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Humans are the most advanced signal processors

— speech and pattern recognition, speech synthesis,...

We encounter many types of signals in various
applications

— Electrical signals: voltage, current, magnetic and electric fields,...
— Mechanical signals: velocity, force, displacement,...

— Acoustic signals: sound, vibration,...

—  Other signals: pressure, temperature,...

Most real-world signals are analog

— They are continuous in time and amplitude
— Convert to voltage or currents using sensors and transducers

Analog circuits process these signals using

— Resistors, Capacitors, Inductors, Amplifiers,...

Analog signal processing examples

— Audio processing in FM radios
— Video processing in traditional TV sets
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Limitations of Analog Signal Processin
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« Accuracy limitations due to

— Component tolerances
— Undesired nonlinearities

« Limited repeatability due to

— Tolerances
— Changes in environmental conditions

» Temperature
» Vibration

 Sensitivity to electrical noise

« Limited dynamic range for voltage and currents
« Inflexibility to changes

« Difficulty of implementing certain operations

— Nonlinear operations
—  Time-varying operations

 Difficulty of storing information



Digital Signal Processing

. NREM
» Represent signals by a sequence of numbers NARSINA RESY

— Sampling or analog-to-digital conversions e
« Perform processing on these numbers with a digital processor

— Digital signal processing
» Reconstructanalog signal from processed numbers

— Reconstruction or digital-to-analog conversion

digital d.igital
analog signal s signal analog
signal T A/D DSP ] D/A signal

e Analog input — analog output
— recording of music
e Analog input - digital output
— Touch tone phone dialing
e Digital input — analog output
- Text to speech
e Digital input - digital output
— Compression of a file on computer
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Pros and Cons of Digital Signal Processing
* Pros

— Accuracy can be controlled by choosing word length

— Repeatable

— Sensitivity to electrical noise is minimal

— Dynamic range can be controlled using floating point numbers
— Flexibility can be achieved with software implementations

— Non-linear and time-varying operations are easier to implement
— Digital storage is cheap

— Digital information can be encrypted for security

— Price/performance and reduced time-to-market

e Cons

— Sampling causes loss of information

— A/D and D/A requires mixed-signal hardware
— Limited speed of processors

— Quantization and round-off errors



Analog, digital, mixed signal
Pro cessl ng prme

Analog Interface Digital
Systems Systems Systems

N\~ ADC —) 0/0

Continuous-
j Time Signals
and Systems

Discrete-Time
Signals and
Systems

. - DAC - -
» Analytical techniques * Numerical techniques
» Analog electronics * Digital electronics




Digital Signal Processing

NARSIMHA REDDY

Analog Band-limited Digital Processed Output AnaloRNETNG COLIKD
input signal signal digital signal signal output
N Analog N N DS N 3 Reconstruction .
filter ADS processor DAC filter
[ [
i H i H i
i v i v i
v Analog to Digital |, Digital to Analog v
“Toavoid Converter : Converter Tosavoid
aliasing for [ aliasing for
sampling i sampling
Computer /
microprocessor / micro
controller/ etc.
Practical approximation of ideal A/D converter
X.{#) |Antialiasing .\',,(r)i Sample A/D xylnl
— filter S l?cl)lld —| converter ;
H(£Y) L | E=1T E=1T | |
Discrete-time
Practical approximation of ideal D/A converter e
Reconstruction Sample D/A
G filter - ggld - converter [«
yr) | H(Q) |yult)| E=1/T G=1/T yin]



Sampling and reconstruction <

@ The main function of the low-pass antialiasing filter is to e
band-limit the input signal to the folding frequency without
distortion.

e It should be noted that even if the signal is band-limited, there is
always wide- band additive noise which will be folded back to
create aliasing.

e When an analog voltage is connected directly to an ADC, the
conversion process can be adversely affected if the voltage is
changing during the conversion time.

@ The quality of the conversion process can be improved by using a
sample-and- hold (S/H) circuit.

Input signal Output signal
Xt )\ <
H = Hold
0 R
X o o— AN

l xoul(t)
S = Sample C

(a)

S HS H S HS H S H t
(b)



le and hold (S/H)circuit .
Sample and hold (S/H)circult <&
e Since the sampling operation is performed by the S/H circuit, the
role of S/H is to sample z.(¢) as instantaneously as possible and
to hold the sample value as constant as possible until the next
sample.
e Thus, the output of the S/H circuit can be modelled as a
staircase waveform where each sample value is held constant until

the acquisition of the next sample.

T
e

- S/H Input S/H Output

N W

e Note that the S/H system is linear but time-varying. 9
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]

Digital Signal x4(n]
\ x[n] = x(nT)
\\' A .ﬂ-_’-‘-f.‘ .
? - Continnous- Time Signal
x(7)
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e (Quantization converts a continuous-amplitude signal z(t) into a

discrete-amplitude signal z;[n].
e In theory, we are dealing with discrete-time signals; in practice,
10

we are dealing with digital signals.



@ The major difference between ideal and practical conversion is
that an ADC generates sample values that are known with finite
precision.

@ The ADC is the device in which both quantization and binary

A/D converter

coding of the sampled signal take place.

e A B-bit quantizer can represent 27 different numbers.

e If the input amplitude range is divided into K quantization
intervals of equal width A (quantization step) and the output
levels are uniformly spaced, the resulting quantizer is called

uniform.

|

Continuous input
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Quantized

output \ X=LQ(x)
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Quantization noise

@ The two major types of error introduced by an ADC are aliasing
error and quantization error.

@ Since quantization is a nonlinear operation, analysis of quanti-

zation error 1s done using statistical techniques.

e If there is a large number of small quantization mtervals, the
signal z.(t) can be assumed to be approximately linear between
quantization levels. In this case:

A

ec(t)éwq(t)-xc(t):_ta —T <t T
2T

@ Then the mean squared quantization error power is
A2

S 5
Pp=— c(t)|“dt = —
Q 27,_.,|6()| 5
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D/A convertion .
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@ A band-limited signal can be reconstructed from a sequence of
samples using the ideal DAC described by

T (t) = Z z[n]gpr(t —nT) = Z z[n|sinc(t/T — n)
n T

@ A system that implements the above formula, for an arbitrary
function g, (t), 1s known as a practical digital-to-analog converter
(DAC).

@ The function g,(t) is also known as the characteristic pulse of a
DAC. At each sample time ¢t = nT', the converter generates a
pulse g,.(t —nT") scaled by z[n].

e In particular, the switch-and-hold DAC performs the following
operation

sar(t) = Z xqn] gsu(t — nT)

n

where

_ 1, ST S i
gsu(t)=< _~ T . +— Gsu()Q2) = Qbm(QT/Q)eﬂQT/z
0, otherwise Q 13
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@ The S/H circuit cannot completely eliminate the spectral replicas
mtroduced by the sampling process.
@ Moreover, 1t imtroduces amplitude distortion in the Nyqust band

|Fs| < Fs/2.

T Tdea! bandlimited
T~ inwrpolator
\ i > G (152)
Sumple and hold) N
g \
— \' \\ —
\'\ / | \\-1/
_an o 0 n 2n 0
r T 1 T
- LGl 122)
\ - = T
2 0 T~ N
= \\~ ! Sl 25
-1t \

@ To compensate for the effects of the S/H circuit, we can use an
analog post-filter H,-(5€2) so that Gy (1Q2) H,-(5€2) = Gpr(152):

sin§(2§:’7:42/2)6JQT/2’ |Q| < '/T/T

: 14
0. otherwise

H,()2) = {
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Reconstruction

@ A general formula that describes a broad class of reconstruction
processes 1s given by

z.(t) = Z z[n|g,(t — nT)

where g, (%) 1s an interpolating reconstruction function.
@ The process of fitting a continuous function to a set of samples 1s

known as an interpolation.

x[nlg:(t—nT)  x[n]
x (1)

(n—-1T nT (n+DT

@ Thus, if the interpolation function has duration greater than or
15

equal to T, the addition of the overlapping copies “fills the gaps”

between samples.



Reconstruction 4

@ In the Fourier domain, the imterpolation formula becomes

X, =Y 2nG () = G, () Y a[n]e T

X (e7927)
e Consequently, we obtain
X, (39) = Gr(462) X (e2°7) J
e Specifically, if we choose g,.(t) so that
G.(10) =G ) =
(2€2) BL(382) {0' Q> QS/Q

then X,.(yQ2) = X.(y2) and, therefore, z,.(t) = z.(t).

16



Reconstruction -

e Evaluating the inverse Fourier transform of G gy, (j§2), we obtan

gr(t) 2 g1 () = 2T = sine(t/T)

@ In this case we obtain:

The ideal interpolation formula

sm [7(t — nT)/T)|
Z“’ 7(t —nT)/T

e The system used to implement the ideal interpolation is known as

an ideal DAC.

Ideal
x[n]——»| DAC |+——» x(1)
e =1/T

17



Reconstruction e
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@ To understand the meaning and implications of the i1deal e
mterpolation we look more closely at the sinc function ggyr,(t).

IA Enift)
o

G (j€2) & 2 Ve i
/ I o / S t

25 4 N £ o N
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@ We note that gpr(t) =0 at all t = nT', except at t = 0 where
gpr(t) = 1. Thus, it is always true that z,.(nT) = z.(nT)
regardless of whether aliasing occurred during sampling.

x{0jg 1) 1

MU oye 1)
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Signals

Continuous-time signals are functions of a real argument
X(t) where t can take any real value
X(t) may be 0O for a given range of values of t

Discrete-time signals are functions of an argument that
takes values from a discrete set

X[n] wheren € {...-3,-2,-1,0,1,2,3...}

Integer index n instead of time t for discrete-time systems
X may be an array of values (multi channel signal)
Values for x may be real or complex

NNNNNNNNNNNN
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Continuous-time signals are defined over a
continuum of times and thus are represented by a
continuous independent variable.

Discrete-time signals are defined at discrete times
and thus the independent variable has discrete
values.

Analog signals are those for which both time and
amplitude are continuous.

Digital signals are those for which both time and
amplitude are discrete.

NNNNNNNNNNNN
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Analog vs. Digital

The amplitude of an analog signal can take any real or complex value at each
time/sample

NN
\/ N_/

« The amplitude of a digital signal takes values from a
discrete set

NNNNNNNNNNNN
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Periodic (Uniform) Sampling

Sampling is a continuous to discrete-time conversion

-~y
s oS e
-7 N S
- >, /
‘ > 7’
s“T“, I
d »
| »

-3-2-1012 34

Most common sampling is periodic
x[n]:xc(nT) — 0 <N < ®

T is the sampling period in second

fs = 1/T is the sampling frequency in Hz

Sampling frequency in radian-per-second Qs=2nfsrad/sec
Use [.] for discrete-time and (.) for continuous time signals
This is the ideal case not the practical but close enough

— In practice it is implement with an analog-to-digital converters
— We get digital signals that are quantized in amplitude and time

o
S
NRCM
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Periodic Sampling

Sampling is, in general, not reversible

N,/
3‘\:0'4

Y
NRGM
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Given a sampled signal one could fit infinite continuous signals

through the samples

NN/

\

0 20 40 60 80

Fundamental issue in digital signal processing
- If we loose information during sampling we cannot recover it

100

Under certain conditions an analog signal can be sampled without

loss so that it can be reconstructed perfectly

23



Representation of Sampling

« Mathematically convenient to represent in two stages

— Impulse train modulator

— Conversion of impulse train to a sequence

Xc(t) .

s(t)

A

Convert impulse

»| train to discrete-

time sequence

il
. LIl

3T-2T-T0 T

2T3TAT

> X[n]=Xc(NT)

NNNNNNNNNNNN
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Unit Sample Sequence
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The unit sample sequence plays the same role for discrete-time sequences and
systems that the unit impulse (Dirac delta function) does for continuous-time
signals and systems.

25



Impulse Function 3
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The impulse function, also known as Dirac’s delta function, is used to
represented quantities that are highly localized in space. Examples include
point optical sources and electrical charges.

The impulse function can be visualized as a narrow spike having infinite
height and zero width, such that its area is equal to unity.

26
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Definition of Impulse Function
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The impulse function may be defined from its basic properties.

o( X —Xo0) =0, X # Xo

X

J’Z f(X)8( X — X)X

X1

f(Xg), X; < Xg < X,

Where f(x) is any complex-valued function of x. If f(X) is discontinuous at the
point Xo, the value of f(xo) is taken as the average of the limiting values as x
approaches xo from above and below.

This property is called the sifting property.

27



Graphical Representation

On graphs we will represent 3(x-Xo) as a spike of unit
height located at the point Xo.

d( X — Xo)

AAAAAAAAAAAA
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Sampling Operation

The delta function samples the function f(x).

f(xo) t

F(x)8(x = X,)

The function f(x) d(x-xo) is graphed as a spike of height f(xo) located at the point xo.

AAAAAAAAAAAA
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Unit Step Sequence
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0 n
u[n]=0[n]+d[n-1]+d[n - 2]+
ulnl= > &[n — k] .
o Conversely, the impulse sequence can be expressed
as the first backward difference of the unit step
sequence:

or  u[nl= Y5 [K]

dO[n]=u[n]—u[n -1]
30



Exponential Sequence

X[n] =Aan

|IIITTTTT---

0 n

If we want an exponential sequence that is
zero for n <0, we can write this as:

Xx[n]=Aa "u[n]

NNNNNNNNNNNN
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Geometric Series 2

NARSIMHA REDDY
NGINEERING COLLEG!

A one-sided exponential sequence of the form

o, for n >0 and a an arbitrary constant

Is called a geometric series. The series converges for [a| <1, and its sum converges
to

1

Zoc“—>
n=0

1-a

The sum of a finite number N of terms is

N
:E:(x n_s l1-a
n=0

A general form can also be written:

N N2+l
a" (0 -
i —>
n=N,

1-o 33




Sinusoidal Sequence &
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X[n]= Acos(® n + ¢)

33



Sequence as a sum of scaled, delayed
Impulses

p[n]=a_;0[n +3]+ a,d[n-1-a,do[n —-2]-a,d4[n — 7]

AAAAAAAAAAAA
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Sequence Operations el
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The product and sum of two sequences are defined as the sample-by-
sample product and sum, respectively.

Multiplication of a sequence by a number is defined as multiplication
of each sample value by this number.
A sequence y[n] is said to be a delayed or shifted version of a sequence
x[n] if
yIn] =x[n—ng]

where nq IS an integer.
Combination of Basic Sequences
Ex1 X[n] =Kan n>0,

=0, n <0,

or X[n] =Ka "uln].

35



Systems
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Systems A
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X[n] e

A discrete-time system is a transformation that maps an
Input sequence x[n] into an output sequence y[n].

System Characteristics

1. Linear vs. non-linear
2. Causal vs. non-causal

3. Time invariant

37
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System Characteristics

—  T{*}

x[n] y[n] "

Linear vs. non-linear

Time invariant vs. time variant
Causal vs. non-causal

Stable vs. unstable
Memoryless vs. state-sensitive

Invertible vs. non-invertible

NNNNNNNNNNNN
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Discrete-Time Systems

Discrete-Time Sequence is a mathematical operation that maps a given
Input sequence X[n] into an output sequence y[n]

y[n] = T{x[n]}

X[n]—

T{.}

— y[n]

Example Discrete-Time Systems
— Moving (Running) Average

y[n] = x[n] + x[n - 1] + x[n — 2] + xX[n - 3]

— Maximum

y[n] =max {x[n], x[n - 1], x[n -21}

— ldeal Delay System

y[n] = x[n - n,]

NNNNNNNNNNNN
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Linearity s
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A linear system is one that obeys the principle of
superposition,

T {alx [n]+ a X [n]} = alyl[n]+ a_y [n]

where the output of a linear combination of inputs is the
same linear combination applied to the individual outputs.
This result means that a complicated system can be
decomposed into a linear combination of elementary
functions whose transformation is known, and then taking
the same linear combination of the results. Linearity also
Implies that the behavior of the system is independent of
the magnitude of the input.

40



Linear Systems

Linear System: A system is linear if and only if
TE{xa[n] + x,[n]} = T [+ Tax (0]} (additivic )
and

T{ax[n] } = aT {x[n]} (scaling)

Examples
— ldeal Delay System

y[n] = X[n = n,]

T{x1[n] + x2[n]} = Xi[n = ngl+ X,[n - n,]
T{xatn)y * T = xiIn - ngl+ xo0n - n,]
T {ax[n]} = ax 1[n - n,]
aT {x[n]} = ax i1[n - n,]

NNNNNNNNNNNN
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Time (Shift) Invariance &
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A system is said to be shift invariant if the only effect caused by

a shift in the position of the input is an equal shift in the position
of the output, that Is

TixIn-n1j=yln-n ]

The magnitude and shape of the output are unchanged, only the
location of the output iIs changed.

42
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Time-Invariant Systems ¥
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« Time-Invariant (shift-invariant) Systems
— Atime shift at the input causes corresponding time-shift at output

y[n] = T{x[n]} = y[n -n,] = T{x[n -n,]}

« Example
— Square
Delay the input the output is y[n]= (xin —n 1)
1 o
y[n] = (x[n])*
Delay the output gives y[n-n,]-= (x[n - N1
« Counter Example
— Compressor System
Delay the input the output is Y [n]: X[MN - n ]
y[n] = x[Mn ] 1 °
Delay the output gives Y[n'no] = X[M(n — N, )]

43



Impulse Response el
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When the input to a system is a single impulse, the output is called
the impulse response. Let h[n] be the impulse response, given by

T{8[n1}=h[n]

A general sequence f [x] can be represented as a linear combination
of impulses, since

[e¢]

F(x)= f()*8 ()= [ (s (x - u)du

fln]= f[n]*8[nl= Y f[KIS[n- K]

44



Linear Shift-Invariant Systems %
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Suppose that T{} is a linear, shift-invariant system with h[n] as its
Impulse response.

Then, using the principle of superposition,

i - - { )
T s[n] =T{ D s[kld[n-k]t= > s[k]T &[n - k]

k=-o0 k =—0

and finally after invoking shift-invariance

o0

T{s[n1}= > s[kIT{S[n —kl}= D s[kIn[n — k]

k=—0 K=—0

T{s[nl}=s[n]=h[n]

This very important result says that the output of any linear, shift-
Invariant system is given by the convolution of the input with the
Impulse response of the system. 46



Causality

A system is causal if, for every choice of no, the output
sequence at the index n = no depends only on the input
sequence values for n < 0.

All physical time-based systems are causal because they are
unable to look into the future and anticipate a signal value
that will occur later.

NNNNNNNNNNNN
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Causal System .2
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— Assystem is causal it’s output is a function of only the current and
previous samples

« Examples
— Backward Difference

y[n] =x[n] - x[n - 1]

« Counter Example
— Forward Difference

y[n] = xX[n + 1] + x[n]

47



Stability 2
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A system Is stable in the bounded-input, bounded-output

(BIBO) sense if and only it every bounded input produces a
bounded output sequence.

The input x[n] is bounded if there exists a fixed positive finite
value By such that

‘x[n]‘g Bx<oo for all n

Stability requires that for any possible input sequence there exist
a fixed positive value By such that

‘y[n]‘g B < o
y

48



Stable System s

 Stability (in the sense of bounded-input bounded-output BIBO) mm
— Asystem is stable if and only if every bounded input produces a bounded
output

X[n]| < Bx <o = |yln]|<B, <=

« Example
— Square

y[n] = (x[n])*
if input is bounded by ‘x[n] ‘ < B, <o
output is bounded by ‘y[n] ‘ < Bi < o

« Counter Example
— Log

y[n] =log 10 (k[n] )
even if input is bounded by ‘x[n] ‘ < B, < o

output not bounded for x[n] =0 = y[0]=log | (lx[n]‘) = —o
49



Memory (State) %
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A system is referred to as memoryless if the output y[n] at every
value of n depends only on the input x[n] at the same value of n.

If the system has no memory, it is called a static system. Otherwise
It Is a dynamic system.

50
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Memoryless System miw
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« Memoryless System

— Asystem is memoryless if the output y[n] at every value of n depends
only on the input x[n] at the same value of n

« Example Memoryless Systems
— Square

y[nl = (x[n])*

Sign
- y[n] = sign {x[n]}

« Counter Example
— ldeal Delay System
y[n] = x[n - n,]

o1



Invertible System e
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A system Is invertible if for each output sequence we can find a
unique Input sequence. If two or more input sequences produce
the same output sequence, the system is not invertible.

52



Passive and Lossless Systems %
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A system is said to be passive if, for every finite energy input
sequence X[n], the output sequence has at most the same energy:

> yinlf < 3 pnif <

If the above inequality is satisfied with an equal sign for every
Input signal, the system Is said to be lossless.

53



Examples of Systems e

NNNNNNNNNNNN

Ideal Delay System  y[nl= x[n-n]

Moving Average System  yIn] - 2 x[n - k]

Memoryless non-linear System  y[n]l= x[nJ?

Accumulator System  vInl= 2. x[k]

K=—o0

where M is a
Compressor System  yI[nl= x[Mn ] positive integer

Backward Difference System  yI[nl= x[n]- x[n - 1]
54



Impulse Response of LTI Systems
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Find the impulse response by computing the response to d[n].
Systems whose impulse responses have only a finite number of
nonzero samples are called finite-duration impulse response

(FIR) systems.

Systems whose impulse responses are of infinite duration are
called infinite-duration impulse response (IIR) systems.

If h[n] = 0 for n <0, the system Is causal.

