some 

understanding can be obtained by looking at the 

ideal amplitude squared.
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Digital Filter Specifications

• The realisable squared amplitude response transfer 

function (and its differential) is continuous in

• Such functions 

– if IIR can be infinite at point but around that 

point cannot be zero.

– if FIR cannot be infinite anywhere.

• Hence previous differential of ideal response is 

unrealisable
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Digital Filter Specifications

• For example the magnitude response of a digital 

lowpass filter may be given as indicated below
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p
• In the passband 0     we require

G (e j )  1that with a deviation  p

p
1    G (e j )  1   p ,    p

   • In the stopband  s we reqs uire

G (e j )  0that with a deviation

G ( e j )   s ,  s    

Digital Filter Specifications
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p

Filter specification parameters

• - passband edge frequency

•  s - stopband edge frequency

•  p - peak ripple value in the passband

•  s - peak ripple value in the stopband

Digital Filter Specifications
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• Practical specifications are often given in 

terms of loss function (in dB)

• G ( )   20 log 10 G ( e j )

• Peak passband ripple

 p   20 log 10 (1   p ) dB

• Minimum stopband attenuation

 s   20 log 10 ( s ) dB

Digital Filter Specifications
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p

 2 F T
s

p

• In practice, passband edge frequency F and

stopband edge frequency arFes specified in 

Hz

• For digital filter design, normalized bandedge 

frequencies need to be computed from

specifications in Hz using  2 F

p
  

FT

p

FT

p
 2 F T

2 Fs

 s 

 s

FT FT 250

Digital Filter Specifications



p s

T

 7• Example - Let F kHz, F  3

F  25 kHzkHz, and

• Then


2 ( 7  10 3 )

p  3  0 .56 

25  10

32 (3  10 )
s  3  0 .24 

25  10

Digital Filter Specifications
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IIR Digital Filter Design

Standard approach

(1)Convert the digital filter specifications into 
an analogue prototype lowpass filter 
specifications

(2)Determine the analogue lowpass filter

transfer function H a ( s )

(3)Transform H a ( s ) by replacing the complex 
variable to the digital transfer function

G ( z )
250



IIR Digital Filter Design

• This approach has been widely used for the 
following reasons:

(1) Analogue approximation techniques are 
highly advanced

(2) They usually yield closed-form 
solutions

(3) Extensive tables are available for 
analogue filter design

(4) Very often applications require digital 
simulation of analogue systems
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D a ( s )

• Let an analogue transfer function be

H ( s ) 
a

Pa ( s )

where the subscript “a” indicates the 

analogue domain

• A digital transfer function derived from this 

is denoted as

G ( z ) 
P ( z )

D ( z )

IIR Digital Filter Design

252



IIR Digital Filter Design

• Basic idea behind the conversion of H ( s ) intoG ( z )
a

is to apply a mapping from the s-domain to the z-

domain so that essential properties of the analogue 

frequency response are preserved

• Thus mapping function should be such that

– Imaginary (j  ) axis in the s-plane be 

mapped onto the unit circle of the z-plane

– A stable analogue transfer function be mapped 

into a stable digital transfer function
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Specification for effective frequency response of a continuous-time lowpass

filter and its corresponding specifications for discrete-time system.

dp or d1 passband ripple

ds or d2 stopband ripple

Wp, wp passband edge frequency

Ws, ws stopband edge frequency

e2 passband ripple parameter

1 – dp = 1/1 + e2

BW bandwidth = wu – wl 

wc 3-dB cutoff frequency

wu, wl upper and lower 3-dB cutoff

frequensies

Dw transition band = |wp – ws| 

Ap passband ripple in dB

=  20log10(1  dp) 

As stopband attenuation in dB

= -20log10(ds)
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Design of Discrete-Time IIR Filters

• From Analog (Continuous-Time) Filters

– Approximation of Derivatives

– Impulse Invariance

– the Bilinear Transformation
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Reasons of Design of Discrete-Time IIR Filters from 

Continuous-Time Filters

• The art of continuous-time IIR filter design is highly advanced and,

since useful results can be achieved, it is advantageous to use the

design procedures already developed for continuous-time filters.

• Many useful continuous-time IIR design methods have relatively

simple closed-form design formulas. Therefore, discrete-time IIR

filter design methods based on such standard continuous-time design

formulas are rather simple to carry out.

• The standard approximation methods that work well for continuous-

time IIR filters do not lead to simple closed-form design formulas

when these methods are applied directly to the discrete-time IIR case.
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Characteristics of Commonly Used Analog Filters

• Butterworth Filter

• Chebyshev Filter

– Chebyshev Type I

– Chebyshev Type II of Inverse Chebyshev Filter
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Butterworth Filter

• Lowpass Butterworth filters are all-pole filters characterized by the magnitude-squared 
frequency response

|H(W)|2 = 1/[1 + (W/Wc)2N] = 1/[1 + e2(W/Wp)2N]

where N is the order of the filter, Wc is its – 3-dB frequency (cutoff frequency), Wp is 
the bandpass edge frequency, and 1/(1 + e2) is the band-edge value of |H(W)|2.

• At W = Ws (where Ws is the stopband edge frequency) we have 

1/[1 + e2(Ws/Wp)2N] = d22

and

N = (1/2)log10[(1/d22) – 1]/log10(Ws/Wc) = log10(d/e)/log10(Ws/Wp) 

where d2= 1/1 + d22.

• Thus the Butterworth filter is completely characterized by the parameters N, d2, e, and 
the ratio Ws/Wp.
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2

H j 
c

c

Butterworth Lowpass Filters
• Passband is designed to be maximally flat

• The magnitude-squared function is of the form


1

1  j / j 2N
H s

2


1  s / j

1

c
2N

sk
  1 1 / 2N j    e  j / 2N 2k  N 1 

c c
for k  0,1,...,2N - 1

c
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Frequency response of lowpass Butterworth filters
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Chebyshev Filters

• The magnitude squared response of the analog lowpass Type I Chebyshev 
filter of Nth order is given by:

|H(W)|2 = 1/[1 + e2T 2(W/W )].N

where TN(W) is the Chebyshev polynomial of order N:

TN(W) = cos(Ncos-1 W), |W|  1,

= cosh(Ncosh-1 W), |W| > 1.

