NREM

NARASIMHA REDDY ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad Accredited by NAAC with A Grade, Accredited by NBA

UNITWISEQUESTIONBANK, SHORT AND LONGANSWERTYPEQUESTIONS

Short Questions <u>UNIT-I</u>

S.No	Questions	BT	CO	PO
	Part – A (Short Answer Questions)			
1	What are the important objectives of machine learning?	L4	CO1	PO5
2	Explain find –S algorithm with given example. Give its application.	L4	CO1	PO4
3	Explain the inductive biased hypothesis space and unbiased learner	L3	CO1	PO5
4	What are the basic design issues and approaches to machine learning?	L4	CO1	PO5
5	How is Candidate Elimination algorithm different from Find-S Algorithm.	L4	CO1	PO5
6	How do you design a checkers learning problem	L4	CO1	PO4
7	Explain the various stages involved in designing a learning system	L4	CO1	PO5
8	What are the issues in Machine Learning	L5	CO1	PO5
9	Explain the concept of Inductive Bias	L3	CO1	PO4
10	What do you mean by Concept Learning?	L3	CO1	PO4

UNIT-II

S.No	Questions	BT	CO	PO				
	Part – A (Short Answer Questions)							
1	What is Artificial Neural Network?	L4	CO2	PO2				
2	What are the types of problems in which Artificial Neural Network can be applied.	L3	CO2	PO3				
3	Write a note on Representational Power of Perceptron	L3	CO2	PO2				
4	Explain the concept of a Perceptron with a neat diagram.	L4	CO2	PO2				
5	Discuss the Perceptron training rule.	L3	CO2	PO4				
6	Define Delta Rule.	L4	CO2	PO4				
7	Derive the Gradient Descent Rule.	L4	CO2	PO3				

8	Explain the importance of Stochastic Gradient Descent	L4	CO2	PO2
9	Write the algorithm for Back propagation	L4	CO2	PO3
10	What is Squashing Function?	L5	CO2	PO2

UNIT-III

S.No	Questions	BT	CO	PO					
Part – A (Short Answer Questions)									
1	Explain Brute force Bayes Concept Learning	L1	CO3	PO2					
2	Define MAP hypothesis. Derive the relation for hMAP using Bayesian theorem.	L1	CO3	PO3					
3	What are Consistent Learners?	L1	CO3	PO3					
4	Discuss Maximum Likelihood and Least Square Error Hypothesis.	L2	CO3	PO2					
5	Describe Maximum Likelihood Hypothesis for predicting probabilities.	L1	CO3	PO2					
6	What is conditional Independence?	L1	CO3	PO4					
7	Explain Naïve Bayes Classifier with an Example.	L1	CO3	PO4					
8	Describe the k-nearest neighbor learning algorithm.	L1	CO3	PO3					
9	Summarize the three lazy learning methods.	L1	CO3	PO5					
10	Define radial basis functions		CO3	PO3					

UNIT-IV

S.No	Questions	BT	CO	PO			
	Part – A (Short Answer Questions)						
1	What is Reinforcement Learning?	L4	CO4	PO3			
2	Explain the Q function and Q Learning Algorithm.	L3	CO4	PO2			
3	Describe K-nearest Neighbour learning Algorithm for continues valued target function.	L5	CO4	PO2			
4	Define the following terms with respect to K - Nearest Neighbour	L5	CO4	PO4			
	Learning:						
	i) Regression ii) Residual iii) Kernel Function.						
5	Explain CADET System using Case based reasoning.	L4	CO4	PO4			
6	Explain the two key difficulties that arise while estimating the	L4	CO4	PO1			
	Accuracy of Hypothesis.						
7	Explain Binomial Distribution with an example.	L5	CO4	PO3			
8	What is Sequential Covering Algorithm	L3	CO4	PO3			
9	Write about the Reinforcement learning model.	L5	CO4	PO3			
10	Examine the Prolog-EBG.	L4	CO4	PO2			

UNIT- V

S.No	Questions	BT	CO	PO		
	Part – A (Short Answer Questions)					
1	Compare inductive and analytical learning.	L4	CO5	PO3		
2	Explain PROLOG-EGB algorithm	L3	CO5	PO2		
3	Explain features of explanation-based learning.	L4	CO5	PO2		
4	What is deductive learning?	L5	CO5	PO4		
5	Explain KBANN algorithm with an example.	L4	CO5	PO4		
6	Explain EBNN algorithm with an example.	L5	CO5	PO1		
7	Explain FOCL algorithm.	L5	CO5	PO1		
8	Write reinforcement learning algorithm characteristics.	L3	CO5	PO3		
9	Explain inductive-analytical approaches to learning.	L5	CO5	PO1		
10	Explain using prior knowledge to alter the search objective	L4	CO5	PO2		