55
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Impulse Response for Examples .
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Find the impulse response by computing the response to d[n]

Ideal Delay System ~ yin]=38[n—"n | FIR
. [ ! , M, <n< M,

Moving Average System  yinl={m , M +1 FIR

|L 0, otherwise

n (1, n=>0
Accumulator System  yInl= > 5[k]= %Lo , IR

o , n <
y[nl=uln]

Backward Difference System  yinl=s[n]1- 8[n -1] FIR

56



Stability Condition for LTI Systems
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An LTI system Is BIBO stable if and only if its impulse response
Is absolutely summable, that is

S = §|h[k]|<oo

k =—0

57



Stable and Causal LTI Systems

An LTI system is (BIBO) stable if and only if
— Impulse response is absolute summable

Z@: h[k] < «

— Let’s write the output of the system as

yIn] = | 5 AkIn - k]l < 3 KT - ]

— Ifthe input is bounded

‘x[n] \ < B,
— Then the output is bounded by .

|y[n] < B, _Z_: |h[k]|

— The output is bounded if the absolute sum is finite
An LTI system is causal if and only if

h[k]=0 for k <0

NNNNNNNNNNNN
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Difference Equations e
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An important subclass of LTI systems are defined by
an Nth-order linear constant-coefficient difference equation:

> acyln -kl= Y byx[n-m]

0

Often the leading coefficient ao = 1. Then the output y[n] can be
computed recursively from

y[nl=-> a,yln - k]+ Z:bXU1—m]

k=1 =0

A causal LTI system of this form can be simulated in
MATLAB using the function £ilter

y = filter(a,b,x);
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Total Solution Calculation

D a,yln —kl= 3 byx[n - m]

k=0

The output sequence y[n] consists of a homogeneous solution y,[n] and a
particular solution y,[n].
y[n]= ynln]+ y,[n]
where the homogenous solution y,[n] is obtained from the homogeneous equation:

N

> acy,[n-kl=0

k=0

NNNNNNNNNNNN
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Homogeneous Solution

Ny
Qe

Given the homogeneous equation: S a,y.[n - k]=0
k=0
Assume that the homogeneous solution is of the form
yo[n]= A"
then
N
n-k n-N ( 7\‘ N 7\‘ N -1
yalnl= > a,x = A 2y ey + o +aN):O
k=0
defines an Nth order characteristic polynomial with roots A1, A2 ... AN
The general solution is then a sequence yy[n]
N
yolnl= > A,
1
(if the roots are all distinct) The coefficients A, may be found from the
Initial conditions. 63



Particular Solution G
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The particular solution is required to satisfy the difference equation for a specific
inputsignal x[n], n>0.

> a, y[n —kl= 3 byx[n -m]

m=0

To find the particular solution we assume for the solution y,[n] a form that depends
on the form of the specific input signal x[n].

y[nl= yu[nl+ y,[n]
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General Form of Particular Solution
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Input Signal Particular Solution
Xn] yplN]
A (constant) K
AMn KMn
AnM KonM+KnM-1+_ . +Kyy
AnnM An(KonM+KnM-1+ . +Ky)
[ Acos( @,n)] chos(o) n) + Kzsin(co n)
| Asin( ®,n) |
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Example

Determine the homogeneous solution for

NARSIMHA REDDY
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y[n]+y[n-1]-6y[n-2]=0

n

Substitute yo[n] =2

AT+ AT 602 = A2 (A2 A~ 6)= 0

=A"2(A+3)(A -2)=0
Homogeneous solution is then

y [n]= AL+ AL =A(=3)+A (2)
2 1 2

h 1 1 2
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Example

Determine the particular solution for

y[n]+y[n -1]-6y[n - 2] = x[n]

with x[n] = 8u[n]

andy[-1]=1and y[-2] =-1

The particular solution has the form yp[nl=8

which is satisfied by B = -2

p+p -6p =3

l,(‘
- -
o
- -
W
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Example (68 .2
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Determine the total solution for

y[n]+y[n -1]-6y[n - 2] = x[n]

with x[n] = 8u[n] andy[-1]=1and y[-2] =-1

The total solution has the form

yInl = yuInl+ y,In1= A(=3)"+A (2)'-2

then i =-ta+l ooy
1 A2 A =-18
3 2 1
1 1 A =48
y[-3]1= —A + —A -2 =-1
9 4

y[n]=-18(-3)"+48(2) -2
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Initial-Rest Conditions o
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The output for a given input is not uniquely specified.
Auxiliary information or conditions are required.

Linearity, time invariance, and causality of the system will
depend on the auxiliary conditions. If an additional condition is
that the system is initially at rest (called initial-rest conditions),
then the system will be linear, time invariant, and causal.
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Zero-input, Zero-state Response &
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An alternate approach for determining the total solution y[n] of a difference equation
IS by computing its zero-input response Y,i[n], and zero-state response y,[n]. Then
the total solution is given by y[n] = y.i[n] + yz[n].

The zero-input response is obtained by setting the input X[n] = 0 and satisfying the
initial conditions. The zero-state response is obtained by applying the specified input
with all initial conditions set to zero.
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Example (1 o
y[n]+ y[n -1]-6y[n-2]=10 y[-1] = 1

n n -2]1=-1
yh[n] = Alkln + Azkg - Al(_3) + AZ(Z) yi=2]

Zero-input response:

A=l __54
y [0]= A +A =—-y[-1]+6y[-2]= -1-6 = -7 1 5
zi 1 2
y [11= A (=3)+ A (2) = —y[0]+ 6y[-1]=7+6 =13 8
’ ' A =——=-16

’ 5
Zero-state response: y[n]+y[n —1]- 6y[n — 2] = x[n]

with x[n] =8u[n]

18
y [0]= A + A —2= x[0]=8 A= £ =36
zs 1 2
Volll = A(=3)+ A (2)-2 = x[1] - y[o]=8-8=0 , _% _



Wi
4
-

Mitra Example (2/2) 4
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Zero-input response:
y, [N1=-5.4(=3)" —1.6(2)"

Zero-state response:

Y, [N1=36(-3)" +6.4(2)" -2

Total solution is

y[n] = yz[n]+ yzs[n]

y[n]=18(=3)n+4.8(2)" - 2

This is the same as before
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Impulse Response -
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The impulse response h[n] of a causal system is the output
observed with input x[n] = §[n].

For such a system, x[n] = 0 for n >0, so the particular solution is
zero, yp[n]=0. Thus the impulse response can be generated from the
homogeneous solution by determining the coefficients A to satisfy
the zero initial conditions (for a causal system).
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Example

Determine the impulse response for

y[n]+yln -1]-6y[n - 2] = x[n]
The impulse response is obtained from the homogenous solution:
hinl= A(-3)+ A (2)
1 2
For n=0
y[0]+y[-1] - 6y[-2] = X[O]

h[0] = §[0] =1 AL+ A, =1
Forn=1
y[1]+ y[0] - 6y[-1] = x[1]

h[1] + h[0] = &[1] = O 3

3 2
h[n]=—=(-3)"+ =@ =0
S 5

cJ‘
“

NRCM
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\
\‘\ '/7
- -

(-3A +2A )+ (A +A )=0
1 2 1 2
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DSP Applications mim

Image Processing

— Pattern recognition

— Robotic vision

— Image enhancement

— Facsimile

— Satellite weather map

— Animation
Instrumentation/Control

— Spectrum analysis

— Positionand rate control

— Noise reduction

— Data compression
Speech/audio

— Speech recognition/synthesis

— Text to speech

— Digital audio

— equalization

5\
Qe

NARSIMHA REDDY
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« Military

Secure communication
Radar processing
Sonar processing
Missile guidance

e Telecommunications

Echo cancellation
Adaptive equalization
ADPCM transcoders
Spread spectrum
Video conferencing
Data communication

 Biomedical

Patient monitoring
Scanners

EEG brain mappers
ECG analysis

X-ray storage/enhancement
75
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f DSP

Applications o

removal from
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Image enhancement

RS A -
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More Examples of Applications
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NGINEERING COLLEG!

« Sound Recording » Telephone Dialing

Applications Applications
— Compressors and Limiters

— Expandersand Noise Gates FM Stereo Applications

— Equalizersand Filters « Electronic Music

— Noise Reduction Systems Synthesis

— Delay and Reverberation — Subtractive Synthesis
Systems

— Additive Synthesis

« Echo Cancellation in
Telephone Networks

— Special Effect Circuits

« Speech Processing
— Speech Recognition
— Speech Communication  Interference Cancellation

In Wireless
Telecommunication
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Reasons for Using DSP

Signals and data of many types are
increasingly stored in digital
computers, and transmitted in
digital form from place to place. In
many cases it makes sense to
process them digitally as well.

Digital processing is inherently
stable and reliable. It also offers
certain technical possibilities not
available with analog methods.

Rapid advances in IC design and
manufacture are producing ever
more powerful DSP devices at
decreasing cost.

N,/
3\20'4

S
PR

Flexibility in reconfiguring

Better control of accuracy

requirement

Easily transportable and possible
offline processing

Cheaper hardware in some case

In many case DSP is used to
process a number of signals
simultaneously. This may be done
by interlacing samples (technique
known as TDM) obtained from the
various signal channels.

Limitation in speed & Requirement
In larger bandwidth

77



Voice and data compression

AP P I icatio n S Echo cancellation

Signal multiplexing s e
Filtering

Space photograph enhancement
Telephone Data comptession

Intelligent sensory analysis by

remote space probes

Space Diagnostic imaging (CT, MR,

ultrasound and others)
Medical Electrocardiogram analysis
Medical image storage / retrieval

ﬂ } Radar

- Military SSHAR

Ordnance guidance

: e Secure communication
Scientific
Earthquake recording / analysis

Data acquisition

Industrialial Spectral analysis
Simulation and modeling

Qil and mineral prospecting
Process monitoring & control
Nondestructive testing

CAD and design tools




System Analysis 1
« Three domains 777
o Time domain: impulse response, convolution sum

o0

yln]=x[n]*hn]= Z x[klhln—Fk]

o Frequency domain: fr::uency response
V() =X (") E (™)
o z-transform: system function
Y(z2)=X(2)H(z)
= LTI system is completed characterized by ...
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Frequency Response R4
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= Relationship btw Fourier transforms of input and

output
)"(3'70) s ‘-\'(e}(o )H(e]-(z))

= |n polar form
1 Magnitude = magnitude response, gain, distortion

| Y(e’?) = X (e”) |-| H(e’®)|
a0 Phase = phase response, phase shift, distortion

éy(ejw) _ 4‘X,(ej(o) 1 AH(QJ(O)

80



|deal lowpass filter-example
= Frequency response

oK a,,

H(e?) 5
e =
0.

o Frequency selective filter
= Impulse response

S11 @ _1

O <K

h [n]=

I — <N KO

7N

a2 Noncausal, cannot be implemented! hn]=0, n<0
o How to make a noncausal system causal?

Y
NRGM 81

AAAAAAAAAAAA



Non causal to causal -

NNNNNNNNNNNN

= Cascading systems
o |deal delay hn]=38[n—n,]

Forward difference One - sameple delay
x[n]—— o . y[n]

h[n] = S[n+1]-8[n] h[n]=o[n—1]

!

x[n] _ Backward difference . y[n]
hin]=d[n]—ao[n—1]

o In general, any noncausal FIR system can be made
cause by cascading it with a sufficiently long delay!

o But ideal lowpass filter is an [IR system!

82



Phase distortion and delay <
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= |deal delay system
h,[n]=0dn—n,] Delay distortion
H. (') = e
| Hid(ejw) =1
LH  (e’°)=—-on, .| o< x Linear phase distortion

= |deal lowpass filter with linear phase

J’ —Jjmy

H, (/)= o< o,
AN IO,
H o Ideal lowpass filter is
. always noncausal!
smao. (n—n,)
] = ., —O<HLD

z(n—ny)
83



Phase delay S

o Recall that the phase response ZH (e?) gives the phase shift st
experienced by each sinusoidal component of the input signal.

o In the case when z[n] = A, cos(wn + ¢.), we have

y[n] = A,|H(e’)| cos(wn + ¢, + LH (™)) =
= A, |H(e”)| cos <Cu [n + i + AH(CJ“")]>

W W

ZH (e’™)

where the quantity =——_— shows the time shift (in number of
sampling intervals) experienced by each sinusoidal component of
the input signal.

e Therefore, sometimes it is more meaningful to use the phase
delay defined by
n ZLH(e”)

Tpd — —

W
e Nonlinear phase responses may lead to severe shape alterations.
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Phase delay

Original signal

5 “'\f\\ (\,-f\ /w\/\
| | ' \
L Wb

n

| Low-frequency attenuation

N NN AN
V'V VoV \/

High-frequency attenuation

Note that the constant phase shift in y;[n| causes distortion because
each frequency component is delayed by a different amount. In cont-
rast, the linear-phase shift in y4[n] does not cause any distortion be-

¥aln]

Constant phase shift

Linear-phase shift

¥ \/\ % AN

i |

=
| bl Tl

Nonlinear-phase shift

cause it results in a constant phase delay.

¢

Nyt
A ’
Iy

L)

NARSIMHA REDDY
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Group delay

= A measure of the linearity of the phase

= Concerning the phase distortion on a narrowband
signal | /'/.'\'".

x[n] = s[n]cos(w,n) 0 W,

» For this input with spectrum only around w,, phase
effect can be approximated around w, as the linear
approximation (though in reality maybe nonlinear)

ZH(e™®) = —om,; — i,
and the output is approximately
yn]~ H(e’™)|s[n—n,]cos(a,(n—n,)—¢,)

= Group delay

NNNNNNNNNNNN
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= grd[H(e™)] =~ {arg [ H(e’)]}
den: =—
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Group delay “ i
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@ A convenient way to check the linearity of phase response is to
use the group delay, defined as the negative of the slope of the
phase as follows

AU (w)

= dw

@ The derivative in this definition requires the use of the unwrap-
ped phase response ¥ (w).

e Phase responses which are linear in frequency correspond to
constant phase delay and constant group delay; both delays are
identical, and each may be interpreted as time delay.

e Note that both the linear-phase response ZH (¢’*) = —wn,4 and
the generalized linear phase response ZH (e?*) = ¢y — wny have a
constant group delay.

e The name group delay comes because 7,4(w.) shows the delay of
the “bundle” of frequency components about w..
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The Z-Transform

88



Z-Transform Definition

-Counterpart of the Laplace transform for discrete-time signals
-Generalization of the Fourier Transform
-Fourier Transform does not exist for all signals

The z-transform of a sequence x[n] is defined as

0

Z{x[n]} = > x[nlz-" = X (z)

N=-—o0

The inverse z-transform is given by

1

x[n] = fCX(z)zn—ldz

21 |

This expression denotes a closed contour integral taken counterclockwise

o
S
NRCM

NARSIMHA REDDY
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about the origin and in the region of convergence (ROC). It incorporates the
Cauchy integral theorem from the theory of complex variables. This result is

not given directly in Oppenheim, but may be found in Proakis.
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Relationship to Fourier Transform

The z-transform of a sequence x[n] is defined as

o0

X (z)= > x[n]z-n

n=-—o0

The Fourier transform of a sequence x[n] is defined as
X(eic0 ) = > x[nJe-ien
Nn=-—o0
For 7 — e theez-transform reduces to the Fourier transform

This domain is a circle of unit radius in the complex plane, that is
lz| = 1.

NNNNNNNNNNNN
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Convergence of the z-Transform

« DTFT does not always converge z.:a::zz*:&:&
X(er) = 3 x[n] e-wn

— Infinite sum not always finite if x[n] no absolute summable
— Example: x[n] =aru[n] for |aj>1 does not havea DTFT

« Complex variable z can be written as r ei® so the z-transform

( ») - [N o ) (LT )

X re —an re —Z Xnr e

« DTFT of x[n] multlplled W|th exponential sequence r-n
— For certain choices of r the sum maybe made finite
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Unit Circle iIn Complex Z-Plane ¥

-The z-transform is a function of the complex z variable NARSINA RESY
-Convenient to describe on the complex z-plane
-If we plot z=eio for ®=0 to 2w we get the unit circle

Im

Unit Circle

~

z-plane

Re

92
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Region of Convergence (ROC) <
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For any given sequence, the set of value of z for which the z-transform converges
is called the region of convergence, ROC. The criterion for convergence is that

the z-transform be absolutely summable:

_z|x[n]||z| <o

If some value of z, say, z =z, is in the ROC, then all values of z on the circle defined
by |z| = |za| will also be in the ROC. So, the ROC will consist of a ring in the z-plane
centered about the origin. Its outer boundary will be a circle (or the ROC may extend
outward to infinity), and its inner boundary will be a circle (or it may extend inward

to include the origin).
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Region of Convergence =

NARSIMHA REDDY
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Im

Re

o
0
0
.
.
S
.
.
ot
.
..
st
.....

z-plane

The region of convergence (ROC) as a ring in the z-plane. For specific cases, the inner boundary
can extend inward to the origin, and the ROC becomes a disk. In other cases, the outer boundary
can extend outward to infinity. 96
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|_aurent Series 2
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o0

X (z) = > x[n]z-r

Nn=-—o0

A power series of this form is a Laurent series. A Laurent series, and therefore
a z-transform, represents an analytic function at every point within the region
of convergence. This means that the z-transform and all its derivatives must be
continuous functions of z within the region of convergence.

P(z)
Q(z)

X (z) =

Among the most useful z-transforms are those for which X(z) is a rational
function inside the region of convergence, for example where P(z) and Q(z2)
are polynomials. The values of z for which X(z) are zero are the zeros of X(z)

and the values for which X(z) is infinite are the poles of X(z).
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Properties of the ROC “
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1. The ROCisaring or disk in the z-plane centered at the origin

0<r <‘Z‘<I’Soo
R L

2. The Fourier transform of x[n] converges absolutely if and only if the ROC of the z-
transform of x[n] includes the unit circle.

3. The ROC cannot contain any poles.

4. If x[n] is a finite-duration sequence, then the ROC is the entire z-plane except possibly
z=0 or z=co.

5. If x[n] is a right-handed sequence (zero for n < N1 <o), the ROC extends outward from
the outermost (largest magnitude) finite pole in X(z) to (and possibly including infinity).

6. If x[n] is a left-handed sequence (zero for n > N2> -0 ), the ROC extends inward from
the innermost (smallest magnitude) nonzero pole in X(z) to (and possibly including) zero.

7. Atwo-sided sequence is an infinite-duration sequence that is neither right-sided or left-
sided. If x[n] is a two-sided sequence, the ROC will consist of a ring in the z-plane,
bounded on the interior and exterior by a pole and , consistent with property 3, not
containing any poles.

8. The ROC must be a connected region. o



Properties of ROC Shown Graphicall .

AAAAAAAAAAAA
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Finite-Duration Signals

Causal Entire z-plane
| | Exceptz=0
Anticausal Entire z-plane
| Except z = infinity
Two-sided Entire z-plane
L] Exceptz=0andz=o

Infinite-Duration Signals

Causal

2| > 12

Anticausal 2| <11

A
N
Two-sided <l <n m
Tl N~
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Example: Right-Sided Sequence

AAAAAAAAAAAA
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Im z-plane X[n] =anu[n]
Unit circle o
X (z)= > x[n]z-
- " 1
e X(z)= ) (az ‘1) =
Y 1-az™
ROC Jaz 1| < 1

|4
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Example: Left-Sided Sequence <&
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x[n] = -aru[-n —1]
g z-pla
m plane nonzero for n < -1
Unit circle °°
X (z)= > x[n]z-

I %e X(2)=-Y (@21) =1-3 (a1z)
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Example: Sum of Two Exponential .

s 55

S e q uences s
(1) (1

x(nl=|—1ulnl+]-—1 u[n]

\2) L 3)

o]

EY — X (z)= 2, x[nJz-n

n=-o0

-

ROC

N -
N
AN
H

£,

24171 -1 7 27(z - 1)

() 2t) G-
2 3 2 3

X(z) =

Polesat %2 and -1/3, zeros at 0 and 1/12 102



Example: Two-Sided Sequence <&

Im Z-plane
// \\
/ g o \
/ - \
/ \
/ / \ \
{ / \ \
[ / \ \\1,
f XK 0O ) ¥ _
\ 05 i ] / e
V3N 12 // /’ 2
\ //
\\ o ol //
g >

AAAAAAAAAAAA

[ 1) (1)
x[nN]=| - —=Jun]-1—1 u[-n-1]
\ 3) \2)
(1) 1 1
|- _luln]l=> ‘Z‘>_
\ 3) 1+i2 3
(1) 1 1
_|—| U[_n—l]:>= ‘z‘<_
\2) 1—22‘1 2
22(z 1
X(z) = 12
G—)a+ )
1 1
ROC _<M< _
3 2
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Example: Finite Length Sequence &
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0<n<N -1

Im z-plane otherwise

*
x[n] =

i | 0
15th-order pole Unit circle .

X (z) = X x[n]z-r

n=-—0

n 1—(3.2 —1)N

{ il
o {:
Q N -1
Q - X(2)=3 (az) - 1
5 Ne 1—- az
\Q O;j a n=0
O . L The sum is finite, so

ROC ‘a‘< o  and 7 2 0

Pole-zero plot for N = 16
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Fim z-plane

Ut circle

7N

wh

A
-
-

N
W

}_<-,

Z-transforms with the same pole-zero locations
illustrating the different possibilities for the RO  NReM

NARSIMHA REDDY

Each ROC corresponds to a different sequence, s couse

\--_ ,_-/ ym z-plane fm “-plane
(al /// \\
! \ s
/ \ . Py
| — e
\ y ‘\L"' ’
\ /
\ /£
\\ //
b) A right-sided sequence (b) «  C)Aleft-sided sequence
Im z-plan
-plan
//J_-N -\\ 4'// s 'l ¢ \ 2
£ Py \\ \ ."" ¢ \\'\ \\.
0 D S L - i
CN | g < 9 il
\\ -___‘_/ 5 \ s N\ 7 ) },l
e) A two-sided sequence

d) A two-sided sequence

{d)

103



Common Z-Transform Pairs
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Sequence | Transform ROC
5[n] 1 All z
1
ufn] L, ‘z‘>1
1
—u[-n-1] o ‘Z‘<1
d[n—m] 27" *
' z[> 4
. >
anufn] e
1
—anu[-n-1] 1-az+ “I° 9
az !
"ufn] —
e (1_ az —1)2 ‘Z‘>84 ‘
az !
nul—n — — | |zZK
— na U[ n 1] (1_ az—1)2 ‘ ‘ a‘ ‘

*All z except O (if m > 0) or o (if m<0)

s o0
NREM
Sequence Transform ROC
[cos ® nJu[n] 1-[cosw]zt
0 : 7> 1
1-[2cos ® Jz-1+ z-2
0
i -1
[sinon]uln] [Smm(;lz 1s1
° 1-[2cos® Jz1+2z-2
0
— -1
[cos @ nJu[n] L [rcoscoo]z > r
° 1-[2rcos® ]Jz1+r2z-2
0
i -1
[sinonu[n] [rsino ]2 .
° 1-[2rcos @ Jz-1+ r2z-2
0
an,0<n<N-1 l1-aNz-N
. - ‘z‘> 0
0, otherwise l1-az-!
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Z-Transform Properties (1/2)

Linearity

NNNNNNNNNNNN

axl[n]+ bx 2[n]<—Z—> aX ;(z) + bX ,(2) ROC contains RXl M sz

Time Shifting

ROC = Rx (except for possible addition

X[n —n J«—2> 27" X (2) )
° or deletion of 0 or «)

Multiplication by an Exponential Sequence

n Z ( Z\
z x[n]e—- X[ __| ROC =|ZOR
\Z, ) '
Differentiation of X(z)
7 dX (z)
nx[n]¢«—— -z ROC =R,

dz
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Z-Transform Properties (2/2
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Conjugation of a Complex Sequence
X*[ﬂ](—z—> X*(Z*) ROC =R
Time Reversal
( 1) 1
X*[-n]«—2—> X | —| ROC = —
\z ) R,
Convolution of Sequences
xl[n]* xz[n]<—2—> X1(2)X,(2) ROC contains RXlﬁ RX
Initial-Value Theorem
x[0] = lim X (z) provided that x[n] is zero for n <0, i.e. that x[n] is causal.

