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                                                                                        UNIT-1 

INTRODUCTION 

Ever since computers were invented, we have wondered whether they might be made to learn. 

If we could understand how to program them to learn-to improve automatically with 

experience-the impact would be dramatic. 

 Imagine computers learning from medical records which treatments are most effective 

for new diseases 

 Houses learning from experience to optimize energy costs based on the particular usage 

patterns of their occupants. 

 Personal software assistants learning the evolving interests of their users in order to 

highlight especially relevant stories from the online morning newspaper 

 
A successful understanding of how to make computers learn would open up many new uses 

of computers and new levels of competence and customization 

 
Some successful applications of machine learning 

 Learning to recognize spoken words 

 Learning to drive an autonomous vehicle 

 Learning to classify new astronomical structures 

 Learning to play world-class backgammon 

 
Why is Machine Learning Important? 

 
 Some tasks cannot be defined well, except by examples (e.g., recognizing people). 

 Relationships and correlations can be hidden within large amounts of data. Machine 

Learning/Data Mining may be able to find these relationships. 

 Human designers often produce machines that do not work as well as desired in the 

environments in which they are used. 

 The amount of knowledge available about certain tasks might be too large for explicit 

encoding by humans (e.g., medical diagnostic). 

 Environments change over time. 

 New knowledge about tasks is constantly being discovered by humans. It may be 

difficult to continuously re-design systems “by hand”. 
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WELL-POSED LEARNING PROBLEMS 

 
Definition: A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E. 

 
To have a well-defined learning problem, three features needs to be identified: 

1. The class of tasks 

2. The measure of performance to be improved 

3. The source of experience 

 

 
Examples 

1. Checkers game: A computer program that learns to play checkers might improve its 

performance as measured by its ability to win at the class of tasks involving playing 

checkers games, through experience obtained by playing games against itself. 

 

 

 

 

 

 

 

 

Fig: Checker game board 

A checkers learning problem: 

 Task T: playing checkers 

 Performance measure P: percent of games won against opponents 

 Training experience E: playing practice games against itself 

 
 

2. A handwriting recognition learning problem: 

 Task T: recognizing and classifying handwritten words within images 

 Performance measure P: percent of words correctly classified 

 Training experience E: a database of handwritten words with given 

classifications 

3. A robot driving learning problem: 

 Task T: driving on public four-lane highways using vision sensors 

 Performance measure P: average distance travelled before an error (as judged 

by human overseer) 
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 Training experience E: a sequence of images and steering commands recorded 

while observing a human driver 

Choose Move is a choice for the target function in checkers example, but this function 

will turn out to be very difficult to learn given the kind of indirect training experience 

available to our system 

 
1. An alternative target function is an evaluation function that assigns a numerical score 

to any given board state 

Let the target function V and the notation 

V : B → R 

 
Which denote that V maps any legal board state from the set B to some real value. 

Intend for this target function V to assign higher scores to better board states. If the 

system can successfully learn such a target function V, then it can easily use it to select 

the best move from any current board position. 

 
Let us define the target value V (b) for an arbitrary board state b in B, as follows: 

 If b is a final board state that is won, then V(b) = 100 

 If b is a final board state that is lost, then V(b) = -100 

 If b is a final board state that is drawn, then V(b) = 0 

 If b is a not a final state in the game, then V(b) = V(b' ), 

 
Where b' is the best final board state that can be achieved starting from b and playing optimally 

until the end of the game 

 
 

2. Choosing a Representation for the Target Function 

 
Let’s choose a simple representation - for any given board state, the function c will be 

calculated as a linear combination of the following board features: 

 
 xl: the number of black pieces on the board 

 x2: the number of red pieces on the board 

 x3: the number of black kings on the board 

 x4: the number of red kings on the board 

 x5: the number of black pieces threatened by red (i.e., which can be captured on red's 
next turn) 

 x6: the number of red pieces threatened by black 

Thus, learning program will represent as a linear function of the form 
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Where, 

 W0 through w6 are numerical coefficients, or weights, to be chosen by the 
learning algorithm. 

 Learned values for the weights w1 through w6 will determine the relative importance 

of the various board features in determining the value of the board 

 The weight w0 will provide an additive constant to the board value 

 
3. Choosing a Function Approximation Algorithm 

 
In order to learn the target function f we require a set of training examples, each describing a 

specific board state b and the training value Vtrain(b) for b. 

 
Each training example is an ordered pair of the form (b, Vtrain(b)). 

 
For instance, the following training example describes a board state b in which black has won 

the game (note x2 = 0 indicates that red has no remaining pieces) and for which the target 

function value Vtrain(b) is therefore +100. 

 
((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100) 

 
Function Approximation Procedure 

 

1. Derive training examples from the indirect training experience available to the learner 

2. Adjusts the weights wi to best fit these training examples 

1. Estimating training values 

 

A simple approach for estimating training values for intermediate board states is to 

assign the training value of Vtrain(b) for any intermediate board state b to be 

V̂ (Successor (b)) 

 
Where, 

 V̂ is the learner's current approximation to V 

 Successor(b) denotes the next board state following b for which it is again the 

program's turn to move 
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Rule for estimating training values 
 

 

2. Adjusting the weights 

Vtrain(b)←V̂ (Successor(b)) 

 

Specify the learning algorithm for choosing the weights wi to best fit the set of training 

examples {(b, Vtrain(b))} 

A first step is to define what we mean by the best fit to the training data. 

One common approach is to define the best hypothesis, or set of weights, as that which 

minimizes the squared error E between the training values and the values predicted by 

the hypothesis. 

 

 

 

 
Several algorithms are known for finding weights of a linear function that minimize E. 

One such algorithm is called the least mean squares, or LMS training rule. For each 

observed training example it adjusts the weights a small amount in the direction that 

reduces the error on this training example 

 

LMS weight update rule: - For each training example (b, Vtrain(b)) 

Use the current weights to calculate V̂ (b) 

For each weight wi, update it as 

 

wi ← wi + ƞ (Vtrain (b) - V̂ (b)) xi 

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update. 

Working of weight update rule 

 When the error (Vtrain(b)- V̂ (b)) is zero, no weights are changed. 

 When (Vtrain(b) - V̂ (b)) is positive (i.e., when V̂ (b) is too low), then each weightis 

increased in proportion to the value of its corresponding feature. This will raise the 

value of V̂ (b), reducing the error. 

 If the value of some feature xi is zero, then its weight is not altered regardless of 

the error, so that the only weights updated are those whose features actually occur on 

the training example board. 
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     4.The Final Design 

 

The final design of checkers learning system can be described by four distinct program modules 

that represent the central components in many learning systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3. The Performance System is the module that must solve the given performance task by 

using the learned target function(s). It takes an instance of a new problem (new game) 

as input and produces a trace of its solution (game history) as output. 

 
4. The Critic takes as input the history or trace of the game and produces as output a set 

of training examples of the target function 

 
5. The Generalizer takes as input the training examples and produces an output hypothesis 

that is its estimate of the target function. It generalizes from the specific training 

examples, hypothesizing a general function that covers these examples and other cases 

beyond the training examples. 

 
6. The Experiment Generator takes as input the current hypothesis and outputs a new 

problem (i.e., initial board state) for the Performance System to explore. Its role is to 

pick new practice problems that will maximize the learning rate of the overall system. 