The polynomial can be derived via a recurrence relation given by

Tr(W) = 2WTr-1(W) – Tr-2(W), r  2,

with T0(W) = 1 and T1(W) = W.

• The magnitude squared response of the analog lowpass Type II or inverse

Chebyshev filter of Nth order is given by:

|H(W)|2 = 1/[1 + e2{TN(Ws/Wp)/ TN(Ws/W)}2].
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c

N c

N

Chebyshev Filters

• Equiripple in the passband and monotonic in the stopband

• Or equiripple in the stopband and monotonic in the passband
2 1

H j 
1   2 V 2  /  

V x   cos N cos 1 x 
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N

Frequency response of

lowpass Type I Chebyshev filter

|H(W)|2 = 1/[1 + e2T 2(W/W )]

Frequency response of

lowpass Type II Chebyshev filter

|H(W)|2 = 1/[1 + e2{T 2(W /W )/T 2(W /W)}]
N s p N s
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N = log10[( 1 - d 2 +  1 – d 2(1 + e2))/ed ]/log
2 2 2 10

[(W /W ) +  (W /W )2 – 1 ]
s p s p

= [cosh-1(d/e)]/[cosh-1(Ws/Wp)]

for both Type I and II Chebyshev filters, and where 

d2 = 1/  1 + d2.

• The poles of a Type I Chebyshev filter lie on an ellipse in the s-plane with major 

axis r1 = Wp{(b2 + 1)/2b] and minor axis r1 = Wp{(b2 - 1)/2b] where b is related to 

e according to

b = {[ 1 + e2 + 1]/e}1/N

• The zeros of a Type II Chebyshev filter are located on the imaginary axis.
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Type I: pole positions are

xk = r2cosfk 

yk = r1sinfk

fk = [p/2] + [(2k + 1)p/2N] 
r1 = Wp[b2 + 1]/2b

r2 = Wp[b2 – 1]/2b

b = {[ 1 + e2 + 1]/e}1/N

Type II: zero positions are 

sk = jWs/sinfk

and pole positions are

vk = Wsxk/ x 2 + y 2

k k

wk = Wsyk/ x 2 + y 2

k k

2
b = {[1 +  1 – d 2 ]/d }1/N

Determination of the pole locations

for a Chebyshev filter.
k = 0, 1, …, N-1.
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Approximation of Derivative Method

• Approximation of derivative method is the simplest one for converting an 
analog filter into a digital filter by approximating the differential equation by 
an equivalent difference equation.

– For the derivative dy(t)/dt at time t = nT, we substitute the backward difference 
[y(nT) – y(nT – T)]/T. Thus

t  nT

 T )

 
T

where T represents the sampling period. Then, s = (1 – z-1)/T

– The second derivative d2y(t)/dt2 is derived into second difference as follow:



t  nT
T 2

y [n ]  2 y [n  1]  y[n  2 ]

which s2 = [(1 – z-1)/T]2. So, for the kth derivative of y(t), sk = [(1 – z-1)/T]k.

dy ( t ) y ( nT )  y ( nT y [n ]  y[n  1]

dt T

dy ( t )

dt
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Approximation of Derivative Method

• Hence, the system function for the digital IIR filter obtained as a result of the

approximation of the derivatives by finite difference is

H(z) = Ha(s)|s=(z-1)/Tz

• It is clear that points in the LHP of the s-plane are mapped into the 

corresponding points inside the unit circle in the z-plane and points in the 

RHP of the s-plane are mapped into points outside this circle.

– Consequently, a stable analog filter is transformed into a stable digital filter due 

to this mapping property.

jW
Unit circle

s

s-plane

z-plane
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Example: Approximation of derivative method

Convert the analog bandpass filter with system function

Ha(s) = 1/[(s + 0.1)2 + 9]

Into a digital IIR filter by use of the backward difference for the derivative.

Substitute for s = (1 – z-1)/T into Ha(s) yields

H(z) = 1/[((1 – z-1)/T) + 0.1)2 + 9]

H ( z ) 

T 2

1 0 .2 T  9 .01 T 2

1

1  2 (1 0 .1T ) z  1 z  2

1 0 .2 T  9 .01 T 2 1 0 .2 T  9 .01 T 2

T can be selected to satisfied specification of designed filter. For example, if T = 0.1,

the poles are located at

p1,2 = 0.91  j0.27 = 0.949exp[ j16.5o]
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• If the continuous-time filter is bandlimited to

H cj   0

c 

Filter Design by Impulse Invariance
• Remember impulse invariance

– Mapping a continuous-time impulse response to discrete-time

– Mappinga continuous-time frequency response to discrete-time

hn  T h nT 
d c d

  2 

c

k  
Td Td

 

He j    H  j  j k 

 

j
  

   / Td

He   H  j




T

d 

  

• If we start from discrete-time specifications Td cancels out

– Start with discrete-time spec in terms of 

– Go to continuous-time= /T and design continuous-time filter

– Use impulse invariance to map it back to discrete-time = T

• Works best for bandlimited filters due to possible aliasing
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Impulse Invariance of System Functions
• Develop impulse invariance relation between system functions

• Partial fraction expansion of transfer function
A k

 N

h t   
c k 1

H s   
N

c

k 1

• Corresponding impulse response

s  s
k



 A e s k t

0

t  0

t  0

• Impulse response of discrete-time filter

 T dh c

 

h n

• System function

N
s nTk d  

N
s k T d n

 

u n


eu n  Td A k 

k 1

 

nT d   Td A k e
k 1

N 

H z  
k 1

T Ad k

1  e s k T d z  1

• Pole s=sk in s-domain transform into pole at e s k T d

k
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• Step 1: define specifications of filter

– Ripple in frequency bands

– Critical frequencies: passband edge, stopband edge, and/or cutoff frequencies.

– Filter band type: lowpass, highpass, bandpass, bandstop.

• Step 2: linear transform critical frequencies as follow

W = w/Td

• Step 3: select filter structure type and its order: Bessel, Butterworth, Chebyshev

type I, Chebyshev type II or inverse Chebyshev, elliptic.

• Step 4: convert Ha(s) to H(z) using linear transform in step 2.

• Step 5: verify the result. If it does not meet requirement, return to step 3.