Z— ®©
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Inverse z-Transform .

NNNNNNNNNNNN

Method of inspection — recognize certain transform pairs.

Partial Fraction Expansion

v —k I_NI (1—C Z_l)
Z ka b k=1 “

X (z) = k=0 Factor to X(z) =29
N
2 CL ag H (1— d Z—1)
k
k=0 k=1
N —
X(z)=> ~— N where A =(1-d, 21X (2)
1-d z 7=dy
k=0 k
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Example: Second-Order Z-Transforr

NRCM

NNNNNNNNNNNN
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Im z-plane X (7) =

1
(1— 142—1)(1_ ;22—1) ‘z‘ > —

X (Z) = ' + _A'Z__l
11zt 117
4
Re .
A = 1
1o )
1
A - :2
1o
-1 2
X (z) = +
1-21zt 112727t
4 2
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Partial Fraction Expansion <

NNNNNNNNNNNN

1

M —N
IfM > N X(z)= Y B 274+ Y—h
r 1-d z

B can be obtained by long division of numerator by denominator, stopping
when the remainder is of lower degree than the denominator.

If M > N and X(z) has multiple-order poles, specifically a pole of order s at z=d;

M -N
X(z)=ZBZ‘r+E A +ZS Con

r=0 k =1k #i 1-d k2 E m =1 (1— d iZ_1 )m

. g [ 7 (]

Cn = S—m% s—m — U,
(S_m)!(_di) | dw Lodw Xow fw:d—l
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X(z) = (1+ _1)2 _ 1+2z71+ 2 z >1
z
(1-tz1)(1-2z1) 1-3 ., ;- i
2 2 2
_ 1 _
A, A, B = = 2
X _ B + +
() 0 1__122_1 1 .1 ©oaz-2 g,
A A (1+ (1)) (3)
X (z)=B + L A = 2 = -
0 1_122‘1 1— 7-1 L 1- (1) _1
-9 8
X(Z)=2+ _—1-+ A = (1+1)2 - 8
1-1z 1-z-1 1
2 SEREYE

x[n]=28[n]- (£)"u[n]+ 8u[n]

l;‘
- -
o
- -
wh

NARSIMHA REDDY
NGINEERING COLLEGI

-9
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Note that

Example :

Power Series Expansion

o0

X (z)= > x[n]z-n

Nn=-o0

dn—-m]«—~2> z7"

X(z)= 22(1— 122—1)(1— z—2): 22 - 1z7-1+1 A

2

X[n]=20[n +2]-18[n +1]-0d[n]+ Lo [n —-1]

NNNNNNNNNNNN
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NGINEERING COLLEG!

X (2) = log (1+ az 1) 2|> |

Expand in power series:

( _1) 0 (_1)n+1anz—n

log 1+ az _
(|(_1)n+1 a’ >
1
X[n]:% n
I 0 n<o

112



Contour Integration

Cauchy integral theorem

(1, k=1
L_$pz-kdz =4
ZMEFC 0. k=1

C is a counterclockwise contour that encircles the origin.

Then one can show that

x[n] =

jﬁ X (z)zn-1dz
21 j 7¢

NNNNNNNNNNNN

x[n]:Z[residues of X(z)z " atthe poles inside C]
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Residue Calculation

If X(2) is a rational function of z, we can write

X(Z)Zn—l = \U(Z)

(z—do)S

Then one can show that

1
(s — 1)

Res [X (z)zntat z=4d,]= v (d,)

NNNNNNNNNNNN
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Quick Review of LTI Systems

LTI Systems are uniquely .determined by their impulse response

yln]= 2 x[k]h[n- k] = x[k]«h[k]

We can write the input-otitp utrelation also in the z-domain

Y(z) = H(z)X(2)

Or we can define an LTI system with its frequency response

Y(e) =H(ew x(ex)
H(ei») defines magnitude and phase change at each frequency
We can define a magnitude response

‘Y(ejw} - ‘H(eiw) X (eio)

And a phase response

2Y(eio) = zH(eio )+ zX(ei)

NNNNNNNNNNNN
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Phase Distortion and Delay

Remember the ideal delay system

h, [n]=58[n-—ng]—=T 5H, (eiv)= eton

In terms of magnitude and phase response

Hid(ejw)(z 1

ZH, (eiw) = —® Ny |(o| < T

Delay distortion is generally acceptable form of distortion
— Translates into a simple delay in time

 Also called a linear phase response

— Generally used as target phase response in system design

NNNNNNNNNNNN
NGINEERING COLLEG!

Ideal lowpass or highpass filters have zero phase response

— Not implementable in practice
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System Functions for Difference Equations

Ideal systems are conceptually useful but not implementable

Constant-coefficient difference equations are
— general to represent most useful systems
— Implementable
— LTI and causal with zero initial conditions

S ay[n —k]= 3 b,x[n k]

The z-transform is useful in analyzing difference equations
Let’s take the z-transform of both sides

ZN: akz—kY(z) = ZM: b I(z—kX(z)

e Cw )
| > az IY(z)=|Zbkz IX(z)
k-0 ) \k=0 )
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System Function 3y

- Systems described as difference equations have system functions of thame sz
form

H(Z) = X(Z) _ kN=0 _ | ao “ k=Nl
Y az" \ o) IT (1- dkz—l)
« Example
H(z) = (1+,1) _ 142zt 4,27 _ Y(2)
I( _12_1\|(1+ 32 | 1+ 1z14, 3,5 X@)
1 - — _ _ .
.2 A 4 ) 4 8

I(l + iz‘l + iZ—Z\IY(z) = (1+ 2Z-1 + z7-2 )X(z)
\ 4 8 )

y[n]+ Ly[n -1]+ 2y[n —2]= x[n]+ 2x[n - 1] + x[n - 2]
4 8

118



Stability and Causality

A system function does not uniquely specify a system
— Need to know the ROC

Properties of system gives clues about the ROC
Causal systems must be right sided
— ROC is outside the outermost pole
Stable system requires absolute summable impulse response

s h[n] < -

— Absolute summability implies existence of DTFT

— DTFT exists if unit circle is in the ROC

— Therefore, stability implies that the ROC includes the unit circle
Causal AND stable systems have all poles inside unit circle

— Causal hence the ROC is outside outermost pole

— Stable hence unit circle included in ROC

— This means outermost pole is inside unit circle

— Hence all poles are inside unit circle

o
S
NRCM

NARSIMHA REDDY
NGINEERIN G COLLEG!
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Example -

iy o8
» Let’s consider the following LTI system e
y[n]-2y[n —1]+ y[n - 2] = x[n]
2
 System function can be written as Fm z-plane
Umit circle
1
H(Z) = X
(1 ) 2 R
1 -~z (1o221)
.2 )
« Three possibilities for ROC
— If causal ROC:1but not stable ROC |, : z| )
— If stable ROC2but not causal 1
— If not causal neither stable ROCz3 ROC . :__ < |z| <2
)
1
ROC ; |z| <
2
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Structures for Discrete-Time Systems

RSIMHA REDDY
NNNNNNNNNN COLLEG!

Block Diagram Representation of Linear Constant-Coefficient
Difference Equations

Signal Flow Graph Representation of Linear Constant-Coefficient
Difference Equations

Basic Structures for IR Systems
Transposed Forms

Basic Network Structures for FIR Systems
Lattice Structures
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Introduction i

NARSIMHA REDDY
NGINEERING COLLEG!

« Example: The system function of a discrete-time system is

b +b ;-1
H(z)= <t [Z>]al
1-az?

 Itsimpulse response will be
h[n] = beanu[n] + bjartu[n-1]
 ltsdifference equation will be
y[n] —ay[n-1] = bex[n] + biX[Nn-1]
Since this system has an infinite-duration impulse response, it is not possible

to implement the system by discrete convolution. However, it can be rewritten
in a form that provides the basis for an algorithm for recursive computation.

y[n] = ay[n-1] + box[n] + biX[Nn-1]
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Block Diagram Representation of Linear Constant-coefficien -y
Difference Equations i)

X[n] a ax[n] Multiplication of a
> > sequence by a constant
o z-1 > Unit delay
x[n] X[n-1]

Addition of two sequences

xi[n] + xz[n]

xz2[n]
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Block Diagram Representation of Linear Constant-coefficien s
Difference Equations

i<

NARSIMHA REDDY
NGINEERING COLLEGI

E”bkz )
H (z) = k=0 _ )
N X (z)
1—2 akz—k
1 ( 1 \ —k\
| I( M
H(z) = H2(2)H1(2) = | - 2 bz |
/ | 1 - z a z°~* |Kk_0 /
\k ) J
V(z) = Hi(z)X (z)
Y (z) = H2(2)V (2) ( )
2 . O 1 |
H(z)=H,(z)H,(z) = LZ b, z J‘ . |
k=0 l— —k
| D Akt |
\ -1 y

W (z) = H,(z2)X (2)
Y (z) = Hi(2)W (2)
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Block diagram representation for a general Nth-order Sl
difference equation: o 45
Direct Form 127 i,

x[n] bo K'-\ V[n]

I ,
Z-1 z-1
X[n-1] =b1 + +) 2 Tyin1)
z‘il . zvl
?

\ 4

x[n-2]1 Ty[n-2]
bm-1 0@4
S 1
X[n'N{] b an zt
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Block diagram representation for a general Nth-order

- - Sy
difference equation: ' mim
Direct Form 128 axsina a0y
x[n] n wln] bo () y[n]
Z-1
ai b1
+ < w[n-1] w[n-1] . +
21 21
vwln-2] w[n-2] l
F)_ Dt
z-1 Z-1
aN b
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Combination of delay units (in case N = M) i is

AAAAAAAAAAAA

X[n] (). wln] bo /A yIn]

Z-1

+ (11‘ ,bl +
Z-1
'

+ ON-1 : EN—I ¥
Z-1

aN bn
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Block Diagram Representation of Linear Constant- -

coefficient Difference Equations 2 o

NARSIMHA REDDY
NGINEERIN G COLLEG!

« Animplementation with the minimum number of delay elements is
commonly referred to as a canonic form implementation.

« The direct form I is a direct realization of the difference equation
satisfied by the input x[n] and the output y[n], which in turn can be
written directly from the system function by inspection.

« Thedirect form Il or canonic direct form is an rearrangement of the
direct form | in order to combine the delay units together.
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Signal Flow Graph Representation of Linear Constant-

coefficient Difference Equations i

a
/ Attenuator
X[n] d e y[n]
> »—i— —
Z-1 .
/ Delay Unit

. Node: Adder, Separator, Source, or Sink

129



Basic Structures for IR Systems

Direct Forms

Cascade Form

Parallel Form

Feedback in IR Systems

',(‘
- -
- o
- -
w

NARSIMHA REDDY
NGINEERING COLLEGI
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Basic Structures for IR Systems

- ‘s,
: - -
z o
L W

NARSIMHA REDDY
NGINEERING COLLEGI

e Direct Forms

Y[n]—z a, yln —kJ= Z b, x[n - k]

E by z _,
H(z) = k=0

1 — Z akz
k =1

-k
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Direct Form | (M = N) m%

NARSIMHA REDDY
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4 (n) V(n) /-{-\ y(n)
2zt z !
¥ \+)* < h 4
= -

e —a e
v + < < 2 A
= =
+ )& < 3
. o —a : -
v + < : N 1
& 1 5= 1
bum —an
LTI All-zero system LTI All-pole system

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form Il (M = N) W

NGINEERING COLLEG!

y(n)

N
v

I D I o
“ . [
I — p—
 CHEE
y v v Y
Y

b
1
b
LTI All-pole system LTI All-zero system

Requires: M + N + 1 multiplications, M -+ N additions, M + N memory locations
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Requires: M + N + 1 multiplications, M + N additions, max(M, N) memory

locations

Direct Form Il

bo
-
—a b
(;\: S - > »(+
51
N, —a by
CP‘ < ¥ % Nt
41
—a b
@: -+ 3 :3 > +
< _(l e < b" | [ .
(3\: < M=l + :\I ! » +
|
“~
— A b
‘ *  ForN>M
oy |

N d
LN M
3?‘?5

NARSIMHA REDDY
NGINEERING COLLEG!
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X[n] ‘4\ ‘Q Y[':l] NAum'mov
\ 4 "—l
Z-1
2 0.75
(+ ,
.
-0.125
M # () yin]
#
L7 ¥
4 \ 4 kﬂ
z-1 H(z) = 1+2z-1+272
-0.125 1-07521+ 0125 22
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y[n]

y[n]

») :{‘;}} :{‘;}} > ) »)
z-1 z-1
0.75 |
0 0
z-1 z-1
! -0.125 |
O > < O

x[n]
:{’7‘:} > ) :{’7‘:}
Z-1
075 | 2
o 0
Z-1
-0.125 |
oy

A

\ 4
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Basic Structures for IR Systems 2 KR
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\
\‘\ '/7
- -

e (Cascade Form

tta-g oz M
) H 1 - hkz—l)(l—h*kz—l)

H(z) = A=l k=1

H\l (1_ C Z_]_) N 2

k
k=1 L=1

where M = M1+2Mj and N = N1+2N5.

« A modular structure that is advantageous for many types of
Implementations is obtained by combining pairs of real factors and
complex conjugate pairs into second-order factors.

(1-d z1)(1-d*z-1)

k

ooy b z-1+b -2

? z

H (z) = H 0k 1k 2k
_ -1 _ a -
k =1 1 alkz 2|<Z

where N Is the largest integer contained in (N+1)/2.
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wi[n] yi[n] wa[n] yz[n] ws[n]ys[n] i
x[n] y bor , boz 4 , bos y[n] e,

1+2z-1+ 272 L+z-1)(1+ z-1)
H(Z): =

1-0.75z1+0125 272 (1-0.5z1)(1-0.252z"1)

xX[n]

138



Ny
Qe

Basic Structures for 1IR Systems 3 na
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« Parallel Form
A N> B (1—e Z—l)
k K k
D) 1-dz)(1-d'z)
k k=1 k k

Np Ny
"D =2C 2y,
k=0 k=1

where N = N1+2N2 . If M st N, then Np = M - N; otherwise, the first summation in
right hand side of equation above is not included.

« Alternatively, the real poles of H(z) can be grouped in pairs :

N e +e 5-1
H(Z)zEC z—k+i 0k 1w ?
K =] -2
-0 a1l —ayz —a,z

where Ns is the largest integer contained in (N+1)/2, and if Np =M - N is
negative, the first sum is not present.
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O ol o) o)
) ain Iz—l b1
azi gz 1
x[n] wa[n] by, Ya[n] y[n]
‘:) .( Y i -

s

o

a3 ;r)z-l Parallel form structure for
sixth order system (M=N=6).
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1+ ¢ 2 ~7+8z-1

H(z) = =8 + \asiuA sepoY
1-0.752z1+ 0125 272 1-075 2140125 277
18 25
=8 + —
1-05z1 1-0.25z-!
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Transposed Forms
Transposition (or flow graph reversal) of a flow graph is accomplished by
reversing the directions of all branches in the network while keeping the
branch transmittances as they were and reversing the roles of the input and
output so that source nodes become sink nodes and vice versa.

X[n] y[n] y[n] x[n]
r > ) > ) > (e (e (e L
‘ a ‘ - EEEN > ‘ a ‘ Z-1 E
x(r] i ¥

O > ) > ) O
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&
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N,/
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i
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Y

¥

s

F 3

¥

&

¥

¥

&

Y
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x[n]

y[n]

»{) 1 >
“"b
+ 7 >
02 2
= O >
NER br-1
+ {) -
1
. IZ b X[n]
N N
« O -

N,/
\‘s:o':,

i

NARSIMHA REDDY
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»{) >
Z-1
a

bl I 1

> .z %
b2 I a 2

=~“;'}=
bn-1 aN-1
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Basic Network Structures for FIR Systems

NARSIMHA REDDY
NGINEERING COLLEGI

e Direct Form

— Itis also referred to as a tapped delay line structure or a transversal filter
structure.

« Transposed Form
« (Cascade Form

M M s
H(2) = 3 h[nJz" _ T (b + b, 2"+, 27")
n=0 k=1

where Mg is the largest integer contained in (M + 1)/2. If M is odd, one of
coefficients b, will be zero.
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Direct Form i
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\
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For causal FIR system, the system function has only zeros (except for
poles at z = 0) with the difference equation:
y[n] = SM - bkx[n-k]

It can be interpreted as the discrete convolution of x[n] with the
Impulse response

h[n]=b, ,n=0,1,...,M,
0 , otherwise.
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Direct Form (Tapped Delay Line or Transversal Filter)

x[n]

7-1

7-1

Z-1

bo y[n]
by
b,

. IS

SRR

by .

e ’0

> 'S

'S
bN i "
X[n] z-1 z-1

- ‘s,
: - -
z o
- - -
L W

NARSIMHA REDDY
NGINEERING COLLEGI

I h[0] 'Ih[l] Ih[Z]

Ih[M 1]Ih[|v|] yin]
> >0

e

ey
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Transposed Form of FIR Network

gy

Z-1

““

= ’

; -

: -
o

’ “

g we
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yIn]

‘ h[M]

T

h[M-1]

A\ 4

h[M-2]

@

h[2]

A\ 4

O—0

h{i]

Ih[O]

X[n]

A\ 4

s

-

A\ 4
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Cascade Form Structure of a FIR System

X[n] by
zl b1y
Z-1 b,y

Z-1

7-1

¥

¥

Y

Z-1

bOMs

¢
\\‘l

’
-
-
-«
we
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yn]

blMS

Y

bZMs

Y

Y
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Structures for Linear-Phase FIR Systems N
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« Structures for Linear Phase FIR Systems
— h[M-n] = h[n] forn=0,1,..,.M
« For Misaneven integer : Type |
y[n] = Sk=0M2)-1 h[K](X[n-K] + X[n-M+K]) + h[M/2]x[n-M/2]
« For M isan odd integer : Type Il
y[n] = Sk=o™-/2 h[K](X[n-K] + X[n-M+k])
— h[M-n] = -h[n] forn=0,1,..,M
« For M isan even integer : Type Il
y[n] = Sk=o™2-1 h[K](X[n-K] - X[n-M+k])
« For M isan odd integer : Type IV
y[n] = Sk=o™-1/2 h[K](X[n-K] - X[n-M+K])
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Direct form structure for an FIR linear-phase when M is even. s usor

X [n] z-1 z-1 z-1

> > I N S ———
> L L

S S /

z1 -1 T\ T\

O« < ®—-------- -
yIn] h(0] ih[ll ‘ h[2] h[(M/2)-1] ‘ hIM/2]
e ~ — P— - -

Direct form structure for an FIR linear-phase when M is odd.

x[n] Zz-1 z-1
@ @ g 4 .
S S am
z! ‘\ z! : .\
@ @-
Jin] h[O] | ] h[(M-1)/2]
- - -« y
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Lattice Structures na
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Theory of autoregressive signal modeling :
— Lattice Structure

Development of digital filter structures that are analogous to analog
filter structures :

— Wave Digital Filters

Another structure development approach is based on state-variable
representations and linear transformations.
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L attice Structures 2

 FIR Lattice

Y(2) .
| Za z |

X(z) | o |

H(z) =

The coefficients {ki} in the lattice structures are referred
to as the k-parameters, which are called reflection
coefficients or PARCOR coefficients.

— When used in signal modeling, the k-parameters
are estimated from a data signal .

— Given a set of k-parameters, the system function
can be found and therefore the impulse response :

by recurrence formula for computing A(z) in terms
of the intermediate system functions

NNNNNNNNNNNN
NGINEERING COLLEG!
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Reflection coefficients or PARCOR coefficients structure %
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X[n] eo[n] e1[n] ez[n] en-1[n] en[n] yIn]
O »O »QO »O »QO »Q — O O O
-k4 -k, -kn
-kl -k2 -kN
N ‘o—olt—o——0
e [] e~ [n] e 2[”] e N-l[n] e~ [n]

Signal flow graph of an FIR lattice system

eo[n] = e~ [n] = x[n]

e ey e
[ il -1
y[n] = en[n]

(V;V)
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A recurrence formula for computing A(z) = H(z) = Y (2)/X(z) can be
obtained in terms of intermediate system functions:

A (2) LN rl— ZI: a““zm]

E°(2) I

By recursive technique:
a) =k,
[ [
a =a @)-ka @,
m

m I I-Mm

m=1,2, .., (1)

Or by reverse recursive technique:

ki=a®

a (=[a ®W+ka OJ[1-k2, m=12 .. (-1)
m m i i

I I-Mm

l,(‘
- -
o
- -
w

NARSIMHA REDDY
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Example:
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A(z) = (1-0.8jz-1)(140.8jz-1)(1-0.921) = 1 — 0.9z1 + 0.64z-2 — 0.576z-3.
Then, 2®=0.9,a®=-0.64 anda®=0.576

The k-parameter can be computed as follow:
Kz = a3(3) =0.576
a1(2) = [al(g) +ka @V[1-k 7] =0.79518245
a@=[a@+ka®]/[1-k 2 =-0.18197491
2 2 31 3
ko = a,(2) = - 0.18197491
a®W=[a@+ka @)[1-k 2 =0.67275747
1 1 21

)
ki=a; ' =0.67275747
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> O—— O—— O——O——O——O——0——0 YI[n|
-0.6728 +0.182 -0.576
-0.6728 +0.182 -0.576
- — O ——O——@——0
Z-1 7-1 Z-1
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All-Pole Lattice
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« A lattice system with an all-pole system function H(z) = 1/A(z) can be
developed from the FIR lattice .