 
The sequence of design choices made for the checkers program is summarized in below figure 
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PERSPECTIVES AND ISSUES IN MACHINE LEARNING 

  Issues in Machine Learning 
The field of machine learning, and much of this book, is concerned with answering questions 

such as the following 

 What algorithms exist for learning general target functions from specific training 

examples? In what settings will particular algorithms converge to the desired function, 

given sufficient training data? Which algorithms perform best for which types of 

problems and representations? 

 How much training data is sufficient? What general bounds can be found to relate the 

confidence in learned hypotheses to the amount of training experience and the character 

of the learner's hypothesis space? When and how can prior knowledge held by the learner 

guide the process of generalizing from examples? Can prior knowledge be helpful even 

when it is only approximately correct? 
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 What is the best strategy for choosing a useful next training experience, and how does 

the choice of this strategy alter the complexity of the learning problem? 

 What is the best way to reduce the learning task to one or more function approximation 

problems? Put another way, what specific functions should the system attempt to learn? 

Can this process itself be automated? 

 How can the learner automatically alter its representation to improve its ability to 

represent and learn the target function? 

 
 

CONCEPT LEARNING 
 

 Learning involves acquiring general concepts from specific training examples. Example: 

People continually learn general concepts or categories such as "bird," "car," "situations in 

which I should study more in order to pass the exam," etc. 

 Each such concept can be viewed as describing some subset of objects or events defined 

over a larger set 

 Alternatively, each concept can be thought of as a Boolean-valued function defined over this 

larger set. (Example: A function defined over all animals, whose value is true for birds and 

false for other animals). 

 
Definition: Concept learning - Inferring a Boolean-valued function from training examples of 

its input and output 

 

A CONCEPT LEARNING TASK 

 
Consider the example task of learning the target concept "Days on which Aldo enjoyshis 

favorite water ǎǇƻǊǘέ 
 
 

Example Sky AirTemp Humidity Wind Water Forecast Enjoy Sport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

 

Table: Positive and negative training examples for the target concept Enjoy Sport. 

 
The task is to learn to predict the value of Enjoy Sport for an arbitrary day, based on the 
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Values of its other attributes? 

 
What hypothesis representation is provided to the learner? 

 
 Let’s consider a simple representation in which each hypothesis consists of a 

conjunction of constraints on the instance attributes. 

 Let each hypothesis be a vector of six constraints, specifying the values of the six 

attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. 

 
For each attribute, the hypothesis will either 

 Indicate by a "?' that any value is acceptable for this attribute, 

 Specify a single required value (e.g., Warm) for the attribute, or 

 Indicate by a "Φ" that no value is acceptable 

 
If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a positive 

example (h(x) = 1). 

 
The hypothesis that PERSON enjoys his favorite sport only on cold days with high humidity 

is represented by the expression 

(?, Cold, High, ?, ?, ?) 

 
The most general hypothesis-that every day is a positive example-is represented by 

(?, ?, ?, ?, ?, ?) 

 
The most specific possible hypothesis-that no day is a positive example-is represented by 

(Φ, Φ, Φ, Φ, Φ, Φ) 

 
Notation 

 

 The set of items over which the concept is defined is called the set of instances, which is 

denoted by X. 

 
Example: X is the set of all possible days, each represented by the attributes: Sky, AirTemp, 

Humidity, Wind, Water, and Forecast 

 

 The concept or function to be learned is called the target concept, which is denoted by c. 

c can be any Boolean valued function defined over the instances X 

 
c: X→ {O, 1} 
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Example: The target concept corresponds to the value of the attribute EnjoySport 

(i.e., c(x) = 1 if EnjoySport = Yes, and c(x) = 0 if EnjoySport = No). 

 
 Instances for which c(x) = 1 are called positive examples, or members of the target concept. 

 Instances for which c(x) = 0 are called negative examples, or non-members of the target 

concept. 

 The ordered pair (x, c(x)) to describe the training example consisting of the instance x and 

its target concept value c(x). 

 D to denote the set of available training examples 

 
 The symbol H to denote the set of all possible hypotheses that the learner may consider 

regarding the identity of the target concept. Each hypothesis h in H represents a Boolean- 

valued function defined over X 

h: X→{O, 1} 

 
The goal of the learner is to find a hypothesis h such that h(x) = c(x) for all x in X. 

 

 
 Given: 

 Instances X: Possible days, each described by the attributes 

 Sky (with possible values Sunny, Cloudy, and Rainy), 

 AirTemp (with values Warm and Cold), 

 Humidity (with values Normal and High), 

 Wind (with values Strong and Weak), 

 Water (with values Warm and Cool), 

 Forecast (with values Same and Change). 

 

 Hypotheses H: Each hypothesis is described by a conjunction of constraints on the 

attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. The constraints may be 

"?" (any value is acceptable), “Φ” (no value is acceptable), or a specific value. 

 
 Target concept c: EnjoySport : X → {0, l} 

 Training examples D: Positive and negative examples of the target function 

 
 Determine: 

 A hypothesis h in H such that h(x) = c(x) for all x in X. 

 

Table: The Enjoy Sport concept learning task. 

The inductive learning hypothesis 
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Any hypothesis found to approximate the target function well over a sufficiently large set of 

training examples will also approximate the target function well over other unobserved 

examples. 

 
CONCEPT LEARNING AS SEARCH 

 
 Concept learning can be viewed as the task of searching through a large space of 

hypotheses implicitly defined by the hypothesis representation. 

 The goal of this search is to find the hypothesis that best fits the training examples. 

 
 

Example: 

Consider the instances X and hypotheses H in the Enjoy Sport learning task. The attribute Sky 

has three possible values, and AirTemp, Humidity, Wind, Water, Forecast each have two 

possible values, the instance space X contains exactly 

3.2.2.2.2.2 = 96 distinct instances 

5.4.4.4.4.4 = 5120 syntactically distinct hypotheses within H. 

 
Every hypothesis containing one or more "Φ" symbols represents the empty set of instances; 

that is, it classifies every instance as negative. 

1 + (4.3.3.3.3.3) = 973. Semantically distinct hypotheses 

 

 
General-to-Specific Ordering of Hypotheses 

 

Consider the two hypotheses 

h1 = (Sunny, ?, ?, Strong, ?, ?) 

h2 = (Sunny, ?, ?, ?, ?, ?) 

 
 Consider the sets of instances that are classified positive by hl and by h2. 

 h2 imposes fewer constraints on the instance, it classifies more instances as positive. So, 
any instance classified positive by hl will also be classified positive by h2. Therefore, h2 

is more general than hl. 

 
Given hypotheses hj and hk, hj is more-general-than or- equal do hk if and only if any instance 

that satisfies hk also satisfies hi 

 

 
Definition: Let hj and hk be Boolean-valued functions defined over X. Then hj is more general- 

than-or-equal-to hk (written hj ≥ hk) if and only if 
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( xX ) [(hk (x) = 1) → (hj (x) = 1)] 

 

 

 

 

 

 

 

 

 

 

 

 In the figure, the box on the left represents the set X of all instances, the box on the right 

the set H of all hypotheses. 

 Each hypothesis corresponds to some subset of X-the subset of instances that it classifies 

positive. 

 The arrows connecting hypotheses represent the more - general -than relation, with the 

arrow pointing toward the less general hypothesis. 