Impulse Invariant Algorithm
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Example: Impulse invariant method

Convert the analog filter with system function

Ha(s) = [s + 0.1]/[(s + 0.1)2 + 9]

into a digital IIR filter by means of the impulse invariance method.

The analog filter has a zero at s = - 0.1 and a pair of complex conjugate poles at pk = - 0.1  j3.
Thus,

H s  
a

1 1

2  2

s  0 .1  j 3 s  0 .1  j 3

Then H z  


1

2

1  e  0 .1T e j 3T z 1

1

2

1  e  0 .1T e  j 3T z 1
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Frequency response

of digital filter.

Frequency response

of analog filter.
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Disadvantage of previous 

techniques: frequency 

warping aliasing effect 

and error in specifications

of designed filter (frequencies) 

So, prewarping of frequency 

is considered.




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2

H j 

Example
• Impulse invariance applied to Butterworth

0 .89125  He j   1 0    0 .2 

0 .3     He j   0.17783

• Since sampling rate Td cancels out we can assume Td=1

• Map spec to continuous time

0 .89125  Hj   1

H j   0.17783

0    0 .2 

0 .3     

• Butterworth filter is monotonic so spec will be satisfied if

H c j0 .2    0 .89125 and H c j0 .3    0.17783


1

c 1  j / j
c 2 N

• Determine N and c to satisfy these conditions
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Example Cont’d
• Satisfy both constrains

 2





1       and 1     


 









 0 .3   2N  1

 c  0 .89125   c  0 .17783

• Solve these equations to get

 0 .2   2N  1  2

ks   1

N  5 .8858  6 and  c  0 .70474

• N must be an integer so we round it up to meet the spec
• Poles of transfer function

•
1 / 12 j    e  j / 12 2k 11 

c c
for k  0,1,...,11

The transfer function
Hs   0 .12093

s  0 .4945 s2  1 .3585 s  0 .4945 s2  0 .364 s  0 .4945 s2  0.9945

• Mapping to z-domain

Hz  0 .2871  0 .4466  2 .1428  1 .1455z 1 z 1



1  1 .2971 z 1 z 2 1  1 .0691  0 .3699z 1 z 2

1 .8557  0 .6303

 0 .6949

z 1



z 11  0 .9972  0 .257 z 2
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Example Cont’d
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 



Filter Design by Bilinear Transformation
• Get around the aliasing problem of impulse invariance

• Map the entire s-plane onto the unit-circle in the z-plane

– Nonlinear transformation
– Frequency response subject to warping

• Bilinear transformation
2

s   

• Transformed system function

Hz   H

T
d

1 


 1  z  1 

 1 

 2  1  z 1 

d 

• Again Td cancels out so we can ignore it

• We can solve the transformation for z as

 z

c   
1 



1  T / 2 s
d

1  T d / 2 s

1  T / 2  j T / 2
 d d

1   T d / 2  j T d / 2

z  s    j

• Maps the left-half s-plane into the inside of the unit-circle in z

– Stable in one domain would stay in the other

 T 1

z
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

Bilinear Transformation
• On the unit circle the transform becomes

z 
1  j T d / 2

1  j T d / 2

• To derive the relation between  and 

 e j

2  1  e  j
 2 2e  j / 2 j sin  / 2  2 j   

tan   s     j    j / 2  

T
d 

 j 
1  e d T 2e cos  / 2  dT 2 

• Which yields

 
2   

tan  

 2 

or   2 arctan
  Td 






Td 2
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Bilinear Transformation
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c

H j 
2

c

Example
• Bilinear transform applied to Butterworth

0 .89125  He j   1  0 .2 

  He j   0.17783

0  

0 .3  

• Apply bilinear transformation to specifications

 1 0 

2


2  0 .2  

 tan  

T d  2 

 0 .3  

 0.17783 tan      

T d  2 

0 .89125  Hj 

Hj 

• We can assume Td=1 and apply the specifications to

• To get


1

1   /  2N

 2 tan
 2

2 N 2 tan 0 .15 
1     

0 .1 

2N  1

and 1   



 0 .89125  

  


 c 

 0 .17783 

 1  2

 c 
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log  

  1
2


   0 .89125

1
2

 
  1  




  0 .17783

  

 1 
   




2 log tan 0.15   tan 0.1 

sk

• Example Cont’d
Solve N and c

  0 .766
N   5 .305  6 c

• The resulting transfer function has the following poles
  11 / 12 j    e  j / 12 2k 11 

c c
for k  0,1,...,11

• Resulting in

c
H s 

0 .20238

s2 s  0 .5871 s2  1 .0836 0.3996 s  0 .5871 s2  1 .4802 s  0 .5871 

• Applying the bilinear transform yields
0 .0007378 1  z 1 6

Hz  
1 1 .2686


1  0 .9044

z 1

1

z 1
 0 .2155 z 2 

 0 .7051 z21  1 .0106 z 1  0 .3583 z 2 
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Example Cont’d
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• To obtain G(z) replace s by f(z) in H(s)

• Start with requirements on G(z)

G(z) Available H(s)

Stable Stable

Real and Rational in z Real and Rational

in s

Order n Order n

L.P. (lowpass) cutoff
c

L.P. cutoff  T
c

IIR Digital Filter: The bilinear 

transformation
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• Mapping of s-plane into the z-plane

Bilinear Transformation
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Bilinear Transformation

• For z  e j with unity scalar we have

j  1  e  j

1  e
 j

 j tan(  / 2 )

or   tan(  / 2 )
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Bilinear Transformation

• Mapping is highly nonlinear

• Complete negative imaginary axis in the s-

plane from    to   0 is mapped into 

the lower half of the unit circle in the z-plane 

from z   1 to z  1

• Complete positive imaginary axis in the s-

plane from  to 0   is mapped into the

upper half of the unit circle in the z-plane 

from z  1 toz   1
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Bilinear Transformation
• Nonlinear mapping introduces a distortion 

in the frequency axis called frequency 

warping

• Effect of warping shown below
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z

Spectral Transformations

•To transform G L ( z ) a given lowpass transfer

1

function to another transfer function G D ( zˆ) 

that may be a lowpass, highpass, bandpass or 
bandstop filter (solutions given by 
Constantinides)

• has been used to denote the unit delay in
1

the prototype lowpass filter G L ( z ) and zˆ

to denote the unit delay in the transformed 
filter G D ( zˆ) to avoid confusion
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Spectral Transformations