— all roots of A(z) must be inside the unitcircle: [kj| <1,1=1,...,N

en[n] = x[n] O >O »O »O

Eia[n] = &i[n] + ke~ [n-1], =N, (N-1), ...1, |:.><
ki
~ =k ~ _ ) | ]
° |[n:I |e|1 [n] +e i-1 [n 1] @+ Z- e.tr\J @ eZ~1 m

y[n] = eo[n] = e o[n] | i
x[n] eo[n] e1[”] e2[n] en-1[N] eN[n] y[n]
©, *O *O »O v — O >
Kn
'kN Z IkN -k1

2
e [n] ﬂl] ,[”] e~ n]
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Basic all-pole lattice structures

NARSIMHA REDDY
NGINEERING COLLEGI

Three-multiplier form
Four-multiplier, normalized form

N

[] cos ei
H(z)=‘=1A( ;
z

Four-multiplier, Kelly-Lochbaum form : was first derived as an acoustic tube
model for speech synthesis.
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ei[n] ei1[n]
O > ) > »)
—k.I {
< i) i) O
e’i[n] (1 -k ¢’i-1[n]
ei[n] COS (i ei-1[n]
) > ) > ) »)
-sin qu si Qi
< i) i) O
e’i[n] COS (i e’i-1[n]
ei[n] (1 + ki) ei1[n]
O > ) > >
—k.I {
< i) i) O
e’i[n] (1-ki) e’i-1[n]

NV
NATLAA

NARSIMHA REDDY
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Three-multiplier form

Four-multiplier, normalized
form

Four-multiplier, Kelly-
Lochbaum form
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Lattice Systems with Poles and Zeros

Y (2) No¢c oz VA (z7°1%) B (z)
H (z) = — _ > i i =
X (z) =, A(z) A(z)
N
B (z)= > b,z "
m =20
N
b m = C m Z C i a I(—I)m
i=m +1
X[n] = en[n] en-1[n] en2[n ei[n] eo[n]
O Section "l Section ] ] Section
e’n[n] N e’n-1[n] N - 1e’f e’ol[n]
CN CN CO
\ 4 > ) >

yIn]
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Example of lattice IIR filter with poles and zeros
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x[n] y[n]
> >
1
0.9 IZ 3
1
0.64 IZ 3
7-1
0.576 I
< {3 >
X[n]
O > > > > > > -
0.576 -0.182 0.6728
-0.576 0.182 -0.6728
v
- O ' @~ e O
-1 i -1
Zt |39 Z-15 4612 %5404
v
»O »O »O »Q y[n]
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UNIT-2
DFS, DFT & FFT
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Fourier representation of signals ..

o A discrete-time sinusoidal signal z[n] is obtained by sampling a
continuous-time sinusoid «(¢) = cos(2wFyt + ) at equally spaced
points ¢ = nT', which results in

NAISUANA RE)DY
NGINEERING COLLEG!

Fy
z[n] = A cos(2nFonT + 0)( = A cos (97TF n + 9)
where Fj (Hz) is the fundamental frequency of x(#) and F is the
sampling frequency.
e The normalized frequency variable is defined as

Fa= F o pr

b

T=1/F.,

where T' is the sampling period.
e Similarly, the normalized angular frequency variable is defined as
F
w22nf=2n—=QT
F
e In this case, the discrete sinusoidal signal can be expressed as

z[n] = Acos(2w fon + 0) = Acos(won + 6) 10
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Fourier representation of signals <&

e Periodicity in time: By definition z[n| is periodic if
z[n + N| = z[n], Vn.

z[n+ N| = A cos(2n fon + 27 foN + 0) = A cos(2nw fon + 0) = z[n]

NAISDMHA REDY
NGINEERING COLLEG!

which is possible if and only if 27 fo N = 27k, with k € Z.

Result

The sequence z[n] = A cos(2x fon + 0) is periodic iff fy = k/N, that
is, fy is a rational number. If £ and N are a pair of mutually prime
integers, then N is a fundamental period of z[n].

e Periodicity in frequency: We can see that

A cos [(wo + k2m)n + 0] = A cos(won+_kn 27+0) = A cos(won+0)
€Z

Result

The sequence z[n] = A cos(wgn + ) is periodic in wy with funda-
mental period 27 and periodic in f; with fundamental period one.
165
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Fourier representation of signals <&

e All distinet sinusoidal sequences have frequencies within an
interval of 27 radians. We shall use the fundamental frequency
ranges

NﬂlSIMNA REDY
NGINEERING COLLEG!

—m<w<nm or 0<w<2n
Therefore, if 0 < wp < 27, the frequencies wg and wg + m 27 are
indistinguishable in terms of their values.

e Since A cos(wg[n + ng| + 0] = A cos(won + (wong +#)), a time
shift is equivalent to a phase change.

e The rate of oscillation of a discrete-time sinusoid increases as wy
goes from wg = 0 to wyg = 7. Yet, as wy increases from wy = 7 to
wq = 2, the oscillations become slower. Therefore:

Vicinity of wg = k27 = Low frequencies
Vicinity of wg = 7+ k27 —  High frequencies
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Discrete complex exponentials

e Similar properties hold for the discrete-time complex exponentials
o ‘4ke)wk‘n

o For si[n] to be periodic with fundamental period N, the frequen-
cy wyi should be a rational multiple of 27, that is wy = 27k /N.

All distinct complex exponentials with period N and frequency in the
fundamental range, have frequencies equal to {wy = 27k /N}Y . J

@ The discrete complex exponentials are N-periodic in both the n-
and k-variables.
sp[n+ N] = si[n] (periodic in time)

sk+N|[n] = sk[n] (periodic in frequency)
e The complex exponentials are also orthogonal, viz.

N-1 g —
(ks Sm) = Z sk[n] s [n] = {f)v 2 ; Zz

n=0 167



Discrete Fourier Series

Given a periodic sequence %,; With period N so that

NGINEERING COLLEG!

nJ

X[n] = x[n +rN ]

The Fourier series representation can be written as

x[n] = —Z }[k]e (27 / N kn
N

The Fourier series representation of continuous-time
periodic signals require infinite many complex exponentials
Not that for discrete-time periodic signals we have

j(2 /N)(k+mN )n _ ej(2 /N)kn j(2amn ) _ j(2 / N )kn

Due to the periodicity of the complex exponential we only
need N exponentials for discrete time Fourier series

1 N1~ j(2 7/ N)kn

x[n] = " ke

168



Discrete Fourier Series Pair

A periodic sequence in terms of Fourier series coefficients

1 N1~ j(2n/ N )kn

x[n] = N_Zo XLk le
The Fourier series coefficients can be obtained via

N[ ] N-1 ., —j(2m/ N)kn

Xk = > x[nle

n=0

For convenience we sometimes use

. . — @a-i@n/N)
Analysis equation Wy =€

N[ ] N-1 kn
. . Xk = X[NIW,
Synthesis equation ;o

N-1 ~v —kn

X[n] = > idw

NNNNNNNNNNNN
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Fourier series for discrete-time periodic ..
signals s

e Consider a linear combination of N complex exponentials

N—1 , N—1
z[n] = Z cpel N hn — Z cr. sk [n]
k=0 k=0

which is periodic with fundamental period N.

@ To determine the series expansion coefficients ci., we exploit the
orthogonality of si[n] as follows

(2, 8m) E z[n] s: [n] = E ($kySm) =Ncm, m=0,...,N—1

=0

@ Therefore, we have

1 N-—-1
= BT
CA —_— -N—T E l‘b[n]c 7‘&"’\71
2 =0

which is periodic in & with the fundamental period equal to N. 179



Discrete-time Fourler series .

il

DTFS
The Discrete Time Fourier Series (DTFES) pair is defined as
N=—1 1 N=1
2% 27
z|n| = R NE s o = — z[n]e NV k"
] AZ_O k = E_:O "]

e Parseval’s relation: The average power in one period of z[n]
can be expressed in terms of the Fourier series coefficients as

1 N—1 N—-1
Pav — =7 Z IJ‘[Tl]Iz — Z Cl 2
N
n=>0 k=0

e The value of |c;.|? provides the portion of the average power P,
of z[n] that is contributed by its k-th harmonic component. Since
cr+N = Cj, there are only N distinet harmonic components.

e The graph of |cx|? (as a function of either f = k/N, w = 27k/N,

or simply k) is known as the power spectrum of z|n]. 171



Fourier representation of aperiodic
signals

o Consider a finite duration sequence z[n], such that z[n] =0
outside the range —L; < n < Ls. Define a periodized version
;171,[72] of ;r.[n] as

xp[n| = Z zln—IN|, with N > L+ Ly +1

leZ
o The DTFS of z,[n] is given by
N-—-1
27 I..
;"L‘-p['n.] = E C,ke-’W'}‘n
k=0
where
N-—-1 00
1 27 1., ]_ 9% L
Ck = A7 E :Ip["l]@ IR = — E z|nle 3N kn
l\‘ l\‘
n=>0 R\

@ Define the “envelope” function X (e/*) as

00

X(e®¥] = Z x[n|e 7"

n=——0ocC
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Discrete-time Fourier transform ..

e Noticing that 1/N = Aw/2w, we have

N-1 N-—1

5 1 - A EAw)
Tpln] = Z C;‘e:’2 kn — == Z X (e?FAw)ea(kAwin A,
k=0 = k=0

@ As N — o0, zp[n] = z[n], Yn. Also, as N — oo, Aw — 0, and the
summation above passes to an integral over the frequency range
from 0 to 27. As a result, we have

DTFT
The Discrete Time Fourier Transform (DTFT) pair is defined as
1 Vg o0

py X (e )e?fdw<—s X (e!¥) = Z rinje 74"

NnN=—0o0

zln] =

@ The quantities X (e?), | X (e?*)|, and ZX (e?¥) are known as the
spectrum, magnitude spectrum, and phase spectrum of z[n].
@ Parseval’s relation:

T

D [n] —‘, X (™) dw 173
2T
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Discrete Fourier Transform %

NNNNNNNNNNNN

= Periodic sequence and DFS coefficients

_ N-1
Xlk]= Zf [77]”5"
n=0 "
¥ =~ > X[,
n N ;)‘ \
= Since summations are calculated btw 0 and (N-1)
(V-1
Y] = Z\[n]ﬂf" 0<k<N-1
- =0 T
9, otherwise S
N-1 T 1. - yrkn
‘ - 1 Z‘\,[l\_]lrt\:kﬂ ‘ O <p< JV- _1 ‘X [A] Z \[I?]II N
3‘[”7]—<]\/’k=0 1 ~X-1
0,  otherwise x[n]= Z X[k,
N k=0
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Discrete Fourler Transform

Y
o Given N samples z[n], 0 < n < N — 1 of an N-length sequence,
its Discrete Fourier Transform (DFT) X [k] is defined by
N-—1
X[k 2> aple? N, 0<k<N-1
n=>0
o Given N DFT coefficients X[k]|, 0 < k < N — 1, their related N
“time-domain” samples z[n|, 0 < n < N — 1 can be recovered by
the inverse DFT (IDFT) given by
1 H=d 2
z[n] = N X [k]e’ﬁk"
k=0
e Note that X[k] is a function of the discrete frequency index £,
which corresponds to wy =2« /N, k=0,1,...,N — 1.
In summary: The DFT pair
N-1 - g 1 .
gE— . k"'n T — = r1fr—'kn /77%-,_‘)7&:
X[K] n; sWN" <  aln] = > X[EWR ™, Wy 2e .



Discrete Fourier Transform ¥

NARSIMHA RE;DY
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@ The correctness of the DFT formulas can be validated through:

N-—1 N—1 N1
X[k/] = Z I[?l]""/’;\'ﬁk — Z l'% Z ‘X' [772’]‘[/‘/};771n1 ""/K.;k _

n=0 n=0 m=>0
N-1 1 N -1 , .
= Z X [m] [V Z """",(\fc_m) n]
m=>0 y n=>0
e The orthogonality of discrete complex exponentials suggests

N —1
]. : (k—*,n)']l ]. k " ]. ]\‘ — m = 7'1\7’

- W, = —(Wx,Wi)=<
N Z N N< N WR) 0, otherwise

n=>0

which concludes the proof.
o Note that the N complex numbers {Wy "} ! satisfy
N Sk
(H/Nk) — e_}?ﬂ'k —)
and therefore they form the roots of unity (i.e., the N solutions of
2N —1=0). Note that these roots are equally spaced around the
unit circle with the angular spacing of 27 /N radians. 176



Discrete Fourier Transform ¥
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e The N equations for the DFT coefficients can be expressed in
matrix form as

P > - F 1 1 e o ]. g ™ I
X0 g x|0
,,[ | 1 Wy ... Wi i |
X[1] B A 2[1]
| X[N —1] 1 ",“,r.é".—l ‘I{/v’(\;\"—.i)‘(}\"—l) | V=] |

@ Thus. we have
Xy =WnznN

o Note that Wy is symmetric (Wy = WX ) and orthogonal, viz.

1 1
WEWxN=NIy = Wy = VW{\’, =i
1

e Therefore, xn can be recovered (synthesized) from Xy according
to

4
WN

1
=7 _
TN = WN X N = N ;(\" X N

which is nothing else but a matrix representation of IDFT. 177
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Discrete Fourier Transform %

NARSIMHA RE)'DY
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2 - R | A . o
o The twiddle factor W™ = eI ¥k is periodic in both k and n
with fundamental period N, namely

k+N 7 ke k(N . g S0
WEtNe — ke and WENTR) — ppkn

o Letting k € Z results in the Discrete Fourier Series (DFS):

N—1
Xkl=X[k+N]=) z[n]W§', Vkel

n=>0

e If n is allowed to take upon any integer value, the values of z[n]
will repeat with fundamental period N, resulting in the Inverse

Discrete Fourier Series (IDFS).
zln|=Zn+ N], Vnelk

@ These periodicities are an inherent property of DFT, which stem
from the discrete nature of time and frequency variables. 178



Summary of properties

Property N-point sequence  N-point DFT

x{n], hln], vin] X[k], H[k], V[K]
x1n), xaln) X k], Xolk]

1.  Lincarity ayxy[n] +axxzinl  a Xilk] +ax X[k

2.  Time shifting xfin — m)n] W;‘V”‘X[k]

3.  Frequency shifting Wy xfn] X[ (k — m)n]

4.  Moadulation x[n] cos(2r /N)kon %X[(k +ko)N] + %X’[(k — ko]

5. Folding af (—njy] X*[k]

6 Conjugation x* n) X*[(=kN]

T Duality X[n] Nx[(—k)In]

8 Convehution 1] (V) xfn] HIKIX[K]

9. Correlation x{n] ‘.\-‘/\D_v[( )y X[KIY*[K]

10. Windowing vr]x[n] }vvrk]@xm
N—1 N—

11. Parseval’s theorem >_’ x[nly*[n] = = Z: X[k1Y*[n]
N—

12. Parseval’s relation

—1
Y ladm]f? = Z X[k
rreal)

k-O

NARSIMHA REDDY
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DFT Pair & Properties |

» The Discrete Fourier Transform pair

N d
\\:o':,

i

NARSIMHA REDDY
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X[k] _ Z x[n]e -j(2m /N )kn x[n] _ ;_ X [k]e j(2m /N Ykn
n=0 k=0

Property Time Domain Frequency Domain
Notation: x(n) X(w)

xl(n) Xl(uﬂ))

xa(n) Xi1(w)
Linearity: aixi(n) + azx2(n) a1 X1(w) + a2 X2 (w)
Time shifting: x(n— k) e ik X(w)
Time reversal x(—n) X(—w)
Convolution: x1(n) = xa(n) X1(w)Xa(w)

Correlation:

Wiener-Khintchine:

rxlX2(l) = Xl(/) # X2(—/)

rec(1) =2 (1) % x(—I)

Sxixp (W) = X1 (w) Xa(~w)
= X1(w)XJ (w) [if x2(n) real]
Six(w) = [X(w)[?
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Circular convolution b2

AAAAAAAAAAAA

Assume: x;(n) and x;(n) have support n=0.,1,.... N—1.

Examples: N = 10 and support: n=0.1,.... 0

NUSSO B

1 2 3 4 5 6 7 8 9 10 11 12

8 9 10 11 12
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Modulo Indices and Periodic
Repetition

(n)y =n mod N = remainder of n/N

Example: N =4
n |-4 -3 -2-10123 456 7 8
(a0 1 2 3 0123012 30
n _ nonneg integer < N
N:|nteger+ N

SR oIS
4 4 4 4

182



Overlap During Periodic
R e pet | tl O n Jansims moy

A periodic repetition makes an aperiodic signal x(n), periodic to
produce x,(n).

183



Periodic repetition: N=4 e

AAAAAAAAAAAA

I=2] [=1] [I=0] [I=1] [=2]
X (n+N) X (N-N)
) X

X(n+2N) o (n)
+ -
+ |e + 2 E
,_[ P
> )

no overlap

support length=4=N Xp(n)
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Periodic repetition: N=4

x(n)

[==2]

[I=-1] [I1=0]

=] [=2

x (n+2N)

n+N

,::L]JLHJMH"W-- j

overlap

support length=6 >N

LI T B T A T

a

AAAAAAAAAAAA
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Modulo Indices and the Periodic ..
Repetition s,

Assume: x(n) has support n=0,1,..., N —1.

x((n))ny = x(n mod N) = x,(n Z x(n—IN)

|=—o0

Note: Because the support size and period size are the same, there is
no overlap when taking the periodic repetition x((n))n.
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Modulo Indices and the Periodic
Repetition

x(n)

§

L B

n

— B DG —D—D—
7-6-5-4-3-2-10023 45 6 7
x(n)

2
2
1 1
1 0

n
/-6-5-4-3-2-101 2 34567
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Modulo Indices and the Periodic
Repetition ey

vk x((M)y 9

000000
-7-6-5-4-3-2-10123 4567 0

x(n)

2 |
1 1
1 0
v—i“]—‘r n

-7-6-5-4-3-2-1 OBIE2NS 4 5 6 7

vl 188



Modulo Indices and the Periodic ..
Repetition

20009000
-7-6-5-4-3-2-1 QIS 4 5 6 7

Therefore x((n))n = x,(n).
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Circular convolution -
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Assume: x3(n) and xz(n) have support n=20.1,..., N—1.

To compute S0 xa(k)xa((n — k) (or Shm xa(k)xa((n — K))w):
1. Take the periodic repetition of xp(n) with period N:

o0

Xop(n) = Z xp(n — IN)

|I=—00

2. Conduct a standard linear convolution of x1(n) and xp,(n) for
iy Lyce w5 N —1:

oo N—-1
x1(n) ® xa(n) = x1(n) * xgp(n) = Y xa(K)xzp(n—k) = > xa(k)xap(n— k)
k=—oc k=0

Note: x3(n) ® xp(n) =0 for n <0 and n > N.
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Circular convolution -
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N—1 N—1
> (k) xa((n—k)n| =D xu(k) xep(n — k)

.. which makes sense, since x((n))y = x,(n).

191



Circular convolution-another s
Interpretation s,

Assume: xi(n) and x2(n) have support n=20.1,..., N—1.

To compute 3=, 5 xa(K)xa((n — k) (or 3235 xa(k)xa((n — k))w):

1. Conduct a linear convolution of x1(n) and x(n) for all n:

x (n) = x1(n) * x2(n) = Z x1(k)xo(n — k) = x1(k)xa(n — k)

2. Compute the periodic repetition of x;(n) and window the result for
g =01 oucy N —1:

x1(n) ® xa(n) = Z pln— INY, . a=0dy.., N—1

I:— o0
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Using DFT for Linear
Convolution i

Therefore, circular convolution and linear convolution are related as
follows:

for n=0.1,....N—1

Q: When can one recover x;(n) from xc(n)?
When can one use the DFT to compute linear convolution?

A: When there is no overlap in the periodic repetition of x;(n).
When support length of x;(n) < N.
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Using DFT for Linear Convolutio

L — 1 narsimua neooy
NGINEERING COLLEG!
n=(

o The linear convolution of two finite-length sequences {z[n]}
and {h[n]}M ! is a sequence y[n] of length L + M — 1, given by

y[n] = Z hlklz[n—k], n=0,1,...,L +M —2

k=—o0

e The convolution sequence y[n] has DTEF'T given by
),’(ejw) = X(ejw) H(ejw)

o If we sample Y (e’”) at wyp = 27k/N, where N > L+ M — 1, we
can uniquely recover y[n] from Y[k] = Y (e?27F/N),

o On the other hand, the IDFTs of H(e?*% ) and X (;22) yield the
sequences h[n| and z[n] padded with (N — M) and (N — L) zeros,
respectively. As a result,

yoplt] = 2opln] ® hopl] = YK = X[MHIM

o Notethat f N> L+ M — 1, y[n] =9.pn], 0 <n< L+ M -2,
that is, circular convolution is identical to linear convolution. 19



Using DFT for Linear Convolutig «

NARSIMHA REDDY

e Thus, linear convolution can be implemented by means of thewmmmw

DFET as shown below.

x[n] Pad with Xpln]
Length (M-1) zeros

N-point
DFT

X (K]

N=L+M-1

hin] Pad with | #=l7]

Length (L—1) zeros

N—point
DFT

Y k] =

N-point
IDFT

H KX K]

v]nl
Length

@ The length M of the impulse response at which the DFT based
approach is more efficient than direct computation of convolution
depends on the hardware and software available to implement the

computations.
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using D1 TOr Linear
Convolution Ema

Let x(n) have support n=0,1,...,L—1.
Let h(n) have support n=0,1,... M —1.

We can set N > L +~ M — 1 and zero pad x(n) and h(n) to have
support n =0,1,.... N—1.

Take N-DFT of x(n) to give X(k), k =0.1,.... N—1.
Take N-DFT of h(n) to give H(k), k =0.1..... N—1.
Multiply: Y (k) = X(k)- H(k), k =0.1..... N — 1.

Take N-IDFT of Y(k) to give y(n), n=20.1..... N —1.

i R o
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using D1 TOr Linear ;
Convolution Ema

Length of linear convolution result = Length of DFT

=2] [I=1] [I=0] [I=1] [1=2]

x (n) x (n+2N) x(n)

no overlap

support length=4=N  Xp(n)
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Using DFT for cicular

Convolution ———
N=L+M-1.
Let x,,(n) have support n=0.1,.... N —1.
Let h(n) have support n=0.1..... M —1.