 Note the subset of instances characterized by h2 subsumes the subset characterized by 
hl , hence h2 is more - general– than h1 

 

 
FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS 

 

FIND-S Algorithm 
 

1. Initialize h to the most specific hypothesis in H     

2. For each positive training instance x 

For each attribute constraint ai in h 

If the constraint ai is satisfied by x 

Then do nothing 

Else replace ai in h by the next more general constraint that is satisfied by x 

3. Output hypothesis h     
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To illustrate this algorithm, assume the learner is given the sequence of training examples 

from the EnjoySport task 
 
 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

 

 The first step of FIND-S is to initialize h to the most specific hypothesis in H 

h - (Ø, Ø, Ø, Ø, Ø, Ø) 

 
 Consider the first training example 

x1 = <Sunny Warm Normal Strong Warm Same>, + 

 
Observing the first training example, it is clear that hypothesis h is too specific. None 

of the "Ø" constraints in h are satisfied by this example, so each is replaced by the next 

more general constraint that fits the example 
h1 = <Sunny Warm Normal Strong Warm Same> 

 
 Consider the second training example 

x2 = <Sunny, Warm, High, Strong, Warm, Same>, + 

 
The second training example forces the algorithm to further generalize h, this time 

substituting a "?" in place of any attribute value in h that is not satisfied by the new 

example 

h2 = <Sunny Warm ? Strong Warm Same> 

 
 Consider the third training example 

x3 = <Rainy, Cold, High, Strong, Warm, Change>, - 

 
Upon encountering the third training the algorithm makes no change to h. The FIND-S 

algorithm simply ignores every negative example. 
h3 = < Sunny Warm ? Strong Warm Same> 

 
 Consider the fourth training example 

x4 = <Sunny Warm High Strong Cool Change>, + 

The fourth example leads to a further generalization of h 
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h4 = < Sunny Warm ? Strong ? ? > 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The key property of the FIND-S algorithm 

 FIND-S is guaranteed to output the most specific hypothesis within H that is consistent 

with the positive training examples 

 FIND-S algorithm’s final hypothesis will also be consistent with the negative examples 

provided the correct target concept is contained in H, and provided the training examples are 

correct. 

 
 

Unanswered by FIND-S 
 

1. Has the learner converged to the correct target concept? 

2. Why prefer the most specific hypothesis? 

3. Are the training examples consistent? 

4. What if there are several maximally specific consistent hypotheses? 
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VERSION SPACES AND THE CANDIDATE-ELIMINATION ALGORITHM 

 
The key idea in the CANDIDATE-ELIMINATION algorithm is to output a description of the 

set of all hypotheses consistent with the training examples 

 
 

Representation 

Definition: consistent- A hypothesis h is consistent with a set of training examples D if and 

only if h(x) = c(x) for each example (x, c(x)) in D. 

Consistent (h, D)  ( x, c(x)  D) h(x) = c(x)) 

Note difference between definitions of consistent and satisfies 

 An example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is 

a positive or negative example of the target concept. 

 An example x is said to consistent with hypothesis h iff h(x) = c(x) 

 
Definition: version space- The version space, denoted V S with respect to hypothesis space 

H, D 

H and training examples D, is the subset of hypotheses from H consistent with the training 

examples in D 

V S {h  H | Consistent (h, D)} 
H, D 

 

 

 

The LIST-THEN-ELIMINATION algorithm 
 

The LIST-THEN-ELIMINATE algorithm first initializes the version space to contain all 

hypotheses in H and then eliminates any hypothesis found inconsistent with any training 

example. 

 
1. VersionSpace c a list containing every hypothesis in H 

2. For each training example, (x, c(x)) 

remove from VersionSpace any hypothesis h for which h(x) ≠ c(x) 

3. Output the list of hypotheses in VersionSpace 

 
The LIST-THEN-ELIMINATE Algorithm 

 

 List-Then-Eliminate works in principle, so long as version space is finite. 

 However, since it requires exhaustive enumeration of all hypotheses in practice it is not 

feasible. 
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A More Compact Representation for Version Spaces 
 

The version space is represented by its most general and least general members. These members  

form general and specific boundary sets that delimit the version space within the partially 

ordered hypothesis space. 

 
Definition: The general boundary G, with respect to hypothesis space H and training data D, 

is the set of maximally general members of H consistent with D 

 

G {g  H | Consistent (g, D)(g'  H)[(g'  g)  Consistent(g', D)]} 
g 

 

Definition: The specific boundary S, with respect to hypothesis space H and training data D, 

is the set of minimally general (i.e., maximally specific) members of H consistent with D. 

 

S {s  H | Consistent (s, D)(s'  H)[(s  s')  Consistent(s', D)]} 
g 

 

 

 

Theorem: Version Space representation theorem 

Theorem: Let X be an arbitrary set of instances and Let H be a set of Boolean-valued 

hypotheses defined over X. Let c: X →{O, 1} be an arbitrary target concept defined over X, 

and let D be an arbitrary set of training examples {(x, c(x))). For all X, H, c, and D such that S 

and G are well defined, 

VS ={ h  H | (s  S ) (g  G ) ( g  h  s )} 
H,D g g 

To Prove: 

1. Every h satisfying the right hand side of the above expression is in VS 

2. Every member of VS satisfies the right-hand side of the expression 
H, D 

 

 

 

H, D 
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Sketch of proof: 

1. let g, h, s be arbitrary members of G, H, S respectively with g g h g s 

 By the definition of S, s must be satisfied by all positive examples in D. Because h g s, 

h must also be satisfied by all positive examples in D. 

 By the definition of G, g cannot be satisfied by any negative example in D, and because g 

g h h cannot be satisfied by any negative example in D. Because h is satisfied by all 

positive examples in D and by no negative examples in D, h is consistent with D, and 

therefore h is a member of VSH,D. 

2. It can be proven by assuming some h in VSH,D,that does not satisfy the right-hand side 

of the expression, then showing that this leads to an inconsistency 

 
CANDIDATE-ELIMINATION Learning Algorithm 

 

The CANDIDATE-ELIMINTION algorithm computes the version space containing all 

hypotheses from H that are consistent with an observed sequence of training examples. 

 

 
 Initialize G to the set of maximally general hypotheses in H  

Initialize S to the set of maximally specific hypotheses in H 

For each training example d, do 

• If d is a positive example 

• Remove from G any hypothesis inconsistent with d 

• For each hypothesis s in S that is not consistent with d 

• Remove s from S 

• Add to S all minimal generalizations h of s such that 

• h is consistent with d, and some member of G is more general than h 

• Remove from S any hypothesis that is more general than another hypothesis in S 

 
• If d is a negative example 

• Remove from S any hypothesis inconsistent with d 

• For each hypothesis g in G that is not consistent with d 

• Remove g from G 

• Add to G all minimal specializations h of g such that 

• h is consistent with d, and some member of S is more specific than h 

• Remove from G any hypothesis that is less general than another hypothesis in G 

CANDIDATE- ELIMINTION algorithm using version spaces 
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An Illustrative Example 
 
 

 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of 

all hypotheses in H; 

 

Initializing the G boundary set to contain the most general hypothesis in H 

G0 ?, ?, ?, ?, ?, ?