• Unit circles in z- and zˆ -planes defined by

z  e j , zˆ  e jˆ

• Transformation from z-domain to

zˆ-domain given by

• Then
z  F ( zˆ)

G D ( zˆ)  G L { F ( zˆ)}
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Spectral Transformations

F ( zˆ)• From z  F ( zˆ) , thusz  , hence

F ( zˆ)  1,


 1,

 1, if z  1


if z  1

if z  1

• Therefore1 / F ( zˆ) must be a stable allpass function

L1 1   * zˆ

    𝑙 ,

𝑙 1 F ( zˆ) zˆ  𝑙 
𝑙  1
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L
•To transform a lowpass filterG ( z ) with a cutoff

frequency  c to another lowpass filter G D ( zˆ)

with a cutoff frequency ˆc, the transformation is

z 1 
1

 1   zˆ

F ( zˆ) zˆ  

• On the unit circle we havjê

e  j  e  
1   e  jˆ

which yields
 1   

tan(  / 2 ) 
 

tan( ˆ / 2 )

 1   

Lowpass-to-Lowpass 

Spectral Transformation
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Lowpass-to-Lowpass 

Spectral Transformation
• Solving we get sin (  ˆ ) / 2 

  c c

sin ( c  ˆc ) / 2 

• Example - Consider the lowpass digital filter

G L ( z ) 
0 .0662 (1  z 1 ) 3

1 1  2

(1  0 .2593 z )(1  0 .6763 z  0 .3917 z )

which has a passband from dc to 0 .25 

a 0.5 dB ripple

• Redesign the above filter to move the 

passband edge to
0 .35 

with
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Lowpass-to-Lowpass 

Spectral Transformation
• Here

   sin( 0 .05  )
  0 .1934

sin( 0 .3 )

•
Hence, the desired lowpass transfer function is

zˆ) G D ( G L ( z ) z 1 
zˆ

1 0 .1934

1 0 .1934 zˆ1

0

-10

-20

-30

-40
0 0.2 0.4 0.6 0.8 1

G (z)
L

G (z)
D

G
ai

n
,

d
B



Lowpass-to-Lowpass 

Spectral Transformation
296



Lowpass-to-Lowpass 

Spectral Transformation

• The lowpass-to-lowpass transformation

z 1 
1

 1   zˆ

F ( zˆ) zˆ  

can also be used as highpass-to-highpass, 

bandpass-to-bandpass and bandstop-to-

bandstop transformations
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Lowpass-to-Highpass 

Spectral Transformation

zˆ  

• Desired transformation

1

z 1  

1   zˆ1

• The transformation parameter  is given by

  
cos ( c  ˆc ) / 2 

cos ( c  ˆc ) / 2 

where  c is the cutoff frequency of the lowpass
ˆcfilter and is the cutoff frequency of the desired

highpass filter
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Lowpass-to-Highpass 

Spectral Transformation

• Example - Transform the lowpass filter

G L ( z ) 
0 .0662 (1  z 1 ) 3

1 1  2

(1  0 .2593 z )(1  0 .6763 z  0 .3917 z )

• with a passband edge at 0 .25  to a highpass 

filter with a passband edge at 0 .55 

• Here    cos( 0 .4 ) / cos( 0 .15  )   0 .3468

• The desired transformation is

z 1  
zˆ1

 0 .3468

1  0 .3468 zˆ1
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Lowpass-to-Highpass 

Spectral Transformation

z 1  

• The desired highpass filter is

G D ( zˆ)  G ( z ) zˆ
1  0 .3468

1 0 .3468 zˆ1











     
Normalized frequency

G
ai

n
,d

B
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Lowpass-to-Highpass 

Spectral Transformation

• The lowpass-to-highpass transformation can 

also be used to transform a highpass filter with

 c to a lowpass filter with a cutoffa cutoff at 

at ˆc

• and transform a bandpass filter with a center

frequency at  o to a bandstop filter with a

center frequency at ˆo
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• Desired transformation

ˆz
 2

zˆ
1


2   1

z 1  
  1

ˆz
 2

  1   1 
2

 zˆ1  1

  1   1

Lowpass-to-Bandpass 

Spectral Transformation

302



Lowpass-to-Bandpass 

Spectral Transformation

• The parameters  and  are given by

 
cos (ˆ c 2  ˆc1 ) / 2 

cos (ˆ c 2  ˆc1 ) / 2 

  cot (ˆ c 2  ˆc1 ) / 2  tan(  c / 2 )

where  c is the cutoff frequency of the lowpass

filter, and ˆc 1 and ˆc 2 are the desired upper and 

lower cutoff frequencies of the bandpass filter
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Lowpass-to-Bandpass 

Spectral Transformation

ˆ

• Special Case - The transformation can be

simplified if  c  ˆc 2  ˆc1

• Then the transformation reduces to
 z1  

z 1   zˆ1
1

1   z
ˆ

where   cos ˆo with ˆo denoting the 
desired center frequency of the bandpass filter
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Lowpass-to-Bandstop 

Spectral Transformation

• Desired transformation

z  2 
2

ˆ ˆz
1 

1  

z 1


1   1  

1    2 2
zˆ 

1   1  

zˆ1  1
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Lowpass-to-Bandstop 

Spectral Transformation

•The parameters  and  are given by

 
cos (ˆ c 2  ˆc1 ) / 2 

cos (ˆ c 2  ˆc1 ) / 2 

  tan (ˆ c 2  ˆc1 ) / 2  tan(  c / 2 )

where  c is the cutoff frequency of the 
lowpass filter, and ˆc 1 and ˆc 2 are the desired 
upper and lower cutoff frequencies of the 
bandstop filter
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UNIT-4

FIR Filters



Selection of Filter Type

• The transfer function H(z) meeting the

specifications must be a causal transfer

function

• For IIR real digital filter the transfer

function is a real rational function of z 1

H ( z )  2
  p

M

• H(z) must be stable and of lowest order N or

M for reduced computational complexity 308

p  p z 1  p
0 1

z 2 z  M

d  d z 1  d   d
0 1 2 N

z 2 z  N



Selection of Filter Type

• FIR real digital filter transfer function is a
polynomial in
coefficients

z 1 (order N) with real
N

H ( z )   h[ n ] z  n 

n  0

• For reduced computational complexity, degree N

of H(z) must be as small as possible

• If a linear phase is desired then we must have:

h [ n ]   h[ N  n ]
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Selection of Filter Type

• Advantages in using an FIR filter -

(1) Can be designed with exact linear phase

(2) Filter structure always stable with quantised 

coefficients

• Disadvantages in using an FIR filter - Order of an 

FIR filter is considerably higher than that of an 

equivalent IIR filter meeting the same 

specifications; this leads to higher computational 

complexity for FIR
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FIR Filter Design
Digital filters with finite-duration impulse response (all-zero, or FIR filters) 

have both advantages and disadvantages compared to infinite-duration 

impulse response (IIR) filters.