We zero pad h(n) to have support n=0,1..... N —1.

Take N-DFT of x,(n) to give Xn(k), k =0,1,..., N-—1.
Take N-DFT of h(n) to give H(k), k=10,1,... . N — 1.

Multiply: Y,.(k) = Xn(k) - H(k), k=0,1,..., N — 1.
Take N-IDFT of Y, (k) to give yc m(n), n=0,1,.... N — 1.

N
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using DI TOr Cicular
Convolution Ema

e Let’s compute y[n] for the case of N = 4. We have

[ y[0] - 2[0] z[3] =z[2] =[1] | [ R[O] |
yl1] | | 2[1] =[0] =[3] =[2] h[1]
yl2] | | z[2] =[1] =2[0] =[3] h[2]

| y[3] | z[3] x[2] =2[1] =[0] [ | R3]

N — —

X N

@ We note that the column of X are generated by circularly
shifting z|[n]. A matrix generated by this process is called a
circulant matriz.
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using DI TOr Cicular
: o
Convolution Ema

Length of linear convolution result > Length of DFT

- i v (1n+N) v.(n
v{n) linear yi(n+IN) F v
convolution

result

1
T e

——» N

Add and keep points only

atn=0, 1. ..., N-1
overlap since

N <L+M-1 Veln) _
/ corruption from
circular i‘}f—' previous repetitions
. i

convolution i h
result : ;

i

'Ai 1 < k) > [ i "

[ —|
=y,(n) at n=M-1, M, ..., N-1
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Filtering of Long Data Sequence:

NNNNNNNNNNNN

» All N-input samples are required simultaneously by the DFT
operator.

» |f N is too large as for long data sequences, then there is a

significant delay in processing that precludes real-time
processing.

signal Data Acquisition Data Processing signal
: =
input Delay Delay output
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Filtering of Long Data Sequence:

Strategy:

1. Segment the input signal into fixed-size blocks prior to
processing.

NARSIMHA RED'DY

2. Compute DFT-based linear filtering of each block separately.
3. Fit the output blocks together in such a way that the overall

output is equivalent to the linear filtering of x(n) directly.

Main advantage: samples of the output y(n) = h(n) % x(n) will

Goal: FIR filtering: y(n) = x(n) = h(n)

Two approaches to real-time linear filtering of long inputs:

» Overlap-Add Method
» Overlap-Save Method

Assumptions:
» FIR filter A(n) length = M
» Block length =L > M
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Over-lap Add

Deals with the following signal processing principles:

NNNNNNNNNNNN

» The linear convolution of a discrete-time signal of length L and a

discrete-time signal of length M produces a discrete-time
convolved result of length L + M — 1.

» Addititvity:

(x1(n)+x2(n)) = h(n) = x1(n) = h(n)+x2(n) % h(n)
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Over-lap Add 4

Input x(n) is divided
into  non-overlapping
blocks x,,(n) each of
length L.

Each input block
Xm(n) is individually
filtered as it is received
to produce the output

block y,(n).
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Over-lap Add -

NARSIMHA RE)'DY
NGINEERING COLLEG!

» makes use of the N-DFT and N-IDFT where: N =L+ M — 1

» Thus, zero-padding of x(n) and h(n) that are of length
L.M < N is required.

» The actual implementation of the DFT /IDFT will use the fast
Fourier Transform (FFT) for computational simplicity.
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Over-lap Add =

[ TS b2 e
NARSIMHA REDDY

.T('}I ) NGINEERING COLLEG!
ﬁl * h(n)
71
= Output blocks yn,(n)
v Thesa extra M-1 samples (L.e.,“13all") m USt be fltted together
v{a) due to convolution expanding . |
the support must be added ta the dappropri ate Yy to gener-
= tl beglninning of the next output
‘ l \ ate:
{ A

y(n) = x(n) % h(n)

The support overlap
amongst the  yn,(n)
blocks must be ac-
counted for.
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Over-lap Add -

NARSIMHA REI'DY
NGINEERING COLLEG!

From the Addititvity property, since:

x1(n) + x2(n) + x3(n me

(x1(n) 4 x2(n) + x3(n) + - - )*h( )
n) * h(n) + xa(n )*h(l7)+X3( ) * h(n) +

x
—_
~
o
|

||
Mx
i“
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Over-lap Add &

Input signal:

L - L - = L ——
z1(n) N v
\zeros ,
x2(n) NI M —1
' “zeros
e i z3(n) N M -1
Output signal: \ zeros
y1(n) /
Add
M-11= y2(n) //
points Add
M-1E Y3 (T L)
points
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Over-lap Add =

NARSIMHA REDDY
NGINEERING COLLEG!

Break the input signal x(n) into non-overlapping blocks x,,(n) of length L.
Zero pad h(n) to be of length N =L+ M — 1,
Take N-DFT of h(n) to give H(k), k =0,1,...,N —1.

For each block m:

4.1 Zero pad X,,(n) to be of length N=L+ M —1.
4.2 Take N-DFT of x,,(n) to give Xn(k), k=0,1,...,N — 1.
4.3 Multiply: Ym(k) = Xm(k) - H(k), k=0,1,....N — 1.

4.4 Take N-IDFT of Y, (k) to give yu(n), n=0,1,.... N—1.

Form y(n) by overlapping the last M — 1 samples of y,,(n) with the first
M — 1 samples of y,,+1(n) and adding the result.
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Over-lap save -

NARSIMHA REI'DY
NGINEERING COLLEG!

Deals with the following signal processing principles:

» The N = (L + M — 1)-circular convolution of a discrete-time

signal of length N and a discrete-time signal of length M using
an N-DFT and N-IDFT.

» Time-Domain Aliasing:

o

Z ((n—=IN) ., n=0,1,....N—1

\q,_./

=—ocsupport M+N-1
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Over-lap save i

NARSIMHA RE)'DY
NGINEERING COLLEG!

- . 1v.(11+N) v (11-N)
linear v,(n+2N) 7 (H) :

gSiiilig il iigpuil I

'fv-%5-4>-5-!=01.»

= result

Add and Leep points only
at n=0. 1. ... N-1

overlap since
N < L+M-1 V() L
{ corruption from

circular [ previous repetitions
convolution
result
—"""Q's'?'!'ﬁ"t WS R
:_1’[(”) atn=M-1, M, ..., N-1
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Over-lap save %2

NARSIMHA RE)'DY
NGINEERING COLLEG!

» Convolution of x,,(n) with support n=0.1,..., N — 1 and h(n)
with support n=0.1..... M — 1 via the N-DFT will produce a
result yc m(n) such that:

(n) = aliasing corruption n=20,1,.... M -2
YC.m B Vi.m(n) n=M-—1.M..... N —1

where yi m(n) = xm(n) = h(n) is the desired output.

» [he first M — 1 points of a the current filtered output block
Ym(n) must be discarded.

» The previous filtered block y,,_1(n) must compensate by
providing these output samples.
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Over-lap save input segment stag

NNNNNNNNNNNN

1. All input blocks x,,(n) are of length N = (L + M — 1) and
contain sequential samples from x(n).

2. Input block x,,(n) for m > 1 overlaps containing the first M — 1

points of the previous block x,,_1(n) to deal with aliasing
corruption.

3. For m =1, there is no previous block, so the first M — 1 points
are zeros.
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Over-lap save input segment stag

NNNNNNNNNNNN

Input signal blocks:
L———— [ —— [ ——

Zeros
Y Y
I (Tl)

Y lv | 45 V. L G |

point . (n‘)

overlap - vy r
M —1 |
point L3 ( 1 )
overlap
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Over-lap save input segment stag

AAAAAAAAAAAA

o) = 18, G o 6, 5600)(1) o ¥ll— 1))

W
M — 1 zeros

w(n) = @XL—M+1),...x(L—1),%(L),.... x(2L—-1)}

¥

last M — 1 points from x;(n)

x3(n) = {x(QL—-M+1),...x(2L—1),x(2L)..... x(3L—1)}
N — —

last M — 1 points from x2(n)

The last M — 1 points from the previous input block must be saved
for use in the current input block.
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Over-lap save filtering stage &

NNNNNNNNNNNN

» makes use of the N-DFT and N-IDFT where: N=L +- M — 1

» Only a one-time zero-padding of h(n) of length M < L < N is
required to give it support n=0,1.... . N — 1.

» The input blocks x,,(n) are of length N to start, so no
zero-padding is necessary.

» The actual implementation of the DFT /IDFT will use the fast
Fourier Transform (FFT) for computational simplicity.

216



Over-lap save output blocks

AAAAAAAAAAAA

(n) = aliasing n=0.1..... M -2
}/C,m = yL.m(n) n:M—]_M ..... /V—1

where y; m(n) = xm(n) * h(n) is the desired output.
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Over-lap save output blocks &

yi(n) = {y(0), »n(1), ... n(M-2), y(0),...,y(L-1)}
M — 1 points corr:pted from aliasing
ya(n) = {y(0), wm(1), ... ya(M—=2),y(L),...,y(2L—1)}

“
M — 1 points corrupted from aliasing

ys(n) = {ys(0), (1), ... ys(M-2),y(2L),...,y(3L—1)}
“
M — 1 points corrupted from aliasing

where y(n) = x(n) = h(n) is the desired output.

The first M — 1 points of each output block are discarded.

The remaining L points of each output block are appended to form
y(n).
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Over-lap save output blocks

Output signal blocks:

NNNNNNNNNNNN

= y1(n)
Discard
points Discard
points Discard
'\[ na |
points
y1(n) ya2(n) ys(n)

il =90, 1,2 .. .
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Over-lap save . 4

NARSIMHA REDDY
NGINEERING COLLEG!

. Insert M — 1 zeros at the beginning of the input sequence x(n).

. Break the padded input signal into overlapping blocks x,,(n) of length
N = L + M — 1 where the overlap length is M — 1.

. Zero pad h(n) to be of length N=L+ M — 1.
. Take N-DFT of h(n) to give H(k), k=0,1,...,N — 1.

. For each block m:

5.1 Take N-DFT of xn(n) to give Xn(k), k=0,1,...,N — 1.

5.2 Multiply: Ym(k) = Xm(k) - H(k), k = 0,1,..., N —1.

5.3 Take N-IDFT of Yn(k) to give ym(n), n=0,1,..., N — 1.

5.4 Discard the first M — 1 points of each output block y.,,(n).

. Form y(n) by appending the remaining (i.e., last) L samples of each block
Ym(N).
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Over-lap save

Input signal blocks:
L - L Lis=——»
Zeros
L1 (7?)
Y \ L S
M -1 3
point L2 (r L)
overlap P !
V 1 ol
_ point L3 ( r 7')
Output signal blocks: overlap
o yi(n)
Discard =
M—1 g y2(n)
points Discard —7
M -1 P y3(n)
points Discard
M—1

points
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Relationships between CTFT, .
DTFT, & DFT s,

@ The N-point DFT provides a unique representation of the
N-samples of a finite duration sequence.

@ The DFT provides samples of the DTFT of the sequence at a set
of equally spaced frequencies.

@ Suppose that we are given a continuous-time signal z.(¢) with
Fourier transform X.(j(2).

o Its relate discrete signal x[n| = z.(nT") has the DTFT given by

()
X (") = Z ;lrc(-nT)e_JQT” = —;—,Z Xe (] (Q — %m))

n m

e Since w = QT the N-point DFT X [k] is obtained by sampling
X (e™) at wy, = 3%k (or, alternatively, by sampling X (e’*T) at
Q) = #%-k). Formally,

2T \r
X[k] = TZX (( = >) k=0,1,...,N—1 22




Relationships between CTFT, .
DTFT, & DFT s,

o Sampling the DTFT of z[n] is equivalent to the periodic repeti-
tion of x[n] with period N or equivalently of z.(nT') with period
NT'. The result is

Z[n] = Z z.(nT — NTk)
k
@ Therefore, we have the following N-point DFT pair

1 2T 2
Z x.(nT' — NTk) < 7 ; Xc (_] (NTL' - ?m))

k

where 0 <n<N—-1land 0<k<N —1.

e The above relation reveals a frequency-domain aliasing caused by
time-domain sampling and a time-domain aliasing caused by fre-
quency-domain sampling (which, in turn, explains the illhere112t2 .
periodicity of the DFT).



Relationships between CTFT, DTFT

.\'C(I ) "‘C ( } Q)

/N CIFT
// . / s
_ \ - 3
0 t 0 2
Sampling l Periodization
Y
x|n] = x¢(nT) ¢ (21927 L% 2T
- ¢ Xle ):T —Z: .\0(152- ;mT)
m==0a
P DTFT P il N
N B ——— . \ / \ / !
alnnnl [11
nT ) 2
Periodization Sampling
Y /
&2 ¢ s DFT . - , 2rk . 2x
T Xe(nT —ENT) Q—T-' X[k] = F"’__E Xe ('/\_T—l”?)

l] [ { FHNEESANATS

] 224
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Fast Fourier Transform
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Discrete Fourier Transform
The DFT pair was given as
N-1 1 N-1
X[k] _ r;) x[n]e -j(2n / N)kn X[n] _ ﬁkz_lo X[k]ej(zn/N)kn
Baseline for computational complexity:

— Each DFT coefficient requires

» N complex multiplications
» N-1 complex additions

— AIll N DFT coefficients require
* N2complex multiplications
* N(N-1) complex additions

Complexity in terms of real operations
» 4N2real multiplications
« 2N(N-1) real additions

Most fast methods are based on symmetry properties
— Conjugate symmetry e J@r/Nk(N-n) = @-J@x /NN g-j2x/N)k(n)

— Periodicityinnand k e-i@r/Nkn = @-i@=/NknN) = @i@x/N)k+N)n

o
S
NRCM

NARSIMHA REDDY
NGINEERIN G COLLEG!

e 27 / N)kn

226



3

N

Direct computation of DFT ¥

AAAAAAAAAAAA
NGINEERING COLLEGI

The DFT of a finite-length sequence of length N
X[k]= Z qnWy's  k=0L..N-1 Xal% s XI¥]

n=0 & ——

Direct computation: N2 complex multiplications and
N(N-1) complex additions

Q Compute and store (only over one period)
IV — —J(-"" N)k

=cos(2ak/ N)+ jsn(2ak/N), k=0,1,..,N -1
o Compute the DFT using stored W\f and input x|7]
N-1 ‘

X[k =Y Wy, k=01, N-I
n=0
W and x[n]may be complex
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Direct computation of DFT ¥

AAAAAAAAAAAA

NGINEERING COLLEG!

For each k
N-1
X[k]= Z [(Re{x[n]}Re "} —(Im {x[n]} Im J7"})
n=0

+ jRe (6] Im PP+ InG{n} Re W)),  k=0L..,N -1

Therefore, for each value of k, the direct computation
of X[K] requires 4N real multiplications and (4N-2)
real additions.

The direct computation of the DFT requires 4N’
real multiplications and N(4N -2) real additions.

The efficiency can be improved by exploiting the
symmetry and periodicity properties of W)
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Complex conjugate symmetry s

NGINEERING COLLEG!

Periodicity in n and k

o k(n+N) _ (k+N)n
FVN _ FV‘V — LV"J

For example
Re {x[n]} Re {7y} + Re {x[N —n]} Re 71"}

= (Re{x[n]}+Re{x[ N —n]})Re {W{?’ }

o The number of multiplications is reduced by a factor of
2.
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FFT g
NREM

AAAAAAAAAAAA

NGINEERING COLLEG!

Cooley and Tukey (1965) published an algorithm for
the computation of the DFT that is applicable when
N Is a composite number, i.e., the product of two or
more integers. Later, it resulted in a number of
highly efficient computational algorithms.

The entire set of such algorithms are called the fast
Fourier transform, FFT.

FFT decomposes the computation of the DFT of a
sequence of length N into successively smaller
DFTs.
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Decimation-In-Time FFT Algorithms ¥

Makes use of both symmetry and periodicity LT
Consider special case of N an integer power of 2

Separate x[n] into two sequence of length N/2
— Evenindexed samples in the first sequence
— Oddindexed samples in the other sequence

N-1 N_1 -
X[k] = Z x[n]e ~i@m/Nkn Z x[n]e ~j(27 / N )kn N Z x[nJe -j(2n / N)kn

n=0 n even n odd

Substitute variables n=2r for n even and n=2r+1 for odd

N/2-1 N/2-1
X[k]= 3 x[2riw2® + 3 x[2r + 1]W Igz”l)k
r=0 r=0
N/2-1 N/2-1
= Y x[2rIW T, + W > x[2r + 1]W T
r=0 r=0

=G[k ]+ W¥H[k]
G[k] and H[k] are the N/2-point DFT’s of each subsequence
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Decimation In Time

8-point DFT example using
decimation-in-time
Two N/2-point DFTs
— 2(N/2)2complex multiplications
— 2(N/2)2complex additions
Combining the DFT outputs
— N complex multiplications
— Ncomplex additions
Total complexity
— N2/2+N complex multiplications
— N2/2+N complex additions
— More efficient than direct DFT
Repeat same process
— Divide N/2-point DFTs into
— Two N/4-point DFTs
— Combine outputs

x[0] o - - s emey
. TWR
2] o——oA el > / X[1]
% — point \/ ﬁ{
o>  DFT O x[2]
63 Wi
x[6] o——]| — > X[3]
PO
.\’[ ]J O . . "\/H]
H][0] W
x[3] o—— . > % X5
‘%’I—pninl H[1] /\ W_,Q.— 5]
x[5] o——1 DFT > =5 X[6]
H[2] %
x[7] o—>— -0 X[7]

x[0] o—>—

x[4] o——

N_ point
4

DFT

x[2] o—>—

X [6] Oo—>—

N g
— — pomnl
4 F*

DFT




Decimation In Time Cont’d

After two steps of decimation in time

s Further break down

(NI2H (N/4)-1 ’ik (N/4)-1 o

6= Yelry,= Yetlgi+ Y i1y
r=0 =0 I=0

(N/4-1 (N/4)-

= Zop J.n Zg

I=0 =0
(N4 (N/4H1

Hik)= ) {2y, +T7y. L+ +1JTy,

1=

N d
LN M
:j“‘t"

NARSIMHA REDDY
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x[0] e—>—

x[4] o>

%[— point
DFT

w\

5 5 X[0]
AL
. - - ° X1

x[2] o—=—

x[6] o>

N point

4
DFT

X[2

x[1] o>

x[5] o—>—

N point

3
DFT

x[3] o——

x[7] o—>—

N point
DFT

Repeat until we’re left with two-point DFT’s

x[0]

x[4]
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Decimation-In-Time FFT Algorithm 4
Final flow graph for 8-point decimation in time e

x[0] X10]
ﬁf‘
X[1]

Complexity:
— NlogzN complex multiplications and additions
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Butterfly Computation

Flow graph constitutes of butterflies

W
mth

stage

(m—1)st

stage

[

"+ N2
wy M

We can implement each butterfly with one multiplication

c L -y
(rm—1)st mth
stage stage
P r
Wy
O

Final complexity for decimation-in-time FFT
— (N/2)logzN complex multiplications and additions

N M

§<

NARSIMHA REDDY
NGINEERING COLLEGI
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« Decimation-in-time flow graphs require two sets of register:

In-Place Computation

— Input and output for each stage
Note the arrangement of the input indices

— Bitreversed indexing

SRCRCRECI

N » o

I 1
-
L ]

I\II le IU1I

T T T T T T

011 | =
(100 | =
(101 | =
(110 ]
(111 |

(001 | =
010 | =

(000 |= x[000 |

x[100 ]

X

X

X

X

X

010 |
110 |
001 ]

(101 ]
[011 ]

x[111 ]

o
S
NRCM

NARSIMHA REDDY
NGINEERIN G COLLEG!
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Decimation-In-Frequency FFT Algorithm g‘a
e The DFT equation

NNNNNNNNNNNN
N-1

X[k]= > x[nlw I

« Splitthe DFT equation into_even and odd frequency indexes

N-1 N/2-1 N-1
X[2r] = 3 x[nw g2r = Z X[NIW 2" + Z x[n]W R2r
n=0 =N /2
 Substitute variables to get
N/2-1 N/2-1 N/2-1
X[Zr] _ Z x[n]W RZr T Z x[n + N/ 2]W (I\:1+N/2)2r = z (X[n] + X[n + N/ 2])W Rr/z

 Similarly for odd-numbered frequencies

N/2-1

x[2r + 1] = 3 (x[n] - x[n + N / 2))W p+0)

N/2
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Decimation-In- Frequency FFT Algorithm )L
<[0] - o X|0]
.‘c[ll\ W > MY oy
x[3] g v‘v::v i °Xlol
" VAVAY Wy o X[1]
OS] 'A’M‘v- B X[ﬁ]
" IA\BO s

x[7]¢ oo o]

_] -1 -1
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UNIT-3
IR filters



Filter Design Techniques i

NARSIMHA REDDY

* Anydiscrete-time system that modifies certain frequencies NGINEERING COLEG

* Frequency-selective filters pass only certain frequencies

* Filter Design Steps
— Specification

* Problem or application specific

— Approximation of specification with a discrete-time system

e OQurfocusisto gofrom spec to discrete-time system

— Implementation

* Realization of discrete-time systems depends on target technology

 Wealready studied the use of discrete-time systems to implement a
continuous-time system

— If our specifications are given in continuous time we can use

xc(t)—r

x[n

w—

C/D

H(eio)

y[n]

[

»

D/C Wr(t)

H(eio ) = Hc(jco /T)

| < =

240



Digital Filter Specifications

« Only the magnitude approximation problem

« Four basic types of ideal filters with magnitude responses

as shown below (Piecewise flat)

Hyp(e/®)

=T —mc2 el

mel me2 T

m

Hp (')

— 1 —
- e 0 oc W
Hig (/)

] I
—m ~We2 el wcl ®c2 n

l;’
- -
C ==
- -
w

AAAAAAAAAAAA

INEERING COLLEGI
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* These filters are unealisable because (one of the
following is sufficient)

— their impulse responses infinitely long non-
causal

— Their amplitude responses cannot be equal to a
constant over a band of frequencies

Another perspective that provides some
understanding can be obtained by looking at the
Ideal amplitude squared.
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The realisable squared amplitude response transfer
function (and its differential) is continuous in

Such functions @

— If IR can be infinite at point but around that
point cannot be zero.