Initializing the S boundary set to contain the most specific (least general) hypothesis 

S0 , , , , , 


 When the first training example is presented, the CANDIDATE-ELIMINTION algorithm 

checks the S boundary and finds that it is overly specific and it fails to cover the positive 

example. 

 The boundary is therefore revised by moving it to the least more general hypothesis that 

covers this new example 

 No update of the G boundary is needed in response to this training example because Go 

correctly covers this example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 When the second training example is observed, it has a similar effect of generalizing S 

further to S2, leaving G again unchanged i.e., G2 = G1 = G0 
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 Consider the third training example. This negative example reveals that the G boundary 

of the version space is overly general, that is, the hypothesis in G incorrectly predicts 

that this new example is a positive example. 

 The hypothesis in the G boundary must therefore be specialized until it correctly 

classifies this new negative example 

 

 

 

 

 

 

 

 

 

 

 

 

 
Given that there are six attributes that could be specified to specialize G2, why are there only 

three new hypotheses in G3? 

For example, the hypothesis h = (?, ?, Normal, ?, ?, ?) is a minimal specialization of G2 

that correctly labels the new example as a negative example, but it is not included in G 3. The 

reason this hypothesis is excluded is that it is inconsistent with the previously 

encountered positive examples 

 

 Consider the fourth training example. 
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 This positive example further generalizes the S boundary of the version space. It also 

results in removing one member of the G boundary, because this member fails to 

cover the new positive example 

 

 
After processing these four examples, the boundary sets S4 and G4 delimit the version space 

of all hypotheses consistent with the set of incrementally observed training examples. 
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INDUCTIVE BIAS 

 
The fundamental questions for inductive inference 

 
1. What if the target concept is not contained in the hypothesis space? 

2. Can we avoid this difficulty by using a hypothesis space that includes every possible 

hypothesis? 

3. How does the size of this hypothesis space influence the ability of the algorithm to 

generalize to unobserved instances? 

4. How does the size of the hypothesis space influence the number of training examples 

that must be observed? 

 

These fundamental questions are examined in the context of the CANDIDATE- 

ELIMINTION algorithm 

 

 
 

A Biased Hypothesis Space 
 

 Suppose the target concept is not contained in the hypothesis space H, then obvious solution 

is to enrich the hypothesis space to include every possible hypothesis. 

 Consider the EnjoySport example in which the hypothesis space is restricted to include 

only conjunctions of attribute values. Because of this restriction, the hypothesis space is  

unable to represent even simple disjunctive target concepts such as 

"Sky = Sunny or Sky = Cloudy." 

 The following three training examples of disjunctive hypothesis, the algorithm would 

find that there are zero hypotheses in the version space 

 
Sunny Warm Normal Strong Cool Change Y 

Cloudy Warm Normal Strong Cool Change Y 

Rainy Warm Normal Strong Cool Change N 

 
 If Candidate Elimination algorithm is applied, then it end up with empty Version Space.  

After first two training example 

S= ? Warm Normal Strong Cool Change


 This new hypothesis is overly general and it incorrectly covers the third negative training 

example! So H does not include the appropriate c. 

 In this case, a more expressive hypothesis space is required. 
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An Unbiased Learner 
 

 The solution to the problem of assuring that the target concept is in the hypothesis space H 

is to provide a hypothesis space capable of representing every teachable concept that is 

representing every possible subset of the instances X. 

 The set of all subsets of a set X is called the power set of X 

 
 In the EnjoySport learning task the size of the instance space X of days described by 

the six attributes is 96 instances. 

 Thus, there are 296  distinct target concepts that could be defined over this instance spaceand 

learner might be called upon to learn. 

 The conjunctive hypothesis space is able to represent only 973 of these - a biased 

hypothesis space indeed 
 

 Let us reformulate the EnjoySport learning task in an unbiased way by defining a new 

hypothesis space H' that can represent every subset of instances 

 The target concept "Sky = Sunny or Sky = Cloudy" could then be described as 

 
(Sunny, ?, ?, ?, ?, ?) v (Cloudy, ?, ?, ?, ?, ?) 

 

 
The Futility of Bias-Free Learning 

 

Inductive learning requires some form of prior assumptions, or inductive bias 

 

Definition: 

Consider a concept learning algorithm L for the set of instances X. 
 Let c be an arbitrary concept defined over X 

 Let D 
c = {(x , c(x))} be an arbitrary set of training examples of c. 

 Let L (x , D ) denote the classification assigned to the instance x by L after training on 
i c i 

the data D . 
c 

 The inductive bias of L is any minimal set of assertions B such that for any target concept 
c and corresponding training examples D 

c 

 ( xi  X ) [(B  Dc  xi) ├ L (xi, Dc )] 
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The below figure explains 

 Modelling inductive systems by equivalent deductive systems. 

 The input-output behavior of the CANDIDATE-ELIMINATION algorithm using a 

hypothesis space H is identical to that of a deductive theorem prover utilizing the 

assertion "H contains the target concept." This assertion is therefore called the inductive 

bias of the CANDIDATE-ELIMINATION algorithm. 

 Characterizing inductive systems by their inductive bias allows modelling them by their 

equivalent deductive systems. This provides a way to compare inductive systems 

according to their policies for generalizing beyond the observed training data. 



MACHINE LEARNING (DS4102PC/ CY4101PC) 

Dept of CSE, NRCM 24 T.Aparna Asst. Prof 

 

 

 

 

 

 

DECISION TREE LEARNING 

 

Decision tree learning is a method for approximating discrete-valued target functions, in which the 

learned function is represented by a decision tree. 

 

 
 

DECISION TREE REPRESENTATION 

 Decision trees classify instances by sorting them down the tree from the root to some 

leaf node, which provides the classification of the instance. 

 Each node in the tree specifies a test of some attribute of the instance, and each branch 

descending from that node corresponds to one of the possible values for this attribute. 

 An instance is classified by starting at the root node of the tree, testing the attribute 

specified by this node, then moving down the tree branch corresponding to the value of the 

attribute in the given example. This process is then repeated for the subtree rooted at the 

new node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE: A decision tree for the concept PlayTennis. An example is classified by sorting it 

through the tree to the appropriate leaf node, then returning the classification associated with 

this leaf 
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 Decision trees represent a disjunction of conjunctions of constraints on the attribute 

values of instances. 

 Each path from the tree root to a leaf corresponds to a conjunction of attribute tests, 

and the tree itself to a disjunction of these conjunctions 

 
For example, the decision tree shown in above figure corresponds to the expression 

(Outlook = Sunny  Humidity = Normal) 

 ᷉ (Outlook = Overcast) 

 ᷉ (Outlook = Rain  Wind = Weak) 

 

 

 

 

APPROPRIATE PROBLEMS FOR DECISION TREE 

LEARNING 

Decision tree learning is generally best suited to problems with the following characteristics: 

 
1. Instances are represented by attribute-value pairs – Instances are described by a 

fixed set of attributes and their values 

 
2. The target function has discrete output values – The decision tree assigns a Boolean 

classification (e.g., yes or no) to each example. Decision tree methods easily extend to 

learning functions with more than two possible output values. 

 
3. Disjunctive descriptions may be required 

 
4. The training data may contain errors – Decision tree learning methods are robust to 

errors, both errors in classifications of the training examples and errors in the attribute 

values that describe these examples. 