FIR filters have the following primary advantages:

•They can have exactly linear phase.

•They are always stable.

•The design methods are generally linear.

•They can be realized efficiently in hardware.

•The filter startup transients have finite duration.

The primary disadvantage of FIR filters is that they often require a much 

higher filter order than IIR filters to achieve a given level of performance. 

Correspondingly, the delay of these filters is often much greater than for an 

equal performance IIR filter.



FIR Design

FIR Digital Filter Design

Three commonly used approaches to FIR 

filter design -

(1) Windowed Fourier series approach

(2) Frequency sampling approach

(3) Computer-based optimization methods
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• The transfer function is given by

N 1
 n

H ( z )  h ( n ). z
n  0

• The length of Impulse Response is N

• All poles are at z  0.

• Zeros can be placed anywhere on the z-

plane

Finite Impulse Response Filters
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For phase linearity the FIR transfer 

function must have zeros outside the

unit circle

FIR: Linear phase
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Linear Phase

• What is linear phase?

• Ans: The phase is a straight line in the passband of 

the system.

• Example: linear phase (all pass system)

• I Group delay is given by the negative of the slope 

of the line
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Linear phase

• linear phase (low pass system)

• Linear characteristics only need to pertain to 

the passband frequencies only.
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FIR: Linear phase

• so that for N even:
N

 1

N

2

 

1

n  0

N 1
2



• For Linear Phase t.f. (order N-1)

•

2



h ( n )   h ( N  1  n )

H ( z ) 

n  0

 nh ( n ). z 

N 1


n  N

h ( n ). z

2

 n


n  0

 nh ( n ). z 

n  0

h ( N  1  n ). z  ( N 1  n )

h ( n )z  n  z  m  m  N  1  n
317
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FIR: Linear phase

• for N odd:

N21
1  N  1   N 1 

2
 

H ( z )  
n 0

h (n ).z  n  z  m  h

 2

 z


+ve sign

• I) On C : z  1 we have for N even, and


N 2

1
2 h (n ). cos  T n N  1  

 

 

 

j T
H (e )  e 2

 j T N 1 

  . 
n  0

 

 
318
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 

• II) While for –ve sign
j T

H ( e )  e 2
 j T

 N  1  N

j 2 h ( n ). sin






 T






n  N  1  
  .

2 1


n  0

 

 2

• [Note: antisymmetric case adds  / 2 rads to 
phase, with discontinuity at  0 ]

• III) For N odd with +ve sign
 j T  N  1  N  1

H ( e j T
)  e

 2   h  

 

 



2

N  3

2

 
n  0

 1    

 T  n 

N

2 h ( n ). co s   

2   

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FIR: Linear phase



• IV) While with a –ve sign

 j T  N
j T

H ( e )   2

1   N 23

j .h ( n ). sin N  1   
e 2   

 


n  0

 

 T  n 

  2   


• [Notice that for the antisymmetric case to have 

linear phase we require


h 


N  1 



 0 .
2

The phase discontinuity is as for N even]
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FIR: Linear phase

• The cases most commonly used in filter 

design are (I) and (III), for which the 

amplitude characteristic can be written as a 

polynomial in

 T
cos

2
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Summary of Properties
K

H    e j 0 e  jN / 2 F   a

k  0

cos k 
k

Type I II III IV

Order N even odd even odd

Symmetry symmetric symmetric anti-symmetric anti-symmetric

Period 2 4 2 4

0 0 0 /2 /2

F() 1 cos(/2) sin() sin(/2)

K N/2 (N-1)/2 (N-2)/2 (N-1)/2

H(0) arbitrary arbitrary 0 0

H() arbitrary 0 0 arbitrary



(i) Start with ideal infinite duration h ( n )

(ii) Truncate to finite length. (This produces 

unwanted ripples increasing in height near 

discontinuity.)

(iii) Modify to
~
h (n )  h ( n ). w ( n )

Weight w(n) is the window

Design of FIR filters: Windows
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 d

• Simplest way of designing FIR filters
• Method is all discrete-time no continuous-time involved
• Start with ideal frequency response



   j n 

 

h d n

1
 j n j 

H d e

j 

 H
d

e e d h n e
n  


2  

• Choose ideal frequency response as desired response

• Most ideal impulse responses are of infinite length

• The easiest way to obtain a causal FIR filter from ideal is

h n 0  n  M

d

0

hn  



• More generally
else

hn  h nwn
d

where
0  n  M


wn  1

0 else

Design of FIR filters: Windows
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Properties of Windows
• Prefer windows that concentrate around DC in frequency

– Less smearing, closer approximation

• Prefer window that has minimal span in time

– Less coefficient in designed filter, computationally efficient

• So we want concentration in time and in frequency

– Contradictory requirements

• Example: Rectangular window
M  j n 1  e  j M  1   jM / 2 sin M  1 / 2  j 

W e   e
n  0

  e

1  e  j
sin  / 2 
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Windowing distortion

• increasing window length generally reduces the 

width of the main lobe

• peak of sidelobes is generally independent of M
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Commonly used windows

Windows

•

•
•
•

Rectangular

Bartlett

Hanning 
Hamming

1
1  2 n n  N  1

N  2  n 
2

1  c o s  

 N  2 n 

•
0 .54  0 .46 cos  

 N 

•

•

•

Blackman

Kaiser

 2  n 
0 .42  0 .5 cos    0 .08 cos

 N 

 2 
 2 n 

J 0   1     J 0
(  )


 N  1 



 4  n


 N





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1

Rectangular Window
• Narrowest main lob

– 4/(M+1)