— If FIR cannot be infinite anywhere.

Hence previous differential of ideal response is
unrealisable
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* For example the magnitude response of a digital
lowpass filter may be given as indicated below

|G'[£.'im*,||

1+6P

1 - Bpks

-— F‘nsshmd—-—E Stopband
st
D L ] ¥ m
0 ®p ®, T
-—i-I I-—
Transition
band
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Digital Filter Specifications .=

NGINEERING COLLEGI

* Inthe passband o<o <o, We require
that \G (el)=1  withadeviation:s

1—8ps‘G(er)

<1+0,, ‘a)‘ﬁa)p

* Inthe stopband o, <o <z we EgQuUIre
that ‘G oy =0 With a deviation

‘G (e o)

<8, ;< <™
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Filter specification parameters
"o - passband edge frequency
® o, - stopband edge frequency
® 5§, - peakripple value in the passband

® 5. - peakripple value in the stopband
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Digital Filter Specifications

* Practical specifications are often given In
terms of loss function (in dB)

G (e o)

° G (o) = — 20 log 4
» Peak passband ripple
o,=-201log ,(1-5,) dB
Minimum stopband attenuation
a,=-20log ,(3.) dB

AAAAAAAAAAAA
NGINEERING COLLEG!
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Digital Filter Specifications

AAAAAAAAAAAA

* |n practice, passband edge frequency r : and

stopband edge frequency  are specified In
Hz

 For digital filter design, normalized bandedge
frequencies need to be computed from

specifications in Hz using g 21 F

®w = -+ - P=2nFT

p p
F; F;

o, = _ —27‘CFST

FT FT 250
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Digital Filter Specifications ==
° Exam[)le B LEt Fp — 7 kHZ, |:S — 3
kHz,and ¢ -2 kHz
* Then
21t (7 x10 3)
®p= 3= 0.967

25 x 10

21 (3 x10 3)
o = s = 0.2d 1

25 x 10
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IR Digital Filter Design &

AAAAAAAAAAAA

NGINEERING COLLEGI

Standard approach

(1)Convert the digital filter specifications into
an analogue prototype lowpass filter
specifications

(2) Determine the analogue lowpass filter
transfer function H , (s)

(3)Transform H ,(s) by replacing the complex
variable to the digital transfer function

G(z2)
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IR Digital Filter Design &

NNNNNNNNNNNN
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* This approach has been widely used for the
following reasons:

(1) Analogue approximation techniques are
highly advanced

(2) They usually yield closed-form
solutions

(3) Extensive tables are available for
analogue filter design

(4) Very often applications require digital
simulation of analogue systems
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lIR Digital Filter Design
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 Let an analogue transfer function be

0 oy Pe(®)

] D, (s)

where the subscript “a” indicates the
analogue domain

« Adigital transfer function derived from this
IS denoted as
P(z)
G (z) =

D(z)
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IR Digital Filter Design =

NGINEERING COLLEG!

® Basic idea behind the conversion of H () INtoG (z)
IS to apply a mapping from the s-domain to the z-
domain so that essential properties of the analogue
frequency response are preserved

 Thus mapping function should be such that

— Imaginary (j Q) axis in the s-plane be
mapped onto the unit circle of the z-plane

— A stable analogue transfer function be mapped
Into a stable digital transfer function
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Specification for effective frequency response of a continuous-time lowpe Nniw

NARSIMHA REDDY

filter and its corresponding specifications for discrete-time system.  wensme oz

\H e (jC2)]
1 +6,
s dpor dipassband ripple
| | | ds or d2 stopband ripple
| o Wp, Wp passhand edge frequency
Passband i Transition i Stopband Ws, Ws Stopband edge frequency
| | e2 passband ripple parameter
5, | |
- | | | —dn=
. o o Ca 1-dp=1N1+eg?
(a)
HE") BW bandwidth = wu — wi
4oy " we 3-dB cutoff frequency
1_s, -”4\ wu, Wi upper and lower 3-dB cutoff
AN frequensies
N Tf\ R Dw transition band = [wp — ws|
assband i |a|1.~,{:|ol1 i Stopband Ap paSSband rlpple indB
| \ = +20l0g10(1 + dy)
5, | - _ As stopband attenuation in dB
. T = -20l0g10(ds)
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Design of Discrete-Time IR Filters

From Analog (Continuous-Time) Filters

Approximation of Derivatives
Impulse Invariance
the Bilinear Transformation
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o
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W
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Reasons of Design of Discrete-Time IIR Filters from

NARSIMHA REDDY

Continuous-Time Filters NS S

The art of continuous-time IIR filter design is highly advanced and,
since useful results can be achieved, it is advantageous to use the
design procedures already developed for continuous-time filters.

Many useful continuous-time IIR design methods have relatively
simple closed-form design formulas. Therefore, discrete-time IIR
filter design methods based on such standard continuous-time design
formulas are rather simple to carry out.

The standard approximation methods that work well for continuous-
time 1IR filters do not lead to simple closed-form design formulas
when these methods are applied directly to the discrete-time IIR case.
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Characteristics of Commonly Used Analog Filters

«  Butterworth Filter
*  Chebyshev Filter
—  Chebyshev Type |
—  Chebyshev Type Il of Inverse Chebyshev Filter
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Butterworth Filter i

NARSIMHA REDDY
NGINEERING COLLEG!

Lowpass Butterworth filters are all-pole filters characterized by the magnitude-squared
frequency response

IH(W)2 = 1/[L + (W/We)2N] = 1/[1 + e2(W/Wp)2N]

where N is the order of the filter, Wc is its — 3-dB frequency (cutoff frequency), Wy is
the bandpass edge frequency,and  1/(1 + e2) is the band-edge value of |[H(W)|2.

At W = Ws(where Wsis the stopband edge frequency) we have

1/T1 + e2(Ws/Wp)2N] = d22
and

N = (1/2)logo[ (1/d22) — 1]/logio(Ws/\Wc) = logio(d/e)/logio(Ws/Wp)
where d2= 1/V1 + do2.

Thus the Butterworth filter is completely characterized by the parameters N, dz, e, and
the ratio Ws/Wh.
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Butterworth Lowpass Filters -
- Passband is designed to be maximally flat e

« The magnitude-squared function is of the form
1 1

2 —
1+Ga /jo )™ feG) -

HC(J'Q)\Z -

| H.(jQ)]

§)

s = (1) (o C) = ch(j”/ZN)(2k+N_l) for k =0,1,....2N -1



IH(Q)R

- Frequency response of lowpass Butterworth filters

N d
LN M
“j“'t"
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Chebyshev Filters 8
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«  The magnitude squared response of the analog lowpass Type | Chebyshev
filter of Nth order is given by:

IH(W)[2 = 1/[1+ e2T 2(W/W )].
where Tn(W) is the Chebyshev polynomial of order N:

Tn(W) cos(Ncos1 W), [W|<1,
cosh(Ncosh-1 W), IW| > 1.

The polynomial can be derived via a recurrence relation given by
T(W) = 2WT (W) - Tro(W), r>2,
with To(W) =1and T{(W) =W.

The magnitude squared response of the analog lowpass Type Il or inverse

Chebyshev filter of Nth order is given by:
IHW)J|2 = 1/[1 + e2{Tn(Ws/Wp)/ Tn(Wo/W)}2].
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Chebyshev Filters i
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 Equiripple in the passband and monotonic in the stopband
« Orequiripplein the stoplband and monotonic in the passband

‘H (32 )‘ ) V (x) = cos (Ncos -1 X)
) 1+e2v2(Q/Q))

| H.(jQ)]

0
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LH(S)12 |H(S2)I1?

| 1 b
! W ENAYAY Frequency response of

L#et lowpass Type | Chebyshev filter

IHW)|2 = 1/[1 + e2T g(W/W )]

Q

N odd N even

|H(ES)? IHQ)?

| Frequency response of
1 1
\ ‘ lowpass Type 1l Chebyshev filter

HW)E = V[L + e{T 2(W W )/T 2(W W)}]

Q e Q

263



l,(‘
- -
o
- -
W

NARSIMHA REDDY
NGINEERING COLLEGI

N = logio[(V 1 - d 2+ Vi-d (L + €2))/ed }/log 0[(W W)+ (W/W )2-1]
1 S p S p
= [cosh-1(d/e)]/[cosh1(W/W,)]

for both Type I and Il Chebyshev filters, and where
d2=1/V1+d2

«  The poles of a Type | Chebyshev filter lie on an ellipse in the s-plane with major
axis ry = Wy{(b2 + 1)/2b] and minor axis r; = W,{(b2 - 1)/2b] where b is related to
e according to

b={[V1+e2+1]/e}tN
« Thezeros ofa Type Il Chebyshev filter are located on the imaginary axis.

264



Determination of the pole locations
for a Chebyshev filter.
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i
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Type I: pole positions are
Xk = r2cosfk
Yk = risinfk
fu =[p/2] + [(2k + 1)p/2N]
ri = Wp[b2 + 1]/2b
r. = Wp[b2 —1]/2b

b={[V1+e2+1]/e}N

Type Il: zero positionsare
Sk = JWs/sinfk
and pole positions are

Vk = Wsxi/\ x2+y?

Wk = Wyl W
b={[1+V1-d2]/d }w
k=0,1,...,N-1.
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Approximation of Derivative Method e
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«  Approximation of derivative method is the simplest one for converting an
analog filter into a digital filter by approximating the differential equation by
an equivalent difference equation.

—  For the derivative dy(t)/dt at time t = nT, we substitute the backward difference
[y(nT) —y(nT —T)]/T. Thus

dy (1)
dt

y(nT)—y(T ~T) y[n]-y[n -1]

T T

t=nT

where T represents the sampling period. Then, s = (1 —z-1)/T
—  Thesecond derivative d2y(t)/dt2 is derived into second difference as follow:

dy (1) y[n]-2y[n -1]+ y[n - 2]
dt t=nT T
which sz =[(1 —z1)/T]2. So, for the kth derivative of y(t), sk=[(1—z1)/T]x

266



Approximation of Derivative Method g‘g
NREM

Hence, the system function for the digital IR filter obtained as a result of the SRS
approximation of the derivatives by finite difference is

H(z) = Ha(S)ls:(z-l)/T z

It is clear that points in the LHP of the s-plane are mapped into the
corresponding points inside the unit circle in the z-plane and points in the
RHP of the s-plane are mapped into points outside this circle.

—  Consequently, a stable analog filter is transformed into a stable digital filter due
to this mapping property.

W
Unit circle

M

s-plane

z-plane
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Example: Approximation of derivative method
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Convert the analog bandpass filter with system function

Ha(s) = 1/[(s + 0.1)2 + 9]
Into a digital IIR filter by use of the backward difference for the derivative.

Substitute for s = (1 — z1)/T into H,(s) yields

HZ)  =U[((1-z1)/T)+0.1)2 +9]
T2
H(z) = 1+0.2T #9017 ?
] — —20+04T) 7 4 ! 7 =2
140.2T +9.01T 2 1+0.2T+9.01T 2

T can be selected to satisfied specification of designed filter. For example, if T=0.1,
the poles are located at

D12 =0.91 + j0.27 = 0.949exp[+j16.50]
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Filter Design by Impulse Invariance

Remember impulse invariance
— Mapping a continuous-time impulse response to discrete-time
— Mappinga continuous-time frequency response to discrete-time
h[n] = Th (nT d)
» ([ o 21 )
H(ei ) = SHIj _+j_ kl

- L T Ta )

If the continuous-time filter is bandlimited to

H(jQ) = 0 Q|>n/T.
[ o)

If we start from discrete-time specifications T4 cancels out
— Start with discrete-time spec in terms of ®
— (o to continuous-time Q= o /T and design continuous-time filter
— Use impulse invariance to map it back to discrete-time o= QT

Works best for bandlimited filters due to possible aliasing

NARSIMHA REDDY
NGINEERING COLLEG!
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Impulse Invariance of System Function:

NREM
Develop impulse invariance relation between system functions NGINEERING COLLEG:
Partial fraction expansion of transfer function
Ay
H (s) =20
i k=1 S — S,

Corresponding impulse response

[N
A eSkt
() - 15 AT 20

TR t<0
Impulse response of discrete-time filter

[ ] ( ) N — [ ] N (Sde )n [ ]
hn = Tehe nTo = ), T4Ae un =Y T4A, e un
System function k=1 k=1
() ~» T,

Hz:z

1 _ eSdez—l
k=1

Pole s=sy in s-domain transform into poleat € et
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Impulse Invariant Algorithm T

NGINEERING COLLEG!

Step 1: define specifications of filter
—  Ripple in frequency bands
—  Ciritical frequencies: passband edge, stopband edge, and/or cutoff frequencies.
—  Filter band type: lowpass, highpass, bandpass, bandstop.

Step 2: linear transform critical frequencies as follow
W= W/Td

Step 3: select filter structure type and its order: Bessel, Butterworth, Chebyshev
type I, Chebyshev type Il or inverse Chebyshev, elliptic.

Step 4: convert Hy(s) to H(z) using linear transformin step 2.
Step 5: verify the result. If it does not meet requirement, return to step 3.
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Example: Impulse invariant method s
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Convert the analog filter with system function
Ha(s) = [s + 0.1])/[(s+ 0.1)2 + 9]
into a digital IR filter by means of the impulse invariance method.

The anl_ahlog filter has a zero at s =- 0.1 and a pair of complex conjugate poles at pxk =- 0.1 £ 3.
us, 1 1

H (S): 2 + 2
: s+01- j3 s+0.1+ j3

1 1
Then H(z) = 5 | ,
1 — e—O.lTe j3T Z_lT 1 - e—O.lTe—jSTZ—l
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Frequency response
of digital filter.

Frequency response
of analog filter.
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1+ 5, (S
10—

Passband

Transition

Disadvantage of previous s
techniques: frequency

warping -> aliasing effect

and error in specifications

of designed filter (frequencies)

So, prewarping of frequency

Is considered.

3

|
|
I
l
I
|
I
I
[
|
0 Q,

\H (e/@)|
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Example
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Impulse invariance applied to Butterworth s et
0.89125 sH(er}sl Os‘m‘ <0.2n
H(ew) <0.17783 0.3 < |o| <=

Since sampling rate T4 cancels out we can assume Tg4=1
Map spec to continuous time

0.89125 < H(jo )| <1 0 < |o|<0.2x
[HGe ) <0.17783 0.3n <|of <n

Butterworth filter is monotonic so spec will be satisfied if

He(j0.27) > 0.89125 and |H.(j0.37) <0.17783
1

2
H Go)| = ———
c 1+ (o /o e
Determine N and Q. to satisfy these condition
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H(s)

Example Cont’d

Satisfy both constrains
o.zn)m ( 1 )2 0. 3n\zN 1 P
1+ - | and |
L Q. L0.89125 L Q. \o 17783 )
Solve these equations to get
N =5.8858 =6 and Q.= 0.70474

N must be an integer so we round it up to meet the spec
Poles of transfer function
sc =(_ gy /2 02 )= @ et/ ror i —0,1,..,11
The transfer function
0.12093

NARSIMHA REDDY
NGINEERING COLLEGI

(s2 + 0.364 s+ 0.4945 )(s2 + 0.9945 s + 0.4945 )(s2+ 1.3585 s + 0.4945

Mapping to z-domain

H(z): 0.2871 - 0.4466 z-! - 2.1428 4+1.1455 z-1
+

1-1.2971 z1 + 0.6949 z-2 1-1.0691 z-1 + 0.3699 z-2
1.8557 - 0.6303 z-!

+
1-0.9972 z1 + 0.257 z-2
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Amplitude

Samples

1.0

0.8

0.6

0

027 04 0.6 0.8

Radian frequency (w)

10—

8

f

0

Radian frequency (e)

2T 0.4sr 0.6 0.8 ar
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Filter Design by Bilinear Transformatiol -

Get around the aliasing problem of impulse invariance | NaRSiMHA REDOY
Map the entire s-plane onto the unit-circle in the z-plane

— Nonlinear transformation
— Frequency response subject to warping

Bilinear transformation

s

2
S = — 1
TdL1+Z

|
y
Transformed system function
H(Z) =H ||_2 |[1 - -1 Dﬂ
||_Td|k1 + Z_lle
Again T4 cancels out so we can ignore it
We can solve the transformation for z as

1+(T /2)s 1+o6T /2+jQT /2
Z = d = d d S =0 + jQ

1-(Ty/2)s 1-06Ts/2-jQT4/2

Maps the left-half s-plane into the inside of the unit-circle in z
— Stable in one domain would stay in the other
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S

Bilinear Transformation

On the unit circle the transform becomes

Z_1+JQTd/2 _ e

1 - jOT, /2

To derive the relation between o and Q

NNNNNNNNNNNN

(@)
\2)

2 (1 - g-io 2 [2e-/2jsin (0 /2)] 2]
= | |=G+j = | —jo /2 | = —tan | __|
TdL1+e_Jm) Ty | 26 cos (0/2)] T,
Which yields
2 (@) (QT,
Q =__tan| _| or ® = 2 arctan |

|
Td \2) L2 )
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Bilinear Transformation
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Example

Ny
Qe

. NREM
Bilinear transform applied to Butterworth ks oy
0.89125 sH(er}sl Os‘m‘ <0.2n
J:(ejwl < 0.17783 0.37 < |o] <=
Apply bilinear transformation to specifications
2 (0.27)
0.89125 < H(jQ)‘sl 0 S‘Q‘S_tan| |
T, \ 2 )
2 (0.31)
H(jQ} < 0.17783 — tan | | < |Q| <
Ty L2 )
We can assume T4=1 and apply the specifications to
1
i Ge)f - T
To get c 1+(@Q/.)
(2tan O0.1m v [ 1 12 (2tan 0.15 x 2N 1 V2
Pl T T A Sl | |
Q L0.89125 Q \0.17783 )
\ ¢ ) \ ¢ )
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: Example Cont’d

y*
Solve N and Q2. e
Iogm( 1 ) V0 f_l||\ﬂ

I\ 0.17783 _1)‘ uu'wub / ) Q =0.766

N = / - 5.305 =6 ¢
2 log [tan (0.15 =) tan (0.1x)]

* The resulting transfer function has the following poles
s, = (1) (G )= el g K 0,1,...,11
e Resultingin

H.(s) =

0.20238
(s2 +0.3996 s+ 0.5871 )(s2+1.0836 s+ 0.5871 )(s2+1.4802 s + 0.5871 )

* Applying the bilinear transform yields

0.0007378 (1+ 71)s
H(z) =

(1-1.2686 Z '+ 0.7051 z-2)(1-1.0106 z* + 0.3583 z-2)
1
“(1- 0.9044 Z7 +0.2155 27)
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IR Digital Filter: The bilinear

transformation

* To obtain G(z) replace s by f(z) in H(s)

o Start with requirements on G(z)

G(z)

Available H(s)

Stable

Stable

Real and Rational in z

Real and Rational
NS

Order n

Order n

L.P. (lowpass) cutoffo

C

L.P. cutoff o T

Y

NNNNNNNNNNNN

NGINEERING COLLEG!
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Bilinear Transformation .=

» Mapping of s-plane into the z-plane
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Bilinear Transformation = =«

AAAAAAAAAAAA

NGINEERING COLLEG!

* For z = eio With unity scalar we have
jo=1-e"

" = Jtan( o/ 2)

or Q =tan( o /2)

286



Bilinear Transformation

AAAAAAAAAAAA
NGINEERING COLLEG!