5. The training data may contain missing attribute values – Decision tree methods can 

be used even when some training examples have unknown values 
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THE BASIC DECISION TREE LEARNING ALGORITHM 

The basic algorithm is ID3 which learns decision trees by constructing them top-down 

 

 
ID3(Examples, Target_attribute, Attributes) 

 

Examples are the training examples. Target_attribute is the attribute whose value is to be 

predicted by the tree. Attributes is a list of other attributes that may be tested by the learned 

decision tree. Returns a decision tree that correctly classifies the given Examples. 

 

 Create a Root node for the tree 

 If all Examples are positive, Return the single-node tree Root, with label = + 

 If all Examples are negative, Return the single-node tree Root, with label = - 

 If Attributes is empty, Return the single-node tree Root, with label = most common value 

of Target_attribute in Examples 

 
 Otherwise Begin 

 A ← the attribute from Attributes that best* classifies Examples 

 The decision attribute for Root ← A 

 For each possible value, vi, of A, 

 Add a new tree branch below Root, corresponding to the test A = vi  

 Let Examples vi, be the subset of Examples that have value vi  for A 

 If Examples vi , is empty 

 Then below this new branch add a leaf node with label = most common 

value of Target_attribute in Examples 

 Else below this new branch add the subtree 

ID3(Examples vi, Targe_tattribute, Attributes – {A})) 

 End 

 Return Root 

 

* The best attribute is the one with highest information gain 

 
TABLE: Summary of the ID3 algorithm specialized to learning Boolean-valued functions. ID3 

is a greedy algorithm that grows the tree top-down, at each node selecting the attribute that best 

classifies the local training examples. This process continues until the tree perfectly classifies 

the training examples, or until all attributes have been used 
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Which Attribute Is the Best Classifier? 

 
 The central choice in the ID3 algorithm is selecting which attribute to test at each node 

in the tree. 

 A statistical property called information gain that measures how well a given attribute 

separates the training examples according to their target classification. 

 ID3 uses information gain measure to select among the candidate attributes at each 

step while growing the tree. 

 
ENTROPY MEASURES HOMOGENEITY OF EXAMPLES 

 
To define information gain, we begin by defining a measure called entropy. Entropy 

measures the impurity of a collection of examples. 

 
Given a collection S, containing positive and negative examples of some target concept, the 

entropy of S relative to this Boolean classification is 
 

 

 

 
 

Where,  
p+ is the proportion of positive examples in S 

p- is the proportion of negative examples in S. 
 

 
 

Example: 

Suppose S is a collection of 14 examples of some boolean concept, including 9 positive and 5 

negative examples. Then the entropy of S relative to this boolean classification is 

 

 

 

 

 

 
 The entropy is 0 if all members of S belong to the same class 

 The entropy is 1 when the collection contains an equal number of positive and negative 

examples 

 If the collection contains unequal numbers of positive and negative examples, the 

entropy is between 0 and 1 
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INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY 

 
 Information gain, is the expected reduction in entropy caused by partitioning the 

examples according to this attribute. 

 The information gain, Gain(S, A) of an attribute A, relative to a collection of examples 

S, is defined as 

 

 

 

 

Example: Information gain 

 

Let, Values(Wind) = {Weak, Strong} 

S = [9+, 5−] 

S = [6+, 2−] 
Weak 

S = [3+, 3−] 
Strong 

 

Information gain of attribute Wind: 

Gain(S, Wind) = Entropy(S) − 8/14 Entropy (SWeak) − 6/14 Entropy (SStrong) 

= 0.94 – (8/14)* 0.811 – (6/14) *1.00 

= 0.048 
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An Illustrative Example 

 

 To illustrate the operation of ID3, consider the learning task represented by the training 

examples of below table. 

 Here the target attribute PlayTennis, which can have values yes or no for different days. 

 Consider the first step through the algorithm, in which the topmost node of the decision 

tree is created. 
 

 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
 

 ID3 determines the information gain for each candidate attribute (i.e., Outlook, 

Temperature, Humidity, and Wind), then selects the one with highest information gain. 
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 The information gain values for all four attributes are 

Gain(S, Outlook) = 0.246 

Gain(S, Humidity) = 0.151 

Gain(S, Wind) = 0.048 

Gain(S, Temperature) = 0.029 

 According to the information gain measure, the Outlook attribute provides the best 

prediction of the target attribute, PlayTennis, over the training examples. Therefore, 

Outlook is selected as the decision attribute for the root node, and branches are created 

below the root for each of its possible values i.e., Sunny, Overcast, and Rain. 



MACHINE LEARNING (DS4102PC/ CY4101PC) 

Dept of CSE, NRCM 31 T.Aparna Asst. Prof 

 

 

 

 

 

SRain = { D4, D5, D6, D10, D14} 

 
Gain (SRain , Humidity) = 0.970 – (2/5)1.0 – (3/5)0.917 = 0.019 

Gain (SRain , Temperature) =0.970 – (0/5)0.0 – (3/5)0.918 – (2/5)1.0 = 0.019 

Gain (SRain , Wind) =0.970 – (3/5)0.0 – (2/5)0.0 = 0.970 
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HYPOTHESIS SPACE SEARCH IN DECISION TREE 

LEARNING 

 ID3 can be characterized as searching a space of hypotheses for one that fits the training  

examples. 

 The hypothesis space searched by ID3 is the set of possible decision trees. 

 ID3 performs a simple-to complex, hill-climbing search through this hypothesis space, 

beginning with the empty tree, then considering progressively more elaborate hypotheses 

in search of a decision tree that correctly classifies the training data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure: Hypothesis space search by ID3. ID3 searches through the space of possible decision 

trees from simplest to increasingly complex, guided by the information gain heuristic. 

 

 
By viewing ID3 in terms of its search space and search strategy, there are some insight into its 

capabilities and limitations 
 

1. ID3's hypothesis space of all decision trees is a complete space of finite discrete-valued 

functions, relative to the available attributes. Because every finite discrete-valued 

function can be represented by some decision tree 

ID3 avoids one of the major risks of methods that search incomplete hypothesis spaces: 

that the hypothesis space might not contain the target function. 
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2. ID3 maintains only a single current hypothesis as it searches through the space of 

decision trees. 

For example, with the earlier version space candidate elimination method, which 

maintains the set of all hypotheses consistent with the available training examples. 

 

By determining only a single hypothesis, ID3 loses the capabilities that follow from 

explicitly representing all consistent hypotheses. 

For example, it does not have the ability to determine how many alternative decision 

trees are consistent with the available training data, or to pose new instance queries that 

optimally resolve among these competing hypotheses 

 
3. ID3 in its pure form performs no backtracking in its search. Once it selects an attribute 

to test at a particular level in the tree, it never backtracks to reconsider this choice. 

In the case of ID3, a locally optimal solution corresponds to the decision tree it selects 

along the single search path it explores. However, this locally optimal solution may be 

less desirable than trees that would have been encountered along a different branch of 

the search. 

 
4. ID3 uses all training examples at each step in the search to make statistically based 

decisions regarding how to refine its current hypothesis. 

One advantage of using statistical properties of all the examples is that the resulting 

search is much less sensitive to errors in individual training examples. 

ID3 can be easily extended to handle noisy training data by modifying its termination 

criterion to accept hypotheses that imperfectly fit the training data. 