– Sharpest transitions at 

discontinuities in frequency

• Large side lobs

– -13 dB

– Large oscillation around 

discontinuities

• Simplest window possible

wn  
0

0  n  M

else
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Bartlett (Triangular) Window
• Medium main lob

– 8/M

• Side lobs

– -25 dB

• Hamming window 

performs better

• Simple equation

 2n / M

wn  
2  2n / M

0

0  n  M / 2 

M / 2  n  M

else




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Hanning Window
• Medium main lob

– 8/M

• Side lobs

– -31 dB

• Hamming window performs

better

wn 

• Same complexity as 

Hamming

1 
 1  cos 

 2 n  
0  n  M

 M 2 

 0 else
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Hamming Window
•

331

Medium main lob

– 8/M

• Good side lobs

– -41 dB

• Simpler than Blackman



0

wn  
0 .54







 0 .46 cos
 2 n 



0  n  M
M

 


else



Blackman Window
• Large main lob

– 12/M

• Very good side lobs

– -57 dB

• Complex equation

 


0 .42

 2 n   4 n 

w n  



 M

 0 .5 cos    0 .08



cos 

0





M
0  n  M

else
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Kaiser Window Filter Design Method
• Parameterized equation 

forming a set of windows

– Parameter to change main-lob 

width and side-lob area trade-off

 
2 

 n  M / 2 

wn 
   

0  M / 2 
   0  n  M






I  
0

0

 I  1

else

– I0(.) represents zeroth-order 

modified Bessel function of 1st 

kind
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Comparison of windows
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• Kaiser window

β Transition 
width (Hz)

Min. stop 
attn dB

2.12 1.5/N 30

4.54 2.9/N 50

6.76 4.3/N 70

8.96 5.7/N 90

Kaiser window
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0 0.2 0.4 0.6 0.8 1 336

• Lowpass filter of length 51 and

Lowpass Filter Designed Using Hann window

 c   / 2

Lowpass Filter Designed Using Hamming window

0 0

-50 -50

-100 -100

0.6 0.8 1 0 0.2 0.40 0.2 0.4

/

0.6 0.8 1
/

Lowpass Filter Designed Using Blackman window 

0

-50

-100

Example

/



H ( k )• In this approach we are given and

need to find H ( z )

• This is an interpolation problem and the 

solution is given in the DFT part of the 

course
1 N 1


k  0

1  z  N

2
H ( z ) 

N
H ( k ).

1  e
j k

N . z 1

• It has similar problems to the windowing 

approach 337

Frequency Sampling Method



14 .6(   ) / 2
s p

Kaiser’s Formula:

N  1

• ie N is inversely proportional to transition 

band width and not on transition band 

location

FIR Digital Filter Order Estimation

 20 log
10 p s

(   )  13
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UNIT-5

Multirate signal processing & 

Finite Word length Effects

339



Single vs Multirate Processing

340



Basic Multirate operations: Decimation 

and Interpolation

341



M-fold Decimator
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Sampling Rate Reduction by an Integer Factor: 

Downsampling

• We reduce the sampling rate of a sequence by “sampling” it
x n  xnM   x nMT 

d c

• This is accomplished with a sampling rate compressor

• We obtain xd[n] that is identical to what we would get by
reconstructing the signal and resampling it with T’=MT

• There will be no aliasing if

 



T ' MT
  N
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Frequency Domain Representation of Downsampling

1
• Recall the DTFT of x[n]=xc(nT)

   2 k  

 j   X e j    X

T k  
c   T T  

• The DTFT of the downsampled signal can similarly written as

X e j  

d

1   
2r   1    2 r  

 X c  j      X c  j
T ' r      T ' T ' MT r    MT MT

  

 

• Let’s represent the summation index as

where -   k   and 0  i  M

2  i   1
M 1  1 

r  i  kM

X e j   
d

• And finally

   2 k

  X  j     

M i 0 
T r  

c

MT   MT T  

1
M 1 

j   2 i 


 j X  e  M M  
M i0





X e   
d 


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Frequency Domain Representation of Downsampling
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Aliasing
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Frequency Domain Representation of Downsampling w/ Prefilter
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Decimation filter
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L-fold Interpolator
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• We increase the sampling rate of a sequence interpolating it
x n  xn / L   x nT / L 

i c

• This is accomplished with a sampling rate expander

Increasing the Sampling Rate by an Integer Factor: 

Upsampling

• We obtain xi[n] that is identical to what we would get by
reconstructing the signal and resampling it with T’=T/L

• Upsampling consists of two steps
– Expanding

 
xn / L  n  0,∓L,∓2L,...     

x e n  



– Interpolating

0 else
  x k  n  kL

k  
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Frequency Domain Representation of Expander

• The DTFT of xe[n]canbe written as

 jn 

   jLk j 
X e e


 X e

jL   

    x k  n  kL e
n    k   

  x k e

k  

• The output of the expander is frequency-scaled
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Input-output relation on the Spectrum
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Periodicity and spectrum images
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Frequency Domain Representation of Interpolator

• The DTFT of the desired interpolated signals is

• The extrapolator output is given as

• To get interpolated signal we apply the following LPF
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Interpolation filters
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Fractional sampling rate convertor
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Fractional sampling rate convertor
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• Combine decimation and interpolation for non-integer factors
Interpolator Decimator

Changing the Sampling Rate by Non-Integer Factor

T T/L T/L T/L TM/L

• The two low-pass filters can be combined into a single one

T T/L T/L TM/L 358

x[n] xe[n] xi[n] xo[n] xd[n]
M

Lowpass filter 

Gain = 1 

Cutoff = p/M

L

Lowpass filter 

Gain = L 

Cutoff = p/L

x[n] xe[n] xo[n] xd[n]
ML

Lowpass filter 

Gain = L 

Cutoff = 

min(p/L, p/M)



i
h 0  1

h in  0

Time Domain

• xi[n] in a low-pass filtered version of x[n]

• The low-pass filter impulse response is

h n 
i

sin n / L 

n / L

• Hence the interpolated signal is written as
     sin n  kL  / L 

x i n   x k
k  

• Note that
n  kL  / L

n  ∓L,∓2L,...