* Mapping is highly nonlinear

« Complete negative imaginary axis in the s-
plane from @ = - to o =0 IS mapped Into
the lower half of the unit circle in the z-plane
fromz=-1 toz =1

« Complete positive Imaginary axis in the s-
plane froma - o too - « ismapped into the

upper half of the unit circle in the z-plane
from z =1 toz = -1
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Bilinear Transformation = ==
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* Nonlinear mapping introduces a distortion
In the frequency axis called frequency
warping

 Effect of warping shown below

0 L= g tan (ow2)
/ ~
L #
0y i
Ii'
R

\__|o
0

..!/
f’
H I
|Fat | w

reso|

® 288
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Spectral Transformations

otransform ¢, (z) adgiven lowpass transfer

function to another transfer function ¢ 5 (2?)
that may be a lowpass, highpass, bandpass or
bandstop filter (solutions given by
Constantinides)

* _, hasbeen used to denote the unit delay In

Z _
the prototype lowpass filter ¢, (z)and z 1

to denote the unit delay in the transformed
filter G, () to avoid confusion
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Spectral Transformations ===

» Unitcircles in z- and z-planes defined by
z=¢glo | 7"=¢el
* Transformation from z-domain to
z-domain given by

* Then
z2=F(2)

Gp(2) = G {F ()}
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Spectral Transformations ===

» From z = F () ,thusz = F(z)| , hence
(>1, if |z >1

|
F(r)=1 if|7=1

<1, if lz/<1
* Therefore1/ F (z©) must be a stable allpass function

1 L (1- o*7")
=iH| L |, ‘ocl‘<1
F(Z) =1\ 7= oy )
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L owpass-to-Lowpass
Spectral Transformation

® To transforma lowpass filterG _ (z) with a cutoff
frequency o .to another lowpass filter G 5 (2°)

with a cutoff frequency o",, the transformation is
1 _1-oaZ”
F(z) 7-a

* On the unitcircle we have
g-lo = £ U

71

which yields
tan( o /2) = |(1+OL \ltan( o /2)

\l1-a)
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L owpass-to-l_owpass

Spectral Transformation =

. Solving we get sin (0 - o )/2)
o = C C
sin (0 + @) /2)

« Example - Consider the lowpass digital filter

O 0662 (1+ z 1)3
GL(z)= =2
(1-0.2593 z )(1 - 06763 z +0.3917 z )

which has a passband fromdcto 0.25x with
a 0.5 dB ripple

* Redesign the above filter to move the
passband edge to

0.357 29



L owpass-to-L.owpass
Spectral Transformation

e Here

a:

sin( 0.3 )

_sin( 0.057) _

— 0.1934

AAAAAAAAAAAA

Hence, the desired lowpass transfer function is

Gp (ZA) = G (z) S '+ 0.1934
1+0.1934 7
G@. G @
L D
012 014 0:6 0:8‘ 1



L owpass-to-lL.owpass
Spectral Transformation



L owpass-to-l_owpass
Spectral Transformation e

* The lowpass-to-lowpass transformation

;-1 1 _l1-a”
F(z) Z7-o

can also be used as highpass-to-highpass,
bandpass-to-bandpass and bandstop-to-
bandstop transformations
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Lowpass-to-Highpass i
SpeCtraI Transformation NGINEERING COLLEG:
* Desired transformation

1
7-1 — _ V4 + O

l+az
* The transformation parameter ¢ IS given by

~cos (o, +@°c)/2)
cos (o, —®¢)/2)

where o . Is the cutoff frequency of the lowpass
filterand ", I1sthe cutoff frequency of the desired

highpass filter
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L owpass-to-Highpass
Spectral Transformation

« Example - Transform the lowpass filter

O 0662 (1+ z 1)3
GL(z) = =2
(1-0.2593 z )(1 - 0.6763 z + 0.3917 z )

 with a passband edge at 0.25 = to a highpass
filter with a passband edge at o 55 =

e Hereo = —cos( 0.4n )/cos( 0.157 ) = —0.3468
* The desired transformation Is
;4 _ 77 —0.3468
1-0.3468 2
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L owpass-to-Highpass
Spectral Transformation

* The desired highpass filter is

Gp(z)=G(z),.__ z7-0.3468

1-0.3468 7

0 0.2m 0.4n 0.6m 0.8m T
Normalized frequency
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L owpass-to-Highpass
Spectral Transformation s,

* The lowpass-to-highpass transformation can
also be used to transform a highpass filter with

acutoffat ,  to a lowpass filter with a cutoff
at o

 and transform a bandpass filter with a center
frequency at o, to a bandstop filter with a
center frequency at "
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L owpass-to-Bandpass
Spectral Transformation

* Desired transformation

302
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L owpass-to-Bandpass 2

Spectral Transformation === s

* The parameters a and p are given by

o = 605 ((0°cr +0°1)/2)
COS (((DACZ _O)Acl)/z)
B=cot (¢ —0y)/2)tan( o, /2)

where o . IS the cutoff frequency of the lowpass

filter, and ®"c 1 and ", , are the desired upper and
lower cutoff frequencies of the bandpass filter
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L owpass-to-Bandpass %
Spectral Transformation
» Special Case - The transformation can be
simplified if o, =@, — @
* Then the transformation reduces to

_ 71—«
Z 1 = _Z’\—l

1 - O(, ZA_l

where o =cos o, With o, denoting the
desired center frequency of the bandpass filter
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L owpass-to-Bandstop 2

Spectral Transformation === s

* Desired transformation

Z"_Z . 20(6 71 +1_ [3
-1 1+ P 1+

1o B -2 20p
yA —

1+ 1+ B

V4

77141
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L owpass-to-Bandstop 2

Spectral Transformation === s

® The parameters o and g are given by
o - COs (@ ey + @) /2)

COS (((DACZ _Q)Acl)/z)

B =tan ((; _(DAcl)/z)tan(@c [2)
where o Is the cutoff frequency of the
lowpass filter, and «*: and ©. are the desired
upper and lower cutoff frequencies of the
bandstop filter
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UNIT-4
FIR Filters



Selection of Filter Type

AAAAAAAAAAAA
NGINEERING EGI

* The transfer function H(z) meeting the
specifications must be a causal transfer
function

* For IIR real digital filter the transfer

function is a real rational function of z

-1
+ / + —2 . Z_M
pO pl pZZ 44 pM

d +dz't+d 772+ +d  z-N
0 1 2 N

* H(z) must be stable and of lowest order N or
M for reduced computational complexity =

H(z) =




AAAAAAAAAAAA
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Selection of Filter Type

* FIR real digital filter transfer functionis a

polynomialin  z-1  (order N) with real
coefficients N

H (z) = Zh[lﬂ]Z |

 For reduced computatlonal complexity, degree N
of H(z) must be as small as possible

» [f alinear phase Is desired then we must have:

h[n]=+h[N —n]
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Selection of Filter Type

« Advantagesin using an FIR filter -
(1) Can be designed with exact linear phase

(2) Filter structure always stable with guantised
coefficients

 Disadvantages in using an FIR filter - Order of an
FIR filter is considerably higher than that of an
equivalent IR filter meeting the same
specifications; this leads to higher computational
complexity for FIR

310



Digital filters with finite-duration impulse response (all-zero, or FIR filters)
have both advantages and disadvantages compared to infinite-duration
Impulse response (1IR) filters.

FIR filters have the following primary advantages:

- They can have exactly linear phase.

-They are always stable.

- The design methods are generally linear.

- They can be realized efficiently in hardware.

- The filter startup transients have finite duration.

The primary disadvantage of FIR filters is that they often require a much
higher filter order than IIR filters to achieve a given level of performance.
Correspondingly, the delay of these filters is often much greater than for an
equal performance IIR filter.
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FIR Digital Filter Design

Three commonly used approaches to FIR
filter design -

(1) Windowed Fourier series approach
(2) Frequency sampling approach
(3) Computer-based optimization methods
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Finite Impulse Response Filters

The transfer function is given by

1

H(z)= 5 h(n)z "

The length of Impulse Response is N
All polesareat ;- o.

Zeros can be placed anywhere on the z-
plane
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FIR: Linear phase = @

For phase linearity the FIR transfer

function must have zeros outside the
unit circle
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L_1inear Phase e
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What is linear phase?

Ans: The phase Is a straight line in the passband of
the system.

Example: linear phase (all pass system)

| Group delay Is given by the negative of the slope

of the line o
/H[:,-.;)II“: Pw)

.

+—— — -
- il i

41—
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|_Inear phase pre

* linear phase (low pass system)

* Linear characteristics only need to pertain to
the passband frequencies only.

LH(w) = ®(w)
1

Passband
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FIR: Linear phase ™ |

 For Linear Phase t.f. (order N-1)
° h(n)=+h(N -1-n)
* S0 thaNt for N even:
H(z) = 22_ h(n).z-" £ Z_ h(n).z-n

n=0 n:NA

N%_l N%—l

= Y h(n)z"+ ¥ h(N —1-n).z-(N-1=-n)

1

N

h(n)[Z‘”iZ‘m] m=N —-1-n

n=0 317
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FIR: L|near phase NNNNNNNNNNNNNN :
« for N odd:
Np-1_4 (N — 1\ —(|N_2—i\|
H(z)= X h(n),[z—n + Z_m]-|— h| |Z \ )
" L2 )

* 1) Onc :|z[-1 we have for N even, and
+ve sign ol
H(e®T)=e¢ JoT Nzt /12h(n) cos ((DT(n— N —lﬂ
Ly R
n=0 \ K 2
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FIR: Linear phase

* |I) While for —ve sign

H (ejmT):e jQ)T(|N -1 N

2 (
j2h(n).sin
k é |

S

N — 1371
|| f

. \
[Note: antisymmetric case adds = /2 rads to
phase, with discontinuity ato = 0 ]
e |ll) For N odd Wltrh tve 5|gn ,
- jo T | N -1 —
H (e doT ) _ L'+U%fh|f \|
v o2 )
T I
+ Y 2h(n). cos |w-|-|n_
n=20 k

2 )JJ

AAAAAAAAAAAA

(DT(n— N —1\

)
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FIR: Linear phase

* V) While with a—ve sign

_ij|FEW[N_2—_3 _ T ( N 1 ]
4221.h(n).3|n|®_|_|n_ ﬂ}

=0 L\ 2 )J|J

H (e Ty =
€

 [Notice that for the antisymmetric case to have
linear phase we require

(N - 1)
h | | = 0.

.2 )

The phase discontinuity Is as for N even]

320

NGINEERING COLLEG!



aaaaaaaaaaaa

FIR: Linear phase :

* The cases most commonly used in filter
design are (1) and (I11), for which the
amplitude characteristic can be written as a
polynomial in

ol
cos

2
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Summary of Properties

H (o) =ee N °F (0 )X a_cos (ko )

NAR

k=0

Type | I 11 \Y;
Order N even odd even odd
Symmetry symmetric symmetric anti-symmetric anti-symmetric
Period 2T 4 2T 4m
W0 0 0 /2 /2
F(w) 1 cos(w/2) sin(m) sin(w/2)
K N/2 (N-1)/2 (N-2)/2 (N-1)/2
H(0) arbitrary arbitrary 0 0
H(m) arbitrary 0 0 arbitrary

SSSSSSSSS



AAAAAAAAAAAA

NGINEERING COLLEG!

Design of FIR filters: windows

(1) Start with ideal infinite duration {h(n)}

(1) Truncate to finite length. (This produces
unwanted ripples increasing in height near
discontinuity.)

(III) Modifyto h(n)=h(n).w(n)

Weight w(n) Is the window
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Design of FIR filters: windows

Simplest way of designing FIR filters R S
Method is all discrete-time no continuous-time involved
Start with ideal frequency response

(») - [] *n o ( o) jor

Hye :nlhdne hdnzz—dee e dow
T —n

Choose ideal frequency response as desired response
Most ideal impulse responses are of infinite length
The easiest way to obtain a causal FIR filter from ideal is

(h [n] 0<n<M

| O else
More generally

h[n]=h [n]w[n]  where

W[n] _ (1 0<n<M
d 4LO else



Properties of Windows -

NRCM

Prefer windows that concentrate around DC in frequency s,
— Less smearing, closer approximation

Prefer window that has minimal span in time
— Less coefficient in designed filter, computationally efficient

So we want concentration in time and in frequency

— Contradictory requirements

Example: Rectangular window
() m  en g - e 0D oms2sin [o(M + 1)/ 2]

= €

W e =Ze
n=0

1 -e™” sin[o /2]

sin (w(M +1)/2)

(M=7)

sin (w/2)

Peak sidelobe

2T T 2ar w

(M+1)

W, }47 Mainlobe 325
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Windowing distortion =

* Increasing window length generally reduces the
width of the main lobe

 peak of sidelobes Is generally independent of M

W (w) (indB scale)
%~
» Main Lobe (causes smoothing) L +4 1

~_ '

| ~Magnitude of ripples
increases as the height

of the sidelobes increases

Sidelobes (causes ringing effect)

| e T 0 Wy W
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Windows P

AAAAAAAAAAAA

Commonly used windows

Rectangular 1

Bartlett

Hanning
Hamming

Blackman

Kaiser

1 — Z‘n‘

N (270 ) 2

1 + cos | |

L N (27N )
0.54 + 0.46 cos |

ns =2

. N J
(2mn ) (Amn )
042 + 0.5 cos | |+ 0.08 cos | |
L N ) L N )

| > |
2n
JOB\/]'( ] /JO(B)
||_ \N—l U
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Rectangular Window

N
 Narrowest main lob i) Rectangular s oor

/

1.0

— 47[/(M+1) :dmnllmg
— Sharpest transitions at 081 —— :iiﬂif‘iﬁz‘“

discontinuities in frequency

I
|
I
|
|
|
|
|
|
|
|
I
|
|
i _13 dB /_:-_,_..“':"'/ I ‘Q::.'a..\ n
E
2

0.4
 Large side lobs 02
o 0 M
— Large oscillation around
discontinuities v
_ 20|
: : : < _40F
« Simplest window possible =
60
W[n]:%[l oEn=M "ﬁ—xn—
L0 else | | | |
~100 ,
0 027 0.47 0.6 0.87 T

Radian frequency (w)



Bartlett (Triangular) Window .

« Medium main lob
— 8n/M

« Side lobs
—-25dB

e Hamming window
performs better

« Simple equation

[ 2n /M 0O<n<M/2
W[n]=I2—2n/M M/2 <nc<
II 0 else

NRCM
wn] Rectangular Nr;f;:é::ac 'I-_“é’&:a
1.0 - '/
. Hamming
I ———— Hanning
0.8 I —-— Blackman
| W N —-—— Bartlett
I
0.6 I
I
I
0.4 I
I
| N
0.2 i N\,
r] | - " N
L™ I \“"-'-""...;.. n
0 M M
2
0
_ 20
3
:_”“: —40 —
660 [
80
~100 | |
0 0.2 047 0.6 0.8 T

Radian frequency (o)



Hanning Window

NRGM
Medium main lob s
wn] Rectangular
— 8n/M Lo
. 0 Hamming
| ———— Hanning
. 0.8 — I —_—— Blﬂukm:m
Slde IObS I ————— Bartlett
_ 31 dB 0.6 i
0.4 i
| ]
Hamming window performs 02 i A
better i | Nao,
0 M M
0
Same complexity as ol
Hamming T
= 40
(1] (2nn V] = p
|1 - cos | 0<n<M 27
| 0 else m | ATAY
0 027 0.4 0.67 0.87

Radian frequency (w)



Hamming Window s

® Medium main lob

8n/M

« Good side lobs

-41 dB

« Simpler than Blackman

|
!

0

M

w[n] = Jo.54 ~0.46 cos | 2™

|
)

wn|

Rectangular .
NARSIMHA REDDY
NGINEERING COLLEG!

0.8

0.6

0.4

Hamming
———— Hanning

—-— Blackman
————— Bartlett

=20

_40

—60

20 |(‘lf.__',] 0 |H((”“”}|

—80

—100
0

0.4 0.6 0.87

Radian frequency (o)



Blackman Window

® Large main lob
— 127/M

1.0
0.8

0.6

» Verygood side lobs
- -57dB h

« Complex equation 0

( (27nn) (47rn)
0.42 _0.5cos| —_|+0.08 cos| |

w[n]zi LM ) \ M)

| 0

20 log o W (el@)

wn|

Rectangular .
NARSIMHA REDDY
NGINEERING COLLEG!

Hamming
———— Hanning

—-— Blackman
————— Bartlett

-20

—40

—60

—80

—100

0 <n <M
else
| mf\[\(\n Al
0 0.2 0.4 0.6 0.87 T

Radian frequency ()



Kaiser Window Filter DeS|gn I\/Ietho

« Parameterized equation
forming a set of windows

— Parameter to change main-lob
width and side-lob area trade-off

T m —™M/2 - |
IB\/l |
[n] 40L . M72 )J 0 <n< M
| IO(B)
|L 0 else

— lo(.) represents zeroth-order
modified Bessel function of 1st
kind

Amplitude

0.

0.

9

fi

NNNNNNNNNNNN

f'-;; o
s LY \
s \
/ AN N,
v N
\ b

NGINEERING COLLEG!

e e [ =

—_———=h

S Y T
—_—— =20
S ¥ T




Comparison of windows ==k

COMPARISON OF COMMONLY USED WINDOWS

Pcak Transition

Peak Approximation  Equivalent Width

Side-Lobe  Approximalte Error, Kaiser of Equivalent

Type of Amplitude Width of 2010g¢ 0 Window, Kaiser
Window (Relative) Main Lobe (dB) B Window
Rectangular —13 dr /(M + 1) —21 0 1812/ M
Bartlett —25 87/ M -25 1:33 23T/ M
Hanning —31 sa/M —44 3.86 5.01lx/ M
Hamming —41 87/ M —53 4.86 627/ M
Blackman -7 2n /M ~74 7.04 0.197 /M
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Kalser window

e Kaiser window

B Transition | Min. stop
width (Hz) | attn dB

2.12 1.5/N 30

4.54 2.9/N 50

6.76 4.3/N /0

8.96 5.7/N 90

NNNNNNNNNNNN

NGINEERING COLLEG!
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Lowpass Filter Designed Using Hann window

0

-50

-100

Ny
L )

i

NARSIMHA REDDY
NGINEERING COLLEGI

Example

Lowpass filter of length 51 and W, =mn /2

Lowpass Filter Designed Using Hamming  window
0

\m -50

!
ﬂ Ao 100 W ;

T

0.2 0.4 06 08 1 0 0.2 0.4 0.6 0.8 1
on : : : : w/n
Lowpass Filter Designed Using Blackman window
0
-50

0 0.2 0.4 0.6 0.8 1 336
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Frequency Sampling Methou

* Inthisapproach we are given H (k) and
need to find H (2)

» This s an interpolation problem and the
solution is given in the DFT part of the

course

N -1 1-z-N
H(z)=— > H (k). T
N x=o ik

1—-e N .z

* |t has similar problems to the windowing
approach



iy o8

FIR Digital Filter Order EstimatiCa=z

5

N M)
NATLAA
sssssssss Gi

Kaiser’s Formula:
—201log , ( SDSS)—13
146(w —o )/2n
s p

N

12

+1

* 1e N is Inversely proportional to transition
band width and not on transition band
location
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UNIT-5
Multirate signal processing &
Finite Word length Effects



Ny d
\‘\:o'l,

Single vs Multirate Processing .

@ Single-rate processing: the digital samples before and after
processing correspond to the same sampling frequency with
respect to (w.r.t.) the analog counterpart.

e.g.. LTI filtering can be characterized by the freq. response.

K

@ The need of multi-rate:

o fractional sampling rate conversion in all-digital domain:
e.g. 44.1kHz CD rate <= 48kHz studio rate

@ The advantages of multi-rate signal processing:
e Reduce storage and computational cost
@ e.g.: polyphase implementation

e Perform the processing in all-digital domain
without using analog as an intermediate step that can:

@ bring inaccuracies — not perfectly reproducible
@ increase system design / implementation complexity
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Basic Multirate operations: DeC|mat|o

NNNNNNNNNNNN

and Interpolation === :

e Building blocks for traditional single-rate digital signal
processing: multiplier (with a constant), adder, delay,
multiplier (of 2 signals)

N TR SN - . 2

@ New building blocks in multi-rate signal processing:

M-fold decimator XCnJ @W )

[-fold expander XIn )~y ’:\__7\{(5“3

341



M-fold Decimator s

yp[n] = x[Mn],M € N

eq. M=2_
XLin]
=3 ¥ \‘IK
[ -\ | 23 4 L

>X\MM—>

XCnA

Corresponding to the physical time scale, it
is as if we sampled the original signal in a
slower rate when applying decimation.
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Sampling Rate Reduction by an Integer Factor: i
Downsampling ARG

NARSIMHA REDDY

We reduce the sampling rate of a sequence by “sampling” it
x [n]=x[nM ] = x (nMT )

\
\‘\ '/7
- -

This is accomplished with a sampling rate compressor

Lowpass filter
»| Gain=1 > iM >
x|[n] Cutoff =7/M | Xx|[n] X,n]=x[nM|
Sampling Sampling Sampling
period T period T period T'=MT

We obtain x4[n] that is identical to what we would get by
reconstructing the signal and resampling it with T’=MT

There will be no aliasing if
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Frequency Domain Representation of Downsampling s

Recall the DTFT of x[n]—xc(n T) (o 22k ) Jmaionet

X(er)— 2 X il - ||
T o <ULT T ))
The DTFT of the downsampled signal can similarly written as

X (eJ'w): L - |( [o an\\| 1 o |( |( ® 2nr\|\|
E— Xc | - | = — X —
d T% \JKT' T )) MT Zw \kMT MT )

Let’s represent the summation index as

r=i+ kM where -0 <k <o and 0 <i<M
M - 1|_1 o ([ o 2k 27ti\\—|
(ew)— DI S I I —— |
T .. MT
And finally -l LM T ]

] o 2n) )

X (ei) = L&lx(e J(M_ZM_\}' '
d M |

\ )
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Frequency Domain Representation of Downsampling

X(-NB .—3 Nﬂlmn'

Interpretation of Yp(w) /\ % /\ /\ N..m...am
Step-1: stretch X{w) by a factor of M to /N'(le) /\

obtain X(w /M) .

™ 2 3w 4:« g
!Q:__.
(o) ,
\ !
Step-2: create M — 1 copies and shift 2T ' ._L-(\- | T ;_1- 3T 431 A 6lﬂ'>
them in successive amounts of 27 X LN :341\')
l. P A i |
- | ® ar 3T 4w (™ 6T
Mplw)
Step-3: add all M copies together and Al3

T itk pwskﬁ 2T
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Aliasing '

NARSIMHA RE)'DY
NGINEERING COLLEG!

@ The stretched version X(w/M) can in general overlap with its
shifted replicas. This overlap effect is called aliasing.

@ When aliasing occurs, we cannot recover x[n]| from the
decimated version yp[n], i.e. | M can be a lossy operation.

@ We can avoid aliasing by limiting the bandwidth of x[n] to

lw| < /M.

@ When no aliasing, we can recover x[n| from the decimated
version yp[n] by using an expander, followed by filtering of the
unwanted spectrum images.
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Frequency Domain Representation of Downsampling w/ Prefilter s
s 9
NREM

Xo(j)
! SARSIMIA SIS
/ \ NGINEERING COLLEG!
—0y Q. 0
X(efwy
1
T
A | /\ I /\
—2ar —ar —pr = z T 2 w =0T
Xd_(t,_."w)
_1
MT (M =3)
l l l l l l
—2ar 37 —TT I 3w 2T w = 07T
2 o 2
Hd("—’jw)
1
| l l l
—2ar —aT T _ T T 2ar w =0T
_T w =L
A ]
1 Xieley = Hd(ef‘-")X(e’-""“)
T
l /I\I l | l / l l | A l
—2ar —qT _ar T _ e 29T w=07T
i ) ‘:M )
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Decimation filter s

The decimator is normally preceded by a lowpass filter called
decimator filter.

Decimator filter ensures the signal to be decimated is bandlimited
and controls the extent of aliasing.

Yo (temy|— Typieakresperst

n) | |
2L py =ml= " o decmamfi e
Decwmetion  Deci moko” ’_—XIA\S 1
Tt 0 Np I ™7 W
L P
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|_-fold Interpolator =

0 otherwise

vilil= {x[n/L] if nis integer multiple of L € N xgﬂ%\/[nl

‘ I g
- '{ l ST, Question: Can we recover x[n]

Lzz) \\\3’\ delnl < from yg[n]? — Yes.
I

The expander does not cause loss of
information.
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Increasing the Sampling Rate by an Integer Factor:

Ny
Qe

Upsampling e
We increase the sampling rate of a sequence interpolating it =%

xln]:>{n/L]= xfnT /L)

This is accomplished with a sampling rate expander

Lowpass filter
x[n] x,|n] Cutoff = /L x;[n|
Sampling Sampling Sampling
period T period T'= T/L period T' = T/L

We obtain x;|n] that 1s 1dentical to what we would get by
reconstructing the signal and resampling it with T°=T/L

Upsampling consists of two steps
— Expanding
(x[n/L] n = 0,FL,F2L,... - [1] ]
xeL]z{

| O else k=

— Interpolating
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Frequency Domain Representation of Expander A

NREM
« The DTFT of.x[n].canbe written as\ amsia sevo
(J'w) [ ] [ ] ~jon 0 [ ] —joLk ( ij)
X e =Z|Zxk8n—kL e :Zxke =X e
=0\ k=0 ) k= e

» The output of the expander is frequency-scaled
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Input-output relation on the Spectrum ez

Ye(2z) = X(zY)
Evaluating on the unit circle, the Fourier Transform relation is:
Ye(e) =X(eh) = Ye(w)=X(wl)

i.e. L-fold compressed version of X(w) along w

3T = Ny AT

gmﬂmﬁﬁﬁﬂmn

. LT/K Jﬂ/t 352
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Periodicity and spectrum images .