Long Questions

<u>UNIT- I</u>

S.No			Quest	ions			BT	CO	PO
	•	Pa	art – B (Lon	g Answer Qı	uestions)				
1	What do you	mean by	a well–posed	l learning pro	blem?		L4	CO1	PO3
									200
2				n machine lea			L3	CO1	PO2
		-	-	ing. With exa			L4	CO1	PO2
		-	ning task dete	ermines theHy	ypothesis f	or			
	given target								
3		-	-	with respect	to General	to	L5	CO1	PO4
	specific orde		_						
4		nd S Algor	rithm. What a	are the proper	ties and co	mplaints	L4	CO1	PO4
	of Find S.								
5	Illustrate Fin	nd S Algor	rithm over En	joySport con	cept. Train	ing	L5	CO1	PO1
	instances giv			J J 1					
	Example	Sky	AirTemp	Humidity	Wind	Water			
	1	Sunny	Warm	Normal	Strong	Warm			
	2	Sunny	Warm	High	Strong	Warm			
	3	Rainy	Cold	High	Strong	Warm			
	4	Sunny	Warm	High	Strong	Cool			
6	What are ap	propriate p	problems for	Decision tree	learning?	OR	L5	CO1	PO1
				oblems suited f	_				
	learning?		•						
7	Explain the	concepts o	of entropy and	1			L3	CO1	PO3
RCM	information	oain							

8	Discuss Hypothesis Space Search in Decision tree Learning.	L5	CO1	PO1
9	Discuss Inductive Bias in Decision Tree Learning. Differentiate between two types of biases. Why preferShort Hypotheses?	L4	CO1	PO2
10	Explain the important features that are required towell—define a learning problem.	L4	CO1	PO3

<u>UNIT-II</u>

S.No	Questions	BT	CO	PO						
	Part – B (Long Answer Questions)									
1	What is Artificial Neural Network?	L4	CO2	PO3						
2	What are the types of problems in which Artificial Neural Network can be applied?	L3	CO2	PO2						
3	Explain the concept of a Perceptron with a neat diagram.	L4	CO2	PO2						
4	Discuss the Perceptron training rule.	L5	CO2	PO4						
5	Under what conditions the perceptron rule fails and it becomes necessary to apply the delta rule	L4	CO2	PO4						
6	What do you mean by Gradient Descent?	L5	CO2	PO1						
7	What are the difficulties in applying Gradient Descent.	L5	CO2	PO1						
8	Write the algorithm for Back propagation	L3	CO2	PO3						
9	Explain Binomial Distribution.	L5	CO2	PO1						
10	Explain the methods for comparing the accuracy of two hypotheses.	L4	CO2	PO2						

<u>UNIT-III</u>

S.No	Questions	BT	CO	PO
	Part – B (Long Answer Questions)			
1	Explain the features of Bayesian learning methods	L4	CO3	PO3
2	Explain the features of Bayesian learning methods	L3	CO3	PO2
3	Discuss the relationship between the maximum likelihood	L4	CO3	PO2
	hypothesis and the least squared error hypothesis.			
4	Explain Bayes optimal classifier.	L5	CO3	PO4
5	Explain Naive Bayes classifier.	L4	CO3	PO4
6	Explain EM algorithm	L5	CO3	PO1
7	Explain Probably learning an approximately correct hypothesis	L5	CO3	PO1
8	Explain sample complexity for infinite hypothesis spaces	L3	CO3	PO3
9	Explain <i>k</i> -nearest neighbor algorithm.	L5	CO3	PO1

10	Write about radial baisis function		CO3	PO2	
----	------------------------------------	--	-----	-----	--

UNIT- IV

S.No	Questions	BT	CO	PO					
	Part – B (Long Answer Questions)								
1	Write about Genetic algorithms	L4	CO4	PO3					
2	Explain briefly about hypothesis space search	L3	CO4	PO2					
3	Describe the representation of hypotheses and genetic algorithms used in this	L4	CO4	PO2					
4	Write about first order horn clauses .	L5	CO4	PO4					
5	How rules are post pruned? Explain with an example	L4	CO4	PO4					
6	What is Q function? Write an algorithm for learning Q.	L5	CO4	PO1					
7	Explain Induction as inverted deduction	L5	CO4	PO1					
8	What is temporal difference learning. Briefly Explain	L3	CO4	PO3					
9	Explain generalizing from examples.	L5	CO4	PO1					
10	What is generalization to dynamic programming.	L4	CO4	PO2					

<u>UNIT- V</u>

S.No	Questions	BT	CO	PO
Part – B (Long Answer Questions)				
1	What are inductive and analytical learning problems.	L4	CO5	PO3
2	Explain PROLOG-EBG.	L3	CO5	PO2
3	Explain an algorithm for regressing a set of literals through a single horn clause.	L4	CO5	PO2
4	Describe the TANGENTPROP algorithm to train a neural network to fit both training values and training derivatives.	L5	CO5	PO4
5	Explain the Hypothesis Space Search for Inductive-Analytical Approaches to Learning	L4	CO5	PO4
6	Explain KBANN Algorithm	L5	CO5	PO1
7	Write the remarks of KBANN Algorithm	L5	CO5	PO1
8	Explain EBNN Algorithm	L3	CO5	PO3
9	Write the remarks of EBNN Algorithm	L5	CO5	PO1