• Therefore the filter output can be written as
x n  xn / L   x nT / L   x nT '

i c c

for n  0, ∓L, ∓2L,...
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Sampling of bandpass signals
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Sampling of bandpass signals
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Over sampling -ADC
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364



365



Sub band coding
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Sub band coding
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Digital filter banks

368



Finite Word length Effects

UNIT 5

369



• Finite register lengths and A/D converters 

cause errors in:-

(i) Input quantisation.

(ii) Coefficient (or multiplier) 

quantisation

(iii) Products of multiplication truncated 

or rounded due to machine length

Finite Wordlength Effects
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Finite Wordlength Effects

eo ( k )

• Quantisation
Output

Q

e i ( k )

Input

Q Q

  ei ,o ( k ) 
2 2
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Finite Wordlength Effects


Q

2  E {e 2 }
Q

2 p (e ). de

• Noise power 2
 

Q 2

 e 2

Q 2or
2 

Q
2


12

• The pdf for e using rounding
1

Q
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• Let input signal be sinusoidal of unity 

amplitude. Then total signal power P 
1

2

• If b bits used for binary then Q  2 2 b

so that  2  2  2 b
3

• Hence

or SNR

P  2 

 1 .8  6 b

3
.2  2 b

2

dB

Finite Wordlength Effects
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• Consider a simple example of finite 

precision on the coefficients a,b of second

order system with poles  e  j

H ( z ) 

H ( z ) 

1

11  az  bz  2

1

1  2  cos  .z 1   2 .z  2

• where a  2  cos  b   2

Finite Wordlength Effects
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•

Finite Wordlength Effects

bit pattern 2  cos  ,  2 

000 0 0

001 0.125 0.354

010 0.25 0.5

011 0.375 0.611

100 0.5 0.707

101 0.625 0.791

110 0.75 0.866

111 0.875 0.935

1.0 1.0 1.0
375



• Finite wordlength computations

+

INPUT

+

OUTPU 

T

+

Finite Wordlength Effects
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z 2 )
• Observe that for H ( z )  1

1 2(1  b z 1  b

• instability occurs when

• i.e. poles are

b2  1

• (i) either on unit circle when complex

• (ii) or one real pole is outside unit 
circle.

• Instability under the "effective pole" model 
is considered as follows

Limit-cycles; "Effective Pole"

Model; Deadband
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Finite Wordlength Effects

• In the time domain with

•
H ( z )  Y ( z )

X ( z )

y ( n )  x ( n )  b1 y ( n  1)  b 2 y ( n  2 )

• With b2  1 for instability we have

Qb2 y(n  2)

• Where Q 

indistinguishable from y (n  2)

is quantisation
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Finite Wordlength Effects

• With rounding, therefore we have

b2 y ( n  2 )  0 .5 y ( n  2 )

are indistinguishable (for integers)

or

• Hence
b 2 y ( n  2 )  0 .5  y ( n  2 )

 0 .5
y ( n  2 ) 

1  b2

• With both positive and negative numbers

y ( n  2 ) 
 0 .5

1  b2
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Finite Wordlength Effects

• The range of integers  0 .5

1  b 2

constitutes a set of integers that cannot be 
individually distinguished as separate or from the 
asymptotic system behaviour.

• The band of integers

1  b 2 1  b 2

 0 .5 0 .5 

  ,  



is known as the "deadband".

• In the second order system, under rounding, the 
output assumes a cyclic set of values of the 
deadband. This is a limit-cycle.
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Finite Wordlength Effects

• if poles are complex then impulse response 

is given by h
k

2

 b 2 z )

• Consider the transfer function

G ( z ) 
1

1

(1  b1 z

y k  x k  b1 y k 1  b 2 y k  2

hk 
 k

sin 
.sin ( k  1) 
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Finite Wordlength Effects

b1

2




• Where   b
  cos 1  








2 b2 2

b  1• If then the response is sinusiodal

1

with frequency
 

1
cos 1   b


T  2 

• Thus product quantisation causes instability 

implying an "effective “ b 2  1 .

382



Finite Wordlength Effects

• Notice that with infinite precision the 

response converges to the origin

• With finite precision the reponse does not 

converge to the origin but assumes 

cyclically a set of values –the Limit Cycle
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Finite Wordlength Effects

2

12
  

• Assume e1 ( k ) ,e2 ( k ) ….. are not 

correlated, random processes etc.


0 i e

2 2

k  0
i h 2 ( k ) 2

 e 
Q

Hence total output noise power

2 2 2

 2 b

2 

      2 .  

k  0

2 k
.
sin 2 (k  1) 

0 01 02
12 sin 2 

k sin (k  1) 

• Where Q  2  b and

h1 ( k )  h2 ( k )   .
sin 

; k  0
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Finite Wordlength Effects

• ie


2  2  2 b 1   2 . 1 

0  2

6 1  



1   4  2  2 cos 2 
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Finite Wordlength Effects

• For FFT A(n)

B(n)

B(n+1)

B(n+1)

A ( n  1)  A ( n )  W ( n ). B ( n )

B ( n  1)  A ( n )  W ( n ). B ( n )

A(n)

B(n)

A(n+1)

B(n)W(n)
B(n+1)

-

W(n)
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Finite Wordlength Effects

A ( n  1)
2
 2 A ( n )

A ( n )  2 A ( n )

• FFT

A ( n  1)
2
 B ( n  1)

2
 2

2

• AVERAGE GROWTH: 1/2 BIT/PASS
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Finite Wordlength Effects

• FFT
IMAG 1.0

-1.0 1.0
REAL

-1.0

A x ( n  1) 

A x ( n  1) 

A x ( n ) ( n )  B y ( n ) S ( n )

 B y ( n ) S ( n )A x ( n )

 B x ( n ) C

 B x ( n ) C ( n )

A x ( n )
 1 . 0  C ( n )  S ( n )  2 . 414 ....

• PEAK GROWTH: 1.21.. BITS/PASS

A x ( n  1) 
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Finite Wordlength Effects

• Linear modelling of product quantisation

x(n)

• Modelled as

x(n)

q(n)

~x ( n )

~x ( n )  x ( n )  q ( n )+

Q 
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Finite Wordlength Effects

• For rounding operations q(n) is uniform

Q
 2 , 2

Qdistributed between and where Q is
the quantisation step (i.e. in a wordlength of 

bits with sign magnitude representation or 

mod 2, Q  2 )b.