 

 
 

INDUCTIVE BIAS IN DECISION TREE LEARNING 

Inductive bias is the set of assumptions that, together with the training data, deductively justify 

the classifications assigned by the learner to future instances 

 
Given a collection of training examples, there are typically many decision trees consistent with 

these examples. Which of these decision trees does ID3 choose? 

 
ID3 search strategy 

 Selects in favour of shorter trees over longer ones 

 Selects trees that place the attributes with highest information gain closest to the root. 
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Approximate inductive bias of ID3: Shorter trees are preferred over larger trees 

 

 Consider an algorithm that begins with the empty tree and searches breadth first through 

progressively more complex trees. 

 First considering all trees of depth 1, then all trees of depth 2, etc. 

 Once it finds a decision tree consistent with the training data, it returns the smallest 

consistent tree at that search depth (e.g., the tree with the fewest nodes). 

 Let us call this breadth-first search algorithm BFS-ID3. 

 BFS-ID3 finds a shortest decision tree and thus exhibits the bias "shorter trees are 

preferred over longer trees. 

 
A closer approximation to the inductive bias of ID3: Shorter trees are preferred over longer 

trees. Trees that place high information gain attributes close to the root are preferred over 

those that do not. 

 

 ID3 can be viewed as an efficient approximation to BFS-ID3, using a greedy heuristic 

search to attempt to find the shortest tree without conducting the entire breadth-first 

search through the hypothesis space. 

 Because ID3 uses the information gain heuristic and a hill climbing strategy, it exhibitsa 

more complex bias than BFS-ID3. 

 In particular, it does not always find the shortest consistent tree, and it is biased to favour 

trees that place attributes with high information gain closest to the root. 

 
 

Restriction Biases and Preference Biases 

Difference between the types of inductive bias exhibited by ID3 and by the CANDIDATE- 

ELIMINATION Algorithm. 

ID3: 

 ID3 searches a complete hypothesis space 

 It searches incompletely through this space, from simple to complex hypotheses, until 

its termination condition is met 

 Its inductive bias is solely a consequence of the ordering of hypotheses by its search 

strategy. Its hypothesis space introduces no additional bias 

 
CANDIDATE-ELIMINATION Algorithm: 

 The version space CANDIDATE-ELIMINATION Algorithm searches an incomplete 

hypothesis space 

 It searches this space completely, finding every hypothesis consistent with the training 

data. 
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 Its inductive bias is solely a consequence of the expressive power of its hypothesis 

representation. Its search strategy introduces no additional bias 

Preference bias – The inductive bias of ID3 is a preference for certain hypotheses over others 

(e.g., preference for shorter hypotheses over larger hypotheses), with no hard restriction on the 

hypotheses that can be eventually enumerated. This form of bias is called a preference bias or 

a search bias. 

 
Restriction bias – The bias of the CANDIDATE ELIMINATION algorithm is in the form of a 

categorical restriction on the set of hypotheses considered. This form of bias is typically called 

a restriction bias or a language bias. 

 

 
Which type of inductive bias is preferred in order to generalize beyond the training data, a 

preference bias or restriction bias? 

 

 A preference bias is more desirable than a restriction bias, because it allows the learner 

to work within a complete hypothesis space that is assured to contain the unkno wn target  

function. 

 In contrast, a restriction bias that strictly limits the set of potential hypotheses is 

generally less desirable, because it introduces the possibility of excluding the unknown 

target function altogether. 

 

 
Why Prefer Short 

Hypotheses?Occam's razor 

 Occam's razor: is the problem-solving principle that the simplest solution tends to be 

the right one. When presented with competing hypotheses to solve a problem, one 

should select the solution with the fewest assumptions. 

 
 Occam's razor: “Prefer the simplest hypothesis that fits the data”. 

 
Argument in favour of Occam’s razor: 

 

 Fewer short hypotheses than long ones: 

 Short hypotheses fits the training data which are less likely to be coincident 

 Longer hypotheses fits the training data might be coincident. 

 Many complex hypotheses that fit the current training data but fail to generalize 

q- correctly to subsequent data. 
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 There are few small trees, and our priori chance of finding one consistent with an 

arbitrary set of data is therefore small. The difficulty here is that there are very many 

small sets of hypotheses that one can define but understood by fewer learner. 

 The size of a hypothesis is determined by the representation used internally by the 

learner. Occam's razor will produce two different hypotheses from the same training 

examples when it is applied by two learners, both justifying their contradictory 

conclusions by Occam's razor. On this basis we might be tempted to reject Occam's 

razor altogether. 

 

 

 

 
ISSUES IN DECISION TREE LEARNING 

Issues in learning decision trees include 

1. Avoiding Overfitting the Data 

Reduced error pruning 

Rule post-pruning 

2. Incorporating Continuous-Valued Attributes 

3. Alternative Measures for Selecting Attributes 

4. Handling Training Examples with Missing Attribute Values 

5. Handling Attributes with Differing Costs 

 

 
1. Avoiding Overfitting the Data 

 

 The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify the 

training examples but it can lead to difficulties when there is noise in the data, or when 

the number of training examples is too small to produce a representative sample of the 

true target function. This algorithm can produce trees that overfit the training examples. 

 
 Definition - Overfit: Given a hypothesis space H, a hypothesis h ᶰ H is said to overfit 

the training data if there exists some alternative hypothesis h'  ɴH, such that h has smaller 

error than h' over the training examples, but h' has a smaller error than h over the entire 

distribution of instances. 
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The below figure illustrates the impact of overfitting in a typical application of decision tree 

learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 The horizontal axis of this plot indicates the total number of nodes in the decision tree, 

as the tree is being constructed. The vertical axis indicates the accuracy of predictions 

made by the tree. 

 The solid line shows the accuracy of the decision tree over the training examples. The 

broken line shows accuracy measured over an independent set of test example 

 The accuracy of the tree over the training examples increases monotonically as the tree 

is grown. The accuracy measured over the independent test examples first increases, 

then decreases. 

 

 
How can it be possible for tree h to fit the training examples better than h', but for it to perform 

more poorly over subsequent examples? 

1. Overfitting can occur when the training examples contain random errors or noise 

2. When small numbers of examples are associated with leaf nodes. 

 

 
Noisy Training Example 

 

 Example 15: <Sunny, Hot, Normal, Strong, -> 

 Example is noisy because the correct label is + 

 Previously constructed tree misclassifies it 
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Approaches to avoiding overfitting in decision tree learning 

 Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point whereit 

perfectly classifies the training data 

 Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree 

 
Criterion used to determine the correct final tree size 

 Use a separate set of examples, distinct from the training examples, to evaluate the utility of 

post-pruning nodes from the tree 

 Use all the available data for training, but apply a statistical test to estimate whether 

expanding (or pruning) a particular node is likely to produce an improvement beyond 

the training set 

 Use measure of the complexity for encoding the training examples and the decision tree,  

halting growth of the tree when this encoding size is minimized. This approach is called 

the Minimum Description Length 

 
MDL – Minimize : size(tree) + size (misclassifications(tree)) 
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Reduced-Error Pruning 

 Reduced-error pruning, is to consider each of the decision nodes in the tree to be 

candidates for pruning 

 Pruning a decision node consists of removing the subtree rooted at that node, making it 

a leaf node, and assigning it the most common classification of the training examples 

affiliated with that node 

 Nodes are removed only if the resulting pruned tree performs no worse than-the original over 

the validation set. 