The Fourier Transform of a discrete-time signal has period of 2.
With expander, X(wL) has a period of 27 /L.

The multiple copies of the compressed spectrum over one period of
27 are called images.

And we say the expander creates an imaging effect.
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Frequency Domain Representation of Interpolator

S
« The DTFT of the desired interpolated signals is ansia o
Xi(e™®)
1_L
T T
A | /\ | /|\
-2 - o T T 2 aw=0T
L L
» The extrapolator output is given as
X, (e™) = X (el
L (L=2)
_Am i = T Im A _ 5 w=0T"
L L L L L L °
« Togetinterpolated signal we apply the following LPF
Hl-:t“".""]
L
I I I I
2T —Tr o T T 2 w=0T"
L L
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Interpolation filters =

An interpolation filter normally follows an expander to
suppress all the images in the spectrum.

X[n)
n ] )

R T I e e

Exvou\ole{/ luc&%Polw"Tb”“ =0 _{ 3 3 4

‘j’r[ta_ H’EL”‘J

H’U‘W 'T\{P;U\L \"QSP”‘\M . i \ e
e i B

(N i

0 NLP ‘(r Ti' ) . l \ .-
b et ERARRRRATIEEN

time-domain interpretation
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Fractional sampling rate converto

So far, we have learned how to increase or decrease sampling rate
in the digital domain by integer factors.

Question: How to change the rate by a rational fraction L/ M?
(e.g.: audio 44.1kHz <— 48kHz)

@ Method-1: convert into an analog signal and resample

@ Method-2: directly in digital domain by judicious combination
of interpolation and decimation

Question: Decimate first or expand first? And why?

-
XCn] = X,Cn] LH(&)& Xa[n) 5”‘“
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Fractional sampling rate convertor %

NﬂlSl)ANA REDY
NGINEERING COLLEG!

LS clesmed Fipy L=2,M=3 s &

NG o
L\‘.// \\,//,V\-‘
— AN S A}

be-
IW‘A v
X l (N) ‘w

/S

AN

Use a low pass filter with passband greater than 7/3 and stopband
edge before 27/3 to remove images

T How i~ KEna Equiv. to getting 2 samples
/_ \ m | out of every 3 original samples
v L0 5 AR S
=3 =wn | Ny A 5 0 (’T).. 3 u\r =W @ the signal now is critically

sampled

god
{( W @ some samples kept are

interpolated from x[n]
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Changing the Sampling Rate by Non-Integer Factor =y

NARSIMHA REDDY
NGINEERING COLLEG!

« Combine decimation and interpolation for non-integer factors
Interpolator Decimator

T TIL T/L T/IL TMIL
» The two low-pass filters can be combined into a single one

xd[n]

N
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Time Domain

xi[n] in a low-pass filtered version of x[n]
The low-pass filter impulse response is
h[n]= sin(zn /L)

i nn /L

Hence the interpolated signal is written as

1« []snG(n-kL)/L)

Xin = 2 xk w(h —kL )/L

K = —o

Note that h[o] =1

hi[n]=0 n = %L, ¥2L,...

Therefore the filter output can be written as
x [n] = x[n/L] = Xc(nT /L) = X c(nT ) forn = 0, FL, F2L,...

(Zki_x x[k]h[nM — k] ~ M-fold decimation filter
yln] = < > re . x[k]h[n — kL] L-fold interpolation filter
D ke oo X[k]h[nM — kL] M /L-fold decimation filter

Nies
U

¢
W
i 40
NREM

NARSIMHA REDDY

NGINEERING COLLEGI
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Sampling of bandpass signals ¥

NﬂlSl)ANA REDY
NGINEERING COLLEG!

e Let x.(¢) be a real-valued signal that is band-limited to the rang:
(Qp,Qp), viz. X(2) =0 for || < Qy, and |2 > Qp.

@ Such z.(t) is called a bandpass signal with centre frequency
Qc = (2 + Qpy)/2 and bandwidth (Hz) B = (Qy — Q) /2.

e Let us first assume that there exists an integer K > 0 such that
(A = 27K B and let us set 0, =2 (27 B).

e Recall that the spectrum of the sampled signal z[n] = z.(nT) is

defined as
X (") = Z X.(j(Q — kO
= )
v . Fiy=3(F— )
[\\ 1 "' A
/ N\\\, | /p \
Fu v R B F
(b)
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Sampling of bandpass signals ¥,

o We notice that if we multiply X (e’*") by the Fourier transform
G (1), we can recover X.(782), and hence z.(%), exactly.

@ The ideal reconstruction process is given by

Ba(t) = Z z.(nT) g (t — nT)

1

where g, (%) is the modulated ideal band-limited interpolation
fu,'n.cl‘ ion given by

sin(Brt)

cos(Sdct)
it

gr(t) =2
where B is the bandwidth measured in Hz.

Conclusion

A sampling rate of F; = 2(Fy — F,) is adequate for alias-free
sampling of a bandpass signal if the ratio K = Fy /(Fny — FL) is
exactly an integer.
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Over sampling -ADC et

Consider a Nyquist rate ADC in which the signal is sampled at the desired
precision and at a rate such that Nyquist’'s sampling criterion is just
satisfied.

B Bandwidth for audio is 20 Hz < f < 20 kHz
B Antialiasing filter required has very demanding specification

\H(jw)| =0dB, f < 20 kHz
44.1
9

—_—

|H(jw)| <96 dB, f > kHz

W Requires high order analogue filter such as elliptic filters that have very
nonlinear phase characteristics

M hard to design, expensive and bad for audio quality.
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Nyquist Rate Conversion Anti-aliasing Filter.

Ny d
\‘\:o':,

il
l "l Wh ; \—/ N?SI“NEEIING COLLEG
Ardlco \
RBAan A ¢&C"{’k \\

— ': -
/f_g T
2
&L'L‘f(';a,éia.:}nj _ﬂ[kr é”?ﬂly\"(ﬂbm
ban A

Consider oversampling the signal at, say, 64 times the Nyquist rate but
with lower precision. Then use multirate techniques to convert sample rate
back to 44.1 kHz with full precision.

B New (over-sampled) sampling rate is 44.1 < 64 kHz.
B Requires simple antialiasing filter

|H(jw)| = 0dB, f < 20kHz

44.1
5 kHz

—

|H (jw)| < 96 dB, f > (44.1 x 64) —

W Could be implemented by simple filter (eg. RC network)

B Recover desired sampling rate by downsampling process. o0
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Oversampled Conversion Antialiasing Filter

'
]
1
(\“\ ”.‘!
‘
—
— \
—
\‘ ‘
]

[H(jw)|
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2
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Overall System

x(€) o Hiw) |—{Ade G (2) (4 64 > >[0]

‘; f ?

/Am&ﬂ»\z 2822 Y4 bHz L Hinves
?‘J nal 50\mPC""5 I(Owr\sqmpfar
va+e (a(em‘m«fw)
gumple kA ,uoz#a.(
%‘H—CP Siqural
(FIR] (@ Amj.: hHz

W This is a simplified version
W [n these lectures we will study blocks like G(z) and | 64
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Sub band coding —_

Consider quantizing the samples of a speech signal. How many bits are
required?

M In general, 16 bits precision per sample is normally used for audio.
This gives an adequate dynamic range.

M In practice, certain frequency bands are less important perceptually
because they contain less significant information

M bands with less information or lower perceptual importance may be
quantized with lower precision - fewer bits.

W Divide the spectrum of the signal into several subbands then allocate
bits to each band appropriately.

366



Sub band coding —_

W 16 bits per sample, 10 kHz sampling frequency gives
® 160 kbits/s

MW Divide into 2 bands: high frequency and low frequency subbands.
® High frequencies of speech are less important to intelligibility.
¥ Therefore use only 8 bits per sample

B The sampling frequency can be reduced by a factor of 2 since
bandwidth is halved, still satisfying Nyquist criterion.

M5 x16+5x8=120 kbits/s
M 4:3 compression

M Reconstructed signal has no noticeable reduction is signal quality.
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Digital filter

LYY
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banks

A digital filter bank is a collection of digital filters, with a common

input or a common output.

Xt—t Py e @\3

nputc on) .

"t [ H r_x#m e [=1T2) J(
TS O .
L-y\i‘M-“é’) = *—'ﬁ]
‘AV\LIYSCS Romk S&,ﬂﬁ\eﬁ?s BN\L

LX)

@ Hi(z): analysis filters
@ x.[n]: subband signals
@ Fi(z): synthesis filters

0 WA
= @ SIMO vs. MISO

@ [ypical frequency response for analysis filters:

ﬂ\

Ho Hi Ha
-

T He H
B d—

Can be
@ marginally overlapping
@ non-overlapping
@ (substantially) overlapping
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UNIT 5

Finite Word length Effects



* Finite register lengths and A/D converters
cause errors iIn:-

(1)  Input quantisation.
(1) Coefficient (or multiplier)
guantisation

(111) Products of multiplication truncated
or rounded due to machine length

370



* Quantisation

& (K)

¢+ Output

@JHJ
ei(k)
rJI_rJ Input

- <eg (k)< —

N

371



* The pdf for e using rounding

t Q
Q Q
- 2 2_/ p(e).de =E{e?}
. Q2
* Noise power 52 _ | e?
or ) -Q 2
,_ Q
o -
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o Let input signal be sinusoidal of unity
amplitude. Then total signal power ,_ 1

» If b bits used for binary then q = 2/2°
sothat o2 =272 /3
e Hence P/G ;3

2+2b

2

OfF sS\R —18+6p 0B
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» Consider a simple example of finite
precision on the coefficients a,b of second
order system with poles ¢=io

1

H(z) =
1—az 1 + bz 2

H (z) = L

1-2pcos 0.zt + p2.2-2

e where a=2pcos 6 b=p?2

374
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bit pattern  |2p cos 8, p?2 p
000 0 0

001 0.125 0.354
010 0.25 0.5
011 0.375 0.611
100 0.5 0.707
101 0.625 0.791
110 0.75 0.866
111 0.875 0.935
1.0 1.0 1.0
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* Finite wordlength computations

INPUT

OUTPU

AAAAAAAAAAAA

NGINEERING COLLEG!
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Observe that for y (,y_- 1
1+bzt+b,27%)

Instability occurs when  |b,| - 1
l.e. polesare
* (1) either on unit circle when complex

* (11) or one real pole Is outside unit
circle.

Instability under the "effective pole” model
IS considered as follows
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» In the time domain with H(Z):Y(%( |
Z

y(n) =x(n) =byy(n -1) - b2y(n - 2)

« With |p,|>1 forinstability we have
Qlb,y(n-2)] indistinguishable fromy(n - 2)
* Where ¢ Isquantisation
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* With rounding, therefore we have

boy(n-2)£0.5 y(n - 2)
are indistinguishable (for integers)
or bay(n-2)+05 = y(n - 2)

e Hence +0.5
y(n-2)=

1-Db,

 With both positive and negative numbers

+ 0.5
y(n-2)= "~ "

1-b, |
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 Therange of integers =9
1- b

constitutes a set of integers that cannot be
Individually distinguished as separate or from the
asymptotic system behaviour.
* The band of integers ([ 05 05 )
| - L+ |
Co1-ba [ 1)
IS known as the "deadband".
* In the second order system, under rounding, the
output assumes a cyclic set of values of the
deadband. This is a limit-cycle.
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e Consider the transfer function

G (z) = 1/ P
(L+byz +byz )

Yk = X = by 1 —boye o

* If poles are complex then impulse response
IS given by n
k

k

P
he = sin [(k +1)0 ]
sin O
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— _1(_ _\
 Where p =\/b_ )= cos | b |
2

\ ZJbz )
* If 1, -1 thenthe response is sinusiodal

with frequency
o= 1 COS 1(|— b, \|
T . /2)
* Thus product quantisation causes instability
Implying an "effective ““ b, = 1.
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 Notice that with infinite precision the
response converges to the origin

 With finite precision the reponse does not
converge to the origin but assumes
cyclically a set of values —the Limit Cycle
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* Assume {ei(k)} ,{e.(k)} .....are not
correlated, random processes etc.

. 2
CTOiZZGeZkZ::ohiz(k) GezzQé

Hence total output noise power

—-2b
_ 5 2 i sin 2|(k + 1)0
s szk. [( ) ]

12 -0 sin 20

c °=0 2+o0

0 01 02

e Whereg =2 and

« sin [(k+1)8 ]
. k>0

hi(k) = h2(k)=p :
sin O
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1-p

1+p?,

1+ p4—-2p2cos 20

e

’ -
%
“
. wh

NARSIMHA REDDY
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» For FFT AN ™ ><~J - B(n+1)
B(n) — O—— B(n+1)
Two

A(n+1) = A(n) +W (n).B(n)
B(n+1 = A(n) =W (n).B(n)
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e FFT
A +1)2 +[B(n +1)? =2

A(n +1)]2 = 2A(n) |

A(n)| = /2|Aa(n)|
 AVERAGE GROWTH: 1/2 BIT/PASS
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o FFT

-1.0

IMA

1.0

1.0

-1.0

REAL

Ax(n +1) = Ax(n)+ By(n)C (n) - By(n)S (n)

Ay (n +1) <

Ay(n +1) |
Ac(n))

Ax(n) [+ [Bu(n)[c (n) |- [B (n) s (n)

<1.0 + \c (n)\— \S(n)\z 2.414 ...

- PEAK GROWTH: 1.21.. BITS/PASS

AAAAAAAAAAAA
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 Linear modelling of product quantisation

X() X (n)
—Ql] |~

 Modelled as

x(n) ‘if?‘ - X(n) = x(n)+ q(n)

q(n)
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 For rounding operations q(n) is uniform
distributed between ¢ ¢ and where Q IS
the quantisation step (i.e. in a wordlength of
bits with sign magnitude representation or
mod2, q =2-).

A discrete-time system with guantisation at

the output of each multiplier may be
considered as a multi-input linear system
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ga(n).. 4z (n)..q,(n)

l ........................ l
{x(n)} — by F—{y(n)}
e Then
Ty 2
y(n)= ¥ x(r)h(n-r)+ % (r).hy (n -
r=0 A= 1L J

* where h, (n) IS the impulse response of the
system from ;. the output of the multiplier

to y(n).
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* Forzero Input I.e. x(n) = 0,vn we can write
p 00
y()l< lau.2lh, (n =)
A=1 r=0

» where a4/ is the maximum of Q. (r)} YA,r
which is not more than Q

Q pr> 2 ]

< r)

e ol Tzl g u
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e However

s I ()< =)
n=0 n=0

 And hence

pQ =~
y(n)< —— % h(n)
2 n=0
* le we can estimate the maximum swing at

the output from the system parameters and
guantisation level
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Finite Precision Numerical
Effects

394



Quantization in Implementing Systems ¥

« Consider the following system

A more realistic model would be

— D

x(1)

J

NRCM

NARSIMHA REDDY
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i

T

x[n] i
— /D > Up.
x.(1)
T

x[n] ) vin]  y[n]
+ o =1 [/ C
Y il I
771 11"
a
x[n] D, v[n] o v[n] e
> - - B ; ————————
\}/ YelD)

g 71

* Inorderto analyze it we would prefer

—= /D
x.A1)
|
T

-~
X

: x[n] :+ v[n] :+ v|n] s

i = Qgla]

1 T V(1)
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When the parameters of a rational system are quantized
— The poles and zeros of the system function move

If the system structure of the system is sensitive to
perturbation of coefficients

— The resulting system may no longer be stable

— The resulting system may no longer meet the original specs
We need to do a detailed sensitivity analysis

— Quantize the coefficients and analyze frequency response

— Compare frequency response to original response

We would like to have a general sense of the effect of
quantization



Effects on Roots o 4

i b,z * Quantiza i b, -« LT 8
H(Z) = k=0 PIil(z): k=04
1-2az, tion LoY Az

Each root is affected by quantization errors in ALL coefficient
Tightly clustered roots can be significantly effected

— Narrow-bandwidth lowpass or bandpass filters can be very
sensitive to quantization noise

The larger the number of roots in a cluster the more sensitive it
becomes

This is the reason why second order cascade structures are less
sensitive to quantization error than higher order system

— Each second order system is independent from each other



Poles of Quantized Second-Order Sections
NRGM

 Consider a 2nd order system with complex-conjugate pole pair -
o - —>—
x[n] | { v[n]
2rcos f |
_r2

» The pole locations after quantization will be on the grid point

) Fm
Fm z-plane z-plane
.00 F——r—_ _ o Realizable pole positions ) L0 ;
<« 3-bits
= \\
0.75 O Unit circle
) . "\ 7-bits >
A
BN
0.50 %—»Th\ \\\ . 0.5 =
0.25 — )\ \ \
I|
\ i
0 0.25 0.50 0.75 1.00 Jte 0 L0 e
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Coupled-Form Implementation of Complex-Conjugate Pair M

Equivalentimplementation of the
second order system

But the quantization grid this time is

0.75¢

0.50¢

$m z-plane
o Realizable pole positions
[ - N
& Unit circle
A
PN
.
N
\.
I\
A
i
|
0.25 0.50 0.75 1.00 Je

NREM

NARSIMHA REDDY

X [H] NGlISEéRl:G COLLEG!
rsin g
R
v[n]
Fm
z-plane
The

399



Effects of Coefficient Quantization in FIR Systernr -

No poles to worry about only zeros s ey,
Direct form is commonly used for FIR systems
M

H(z) = D h[n]z-n

Suppose the coefficients are quantized

M

A(z)= 3 h'nk = H(z) + AH(2) AH(z) = 3 Ah[n]z-n
Quantized system is linearly related to the quantization error
> H(z)
>
x|[n]
> AH(z)

Again quantization noise is higher for clustered zeros
However, most FIR filters have spread zeros
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Round-Off Noise in Digital Filters -

by M
- - } :} P ) O+()— NARSIMHA REDDY 1
« Difference equations ii[ 7] g Ry
iImplemented with finite- 1y A Y-
precision arithmetic are b, ay
non-linear systems < O——<—0
 Second order direct form | y y I
Lo £
system | o b, 0
* Model with guantization oO—> ——<—o0
effect b
- - O > > - > - O
 Density function error x[n] T $n]
i A A
terms for rounding 1y eo[1] -
o by ay
Pele) ¢ > ~
' | T
A A—o-B =y er[n] es[n] y -l
by dH
A A { T T D

es|n] 4l o1



Analysis of Quantization Error

S
« Combine all error terms to single location to get ks oy
e[n]
by ¥
o > > > » > O
x|n] v[n] = y[n] + fln]
;_“ A A Yz
by ay
T " e[n]=e [n]+e [n]
0 1
—ly y -1
) N + € |nj+€e |nj+ e |n
by a5 2[ ] J: ] L ]
SRR S S |
. . . 2—28
« The variance of e[n] in the general case is 62 =(M+1+N)
12

» The contribution of e[n] to the output is

» The variance of the output error term f[n] is

f

SECEERRDEN N | e @ =1/AG)

ef

12 n=-—=
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Round-Off Noise in a First-Order System <
Suppose we want to implement the following stable system mmu
b
H(z) = al <1
1-az!
The quantization error noise variance IS o \
~M+1+N)2 Y h [n] =22 =22 | 1 |
f ef :’ Z ‘a 12 | 2 |
12 noe (1= )

Noise variance increases as |a| gets closer to the unit circle

As |a| gets closer to 1 we have to use more bits to compensate for the
Increasing error

eln] = ¢[n] + ey n)

b l

x|n| v[n]
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Zero-Input Limit Cycles in Fixed-Point Realization of IR Filters
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For stable 1IR systems the output will decay to zero when the input
becomes zero

A finite-precision implementation, however, may continue to oscillate
Indefinitely

Nonlinear behaviour very difficult to analyze so we sill study by example
Example: Limit Cycle Behavior in First-Order Systems

y[n]=ay[n - 1] + x|n] ‘a‘ <1
Assume x[n] and y[n-1] x[n] ] ] |
are implemented by 4 bit

Y
o

vin]

Y

Sl
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Example Cont’d e
y[n]=ay[n - 1]+ x[n]
* Assume that a=1/2=0.100b and the input Is

x[n] =

é 5[n] = (0.111 b)3[n]

« |f we calculate the output for values of n

Col=a

y[n]

Q(y[n])

/7/8=0.111b

/7/8=0.111b

7/16=0.011100b

1/2=0.100b

1/4=0.010000b

1/4=0.010b

1/8=0.001000b

1/8=0.001b

LI W N= O3

1/16=0.00010b

1/8=0.001b

V[n] (a= %}

2 -

- 0 | 2 3 4 5 6 7 n

« Afinite input caused an oscillation with period 1
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Example: Limit Cycles due to Overflow

Consider a second-order system realized by
y[nl=x[n]+ Q(a y[n - 1)+ Q(a y[n _2))
— Where Q() represents two’s complement rounding
— Word length is chosen to be 4 bits
Assume a;=3/4=0.110band a,=-3/4=1.010b
Also assume
y[-1]=3/4=0.110 b and y[-2]=-3/4 =1.010b
The output at sample n=0 is
y[0]=0.110 b x 0.110b  + 1.010 b x 1.010b
= 0.100100b + 0.100100b

After rounding up we get
y[0]=0.101b +0.101b =1.010b = -3/4

Binary carry overflows into the sign bit changing the sign
When repeated for n=1
y[0]=1.010b +1.010b =0.110 =3/4
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Avoiding Limit Cycles A
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Generally adding more bits would avoid overflow

Using double-length accumulators at addition points would
decrease likelihood of limit cycles

Trade-off between limit-cycle avoidance and complexity
FIR systems cannot support zero-input limit cycles