• A discrete-time system with quantisation at 

the output of each multiplier may be 

considered as a multi-input linear system
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Finite Wordlength Effects

h(n)

q1 ( n )... q 2 ( n )... q p ( n )

x ( n )

• Then

y (n )




r  0

x ( r ). h ( n  r ) 


p




 q
  1

r )


y ( n ) 


r  0

( r ). h ( n 


• where h ( n ) is the impulse response of the

the output of the multipliersystem from 

to y(n).
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Finite Wordlength Effects

p 

y ( n )   qˆ .

• For zero input i.e. x ( n )  0 ,  n we can write

h ( n  r )
 1 r  0

• where qˆ is the maximum of q ( r ) ,   , r

which is not more than Q

2
Q

 .


p 

r )


• ie y (n ) 
2 

 1


n  0 
h ( n 


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• However

• And hence




n 0



 h ( n )h ( n ) 
n 0

y (n ) 
pQ 

.  h ( n )
2 n 0

• ie we can estimate the maximum swing at

the output from the system parameters and

quantisation level

Finite Wordlength Effects
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Finite Precision Numerical 

Effects

394



Quantization in Implementing Systems
• Consider the following system

• A more realistic model would be

• In order to analyze it we would prefer
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Effects of Coefficient Quantization in IIR Systems

• When the parameters of a rational system are quantized

– The poles and zeros of the system function move

• If the system structure of the system is sensitive to 

perturbation of coefficients

– The resulting system may no longer be stable

– The resulting system may no longer meet the original specs

• We need to do a detailed sensitivity analysis

– Quantize the coefficients and analyze frequency response

– Compare frequency response to original response

• We would like to have a general sense of the effect of

quantization
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1   a kz

k 1

 k

Effects on Roots
M M

Quantiza b k z  k

k  0 N

k z k b̂

k  0 N

1   â kz k

k 1

Hz  Ĥz 

tion

• Each root is affected by quantization errors in ALL coefficient

• Tightly clustered roots can be significantly effected

– Narrow-bandwidth lowpass or bandpass filters can be very 

sensitive to quantization noise

• The larger the number of roots in a cluster the more sensitive it 

becomes

• This is the reason why second order cascade structures are less 

sensitive to quantization error than higher order system

– Each second order system is independent from each other
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Poles of Quantized Second-Order Sections

• Consider a 2nd order system with complex-conjugate pole pair

• The pole locations after quantization will be on the grid point

 3-bits

7-bits 
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Coupled-Form Implementation of Complex-Conjugate Pair

• Equivalent implementation of the 

second order system

• But the quantization grid this time is
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Effects of Coefficient Quantization in FIR Systems

• No poles to worry about only zeros

• Direct form is commonly used for FIR systems
M

Hz    hnz n

n  0

• Suppose the coefficients are quantized
M

Ĥz   ĥ nzn  Hz   Hz 

M

 hnz n

n  0

Hz  

n  0

• Quantized system is linearly related to the quantization error

• Again quantization noise is higher for clustered zeros

• However, most FIR filters have spread zeros
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Round-Off Noise in Digital Filters

• Difference equations 

implemented with finite-

precision arithmetic are 

non-linear systems

• Second order direct form I 

system

• Model with quantization

effect

• Density function error 

terms for rounding
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 2
 M  1  N 

N

fn   a k fn
k 1

 k   en

H ef z  1 / A z 

Analysis of Quantization Error

• Combine all error terms to single location to get

• The variance of e[n] in the general case is
e

2 2B

• The contribution of e[n] to the output is

• The variance of the output error term f[n] is

12

 2

f

 M  1  N  2
2B

12




n  

h n2

ef

en  e n  e n
0 1

 e n  e n  e n
2 3 4
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






Round-Off Noise in a First-Order System

• Suppose we want to implement the following stable system

b

Hz  
1  az 1

a  1

• The quantization error noise variance is
2B  2 2B 



2B 

 2 2  2

f

 M  1  N  2
a 2n

1

ef

12

 h n  2 2

n  
12 n 0

12  2

• Noise variance increases as |a| gets closer to the unit circle

• As |a| gets closer to 1 we have to use more bits to compensate for the 

increasing error

 1  a
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Zero-Input Limit Cycles in Fixed-Point Realization of IIR Filters

• For stable IIR systems the output will decay to zero when the input

becomes zero

• A finite-precision implementation, however, may continue to oscillate 

indefinitely

• Nonlinear behaviour very difficult to analyze so we sill study by example

• Example: Limit Cycle Behavior in First-Order Systems

yn  ay n  1  xn a  1

• Assume x[n] and y[n-1]

are implemented by 4 bit register
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Example Cont’d

yn  ay n  1  xn

• Assume that a=1/2=0.100b and the input is

a  1

xn 
7 n 
8

0.111 b n

• If we calculate the output for values of n

• A finite input caused an oscillation with period 1

n y[n] Q(y[n])

0 7/8=0.111b 7/8=0.111b

1 7/16=0.011100b 1/2=0.100b

2 1/4=0.010000b 1/4=0.010b

3 1/8=0.001000b 1/8=0.001b

4 1/16=0.00010b 1/8=0.001b
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Example: Limit Cycles due to Overflow

• Consider a second-order system realized by

ŷ n  xn  Q a ŷ n  1  Q a ŷ n
1 2

– Where Q() represents two’s complement rounding

– Word length is chosen to be 4 bits

• Assume a1=3/4=0.110b and a2=-3/4=1.010b

• Also assume

 2

and ŷ  2   3 / 4  1 .010 bŷ  1  3 / 4  0 .110 b

• The output at sample n=0 is

ŷ 0  0 .110 b  0.110b  1 .010 b  1.010b

 0.100100b

• After rounding up we get

ŷ 0  0.101b

 0.100100b

 0.101b  1.010b  -3/4

• Binary carry overflows into the sign bit changing the sign

• When repeated for n=1

ŷ 0  1.010b  1.010b  0 .110  3 / 4
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Avoiding Limit Cycles

• Desirable to get zero output for zero input:Avoid limit-cycles

• Generally adding more bits would avoid overflow

• Using double-length accumulators at addition points would 

decrease likelihood of limit cycles

• Trade-off between limit-cycle avoidance and complexity

• FIR systems cannot support zero-input limit cycles
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