 Reduced error pruning has the effect that any leaf node added due to coincidental 

regularities in the training set is likely to be pruned because these same coincidences are  

unlikely to occur in the validation set 

 
The impact of reduced-error pruning on the accuracy of the decision tree is illustrated in below 

figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 The additional line in figure shows accuracy over the test examples as the tree is pruned. 

When pruning begins, the tree is at its maximum size and lowest accuracy over the test 

set. As pruning proceeds, the number of nodes is reduced and accuracy over the test set 

increases. 

 The available data has been split into three subsets: the training examples, the validation 

examples used for pruning the tree, and a set of test examples used to provide an 

unbiased estimate of accuracy over future unseen examples. The plot shows accuracy 

over the training and test sets. 
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Pros and Cons 

Pro: Produces smallest version of most accurate T (subtree of T) 

Con: Uses less data to construct T 

Can afford to hold out D 

(insufficient D ) 
train 

 

 

 

 

Rule Post- 

Pruning 

?. If not (data is too limited), may make error worse 
validation 

 

 

Rule post-pruning is successful method for finding high accuracy hypotheses 

 

 Rule post-pruning involves the following steps: 

 Infer the decision tree from the training set, growing the tree until the training data is fit 

as well as possible and allowing overfitting to occur. 

 Convert the learned tree into an equivalent set of rules by creating one rule for each path 

from the root node to a leaf node. 

 Prune (generalize) each rule by removing any preconditions that result in improving its 

estimated accuracy. 

 Sort the pruned rules by their estimated accuracy, and consider them in this sequence 

when classifying subsequent instances. 

 

 
Converting a Decision Tree into Rules 
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For example, consider the decision tree. The leftmost path of the tree in below figure is 

translated into the rule. 

IF (Outlook = Sunny) ^ (Humidity = High) 

THEN PlayTennis = No 

 

Given the above rule, rule post-pruning would consider removing the preconditions 

(Outlook = Sunny) and (Humidity = High) 

 
 It would select whichever of these pruning steps produced the greatest improvement in 

estimated rule accuracy, then consider pruning the second precondition as a further 

pruning step. 

 No pruning step is performed if it reduces the estimated rule accuracy. 

 
 

There are three main advantages by converting the decision tree to rules before pruning 

 

1. Converting to rules allows distinguishing among the different contexts in which a 

decision node is used. Because each distinct path through the decision tree node 

produces a distinct rule, the pruning decision regarding that attribute test can be made 

differently for each path. 

2. Converting to rules removes the distinction between attribute tests that occur near the 

root of the tree and those that occur near the leaves. Thus, it avoid messy bookkeeping 

issues such as how to reorganize the tree if the root node is pruned while retaining part 

of the subtree below this test. 

3. Converting to rules improves readability. Rules are often easier for to understand. 

 

 

 
2. Incorporating Continuous-Valued Attributes 

 
Continuous-valued decision attributes can be incorporated into the learned tree. 

 
There are two methods for Handling Continuous Attributes 

1. Define new discrete valued attributes that partition the continuous attribute value into a 

discrete set of intervals. 

E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C} 

 
2. Using thresholds for splitting nodes 

e.g., A ≤ a produces subsets A ≤ a and A > a 
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What threshold-based Boolean attribute should be defined based on Temperature? 

 

 

 

 

 
 Pick a threshold, c, that produces the greatest information gain 

 In the current example, there are two candidate thresholds, corresponding to the values 

of Temperature at which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2. 

 The information gain can then be computed for each of the candidate attributes, 

Temperature >54, and Temperature >85 and the best can be selected (Temperature >54) 

 

 
3. Alternative Measures for Selecting Attributes 

 
 The problem is if attributes with many values, Gain will select it ?

 Example: consider the attribute Date, which has a very large number of possible values. 

(e.g., March 4, 1979).

 If this attribute is added to the PlayTennis data, it would have the highest information 

gain of any of the attributes. This is because Date alone perfectly predicts the target 

attribute over the training data. Thus, it would be selected as the decision attribute for 

the root node of the tree and lead to a tree of depth one, which perfectly classifies the 

training data.

 This decision tree with root node Date is not a useful predictor because it perfectly 

separates the training data, but poorly predict on subsequent examples.

 
One Approach: Use GainRatio instead of Gain 

 

The gain ratio measure penalizes attributes by incorporating a split information, that is sensitive 

to how broadly and uniformly the attribute splits the data 

 

 

 

 

 

 

 

 
Where, Si is subset of S, for which attribute A has value vi 
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4. Handling Training Examples with Missing Attribute Values 

 
The data which is available may contain missing values for some attributes 

Example: Medical diagnosis 

 <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>

 Sometimes values truly unknown, sometimes low priority (or cost too high)

 
Strategies for dealing with the missing attribute value 

 If node n test A, assign most common value of A among other training examples sorted 

to node n

 Assign most common value of A among other training examples with same target value

 Assign a probability pi to each of the possible values vi of A rather than simply assigning 

the most common value to A(x)

 
5. Handling Attributes with Differing Costs 

 
 In some learning tasks the instance attributes may have associated costs.

 For example: In learning to classify medical diseases, the patients described in terms of 

attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults, etc.

 These attributes vary significantly in their costs, both in terms of monetary cost and cost 

to patient comfort

 Decision trees use low-cost attributes where possible, depends only on high-cost 

attributes only when needed to produce reliable classifications

 
How to Learn A Consistent Tree with Low Expected Cost? 

 

One approach is replace Gain by Cost-Normalized-Gain 

 
Examples of normalization functions 
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UNIT-II 

ARTIFICIAL NEURAL NETWORKS 

 

INTRODUCTION 

 
Artificial neural networks (ANNs) provide a general, practical method for learning real-valued, 

discrete-valued, and vector-valued target functions. 

 
Biological Motivation 

 
 The study of artificial neural networks (ANNs) has been inspired by the observation that 

biological learning systems are built of very complex webs of interconnected Neurons

 Human information processing system consists of brain neuron: basic building block 

cell that communicates information to and from various parts of body

 
Facts of Human Neurobiology 

 
 Number of neurons ~ 1011

 Connection per neuron ~ 10 4 – 5

 Neuron switching time ~ 0.001 second or 10 -3

 Scene recognition time ~ 0.1 second

 100 inference steps doesn’t seem like enough

 Highly parallel computation based on distributed representation

 

 
Properties of Neural Networks 

 
 Many neuron-like threshold switching units

 Many weighted interconnections among units

 Highly parallel, distributed process

 Emphasis on tuning weights automatically

 Input is a high-dimensional discrete or real-valued (e.g, sensor input )
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NEURAL NETWORK REPRESENTATIONS 

 A prototypical example of ANN learning is provided by Pomerleau's system ALVINN, 

which uses a learned ANN to steer an autonomous vehicle driving at normal speeds on 

public highways

 The input to the neural network is a 30x32 grid of pixel intensities obtained from a 

forward-pointed camera mounted on the vehicle.

 The network output is the direction in which the vehicle is steered
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure: Neural network learning to steer an autonomous vehicle. 
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 Figure illustrates the neural network representation.

 The network is shown on the left side of the figure, with the input camera image depicted 

below it.

 Each node (i.e., circle) in the network diagram corresponds to the output of a single 

network unit, and the lines entering the node from below are its inputs.

 There are four units that receive inputs directly from all of the 30 x 32 pixels in the 

image. These are called "hidden" units because their output is available only within the 

network and is not available as part of the global network output. Each of these four 

hidden units computes a single real-valued output based on a weighted combination of 

its 960 inputs

 These hidden unit outputs are then used as inputs to a second layer of 30 "output" units.

 Each output unit corresponds to a particular steering direction, and the output values of 

these units determine which steering direction is recommended most strongly.

 The diagrams on the right side of the figure depict the learned weight values associated 

with one of the four hidden units in this ANN.

 The large matrix of black and white boxes on the lower right depicts the weights from 

the 30 x 32 pixel inputs into the hidden unit. Here, a white box indicates a positive 

weight, a black box a negative weight, and the size of the box indicates the weight 

magnitude.

 The smaller rectangular diagram directly above the large matrix shows the weights from this  

hidden unit to each of the 30 output units.

 

 

APPROPRIATE PROBLEMS FOR NEURAL NETWORK 

LEARNING 

ANN learning is well-suited to problems in which the training data corresponds to noisy, 

complex sensor data, such as inputs from cameras and microphones. 

 
ANN is appropriate for problems with the following characteristics: 

 

1. Instances are represented by many attribute-value pairs. 

2. The target function output may be discrete-valued, real-valued, or a vector of several 

real- or discrete-valued attributes. 

3. The training examples may contain errors. 

4. Long training times are acceptable. 

5. Fast evaluation of the learned target function may be required 

6. The ability of humans to understand the learned target function is not important 
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PERCEPTRON 

 One type of ANN system is based on a unit called a perceptron. Perceptron is a single 

layer neural network.

 

 

 

 

 

 

 

 

 

 

Figure: A perceptron 

 
 A perceptron takes a vector of real-valued inputs, calculates a linear combination of 

these inputs, then outputs a 1 if the result is greater than some threshold and -1 otherwise.

 Given inputs x through x, the output O(x1, . . . , xn) computed by the perceptron is
 

 Where, each wi is a real-valued constant, or weight, that determines the contribution of 
input xi to the perceptron output.

 -w0 is a threshold that the weighted combination of inputs w1x1 + . . . + wnxn must surpass 
in order for the perceptron to output a 1.

 
Sometimes, the perceptron function is written as, 

 

 

 

 

 
 

Learning a perceptron involves choosing values for the weights w0 , . . . , wn . Therefore, the 

space H of candidate hypotheses considered in perceptron learning is the set of all possible real- 

valued weight vectors 
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Representational Power of Perceptrons 

 
 The perceptron can be viewed as representing a hyperplane decision surface in the n- 

dimensional space of instances (i.e., points)

 The perceptron outputs a 1 for instances lying on one side of the hyperplane and outputs 

a -1 for instances lying on the other side, as illustrated in below figure

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Perceptrons can represent all of the primitive Boolean functions AND, OR, NAND (~ AND), 

and NOR (~OR) 

Some Boolean functions cannot be represented by a single perceptron, such as the XOR 

function whose value is 1 if and only if x1 ≠ x2 

 
Example: Representation of AND functions 

 

 

 

 

 

 

 

 

 

 

 

If A=0 & B=0 → 0*0.6 + 0*0.6 = 0. 

This is not greater than the threshold of 1, so the output = 0. 

If A=0 & B=1 → 0*0.6 + 1*0.6 = 0.6. 

This is not greater than the threshold, so the output = 0. 

If A=1 & B=0 → 1*0.6 + 0*0.6 = 0.6. 

This is not greater than the threshold, so the output = 0. 

If A=1 & B=1 → 1*0.6 + 1*0.6 = 1.2. 

This exceeds the threshold, so the output = 1. 
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Drawback of perceptron 

 The perceptron rule finds a successful weight vector when the training examples are 

linearly separable, it can fail to converge if the examples are not linearly separable

 
The Perceptron Training Rule 

 
The learning problem is to determine a weight vector that causes the perceptron to produce the 

correct + 1 or - 1 output for each of the given training examples. 

 
To learn an acceptable weight vector 

 Begin with random weights, then iteratively apply the perceptron to each training 

example, modifying the perceptron weights whenever it misclassifies an example.

 This process is repeated, iterating through the training examples as many times as 

needed until the perceptron classifies all training examples correctly.

 Weights are modified at each step according to the perceptron training rule, which 

revises the weight wi associated with input xi according to the rule.
 

 

 
 The role of the learning rate is to moderate the degree to which weights are changed at 

each step. It is usually set to some small value (e.g., 0.1) and is sometimes made to decay as 

the number of weight-tuning iterations increases

 
Drawback: 

The perceptron rule finds a successful weight vector when the training examples are linearly 

separable, it can fail to converge if the examples are not linearly separable. 
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Gradient Descent and the Delta Rule 

 
 If the training examples are not linearly separable, the delta rule converges toward a 

best-fit approximation to the target concept.

 The key idea behind the delta rule is to use gradient descent to search the hypothesis 

space of possible weight vectors to find the weights that best fit the training examples.

 
To understand the delta training rule, consider the task of training an unthresholded perceptron. 

That is, a linear unit for which the output O is given by 

 

 

 

 
To derive a weight learning rule for linear units, specify a measure for the training error of a 

hypothesis (weight vector), relative to the training examples. 

 

 

 
 

Where, 

 D is the set of training examples,

 td is the target output for training example d,

 od is the output of the linear unit for training example d

 E ( ᴆ×ᴆᴆO ) i s sim pl y hal f th e s quar ed di ff ere nc e be t w een the targ et o utp ut t d  a nd the lin ear 
unit output od, summed over all training examples.

 
Visualizing the Hypothesis Space 

 
 To understand the gradient descent algorithm, it is helpful to visualize the entire 

hypothesis space of possible weight vectors and their associated E values as shown in 

below figure.

 Here the axes w0 and wl represent possible values for the two weights of a simple linear 
unit. The w0, wl plane therefore represents the entire hypothesis space.

 The vertical axis indicates the error E relative to some fixed set of training examples.

 The arrow shows the negated gradient at one particular point, indicating the direction in the 

w0, wl plane producing steepest descent along the error surface.

 The error surface shown in the figure thus summarizes the desirability of every weight 

vector in the hypothesis space
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 Given the way in which we chose to define E, for linear units this error surface must 

always be parabolic with a single global minimum.

 
Gradient descent search determines a weight vector that minimizes E by starting with an 

arbitrary initial weight vector, then repeatedly modifying it in small steps. 

At each step, the weight vector is altered in the direction that produces the steepest descent 

along the error surface depicted in above figure. This process continues until the global 

minimum error is reached. 

 

 

Derivation of the Gradient Descent Rule 

 
How to calculate the direction of steepest descent along theerror surface? 

 
The direction of steepest can be found by computing the derivative of E with respect to each 

co m p on ent  of  the  ve ctor ×ᴆᴆᴆO . T hi s ve ct or d eri v at ive is c alled the gr a di e nt of  E  with  re sp ect to 

ᴆ×ᴆᴆO , written as 



MACHINE LEARNING (DS4102PC/ CY4101PC) 

Dept of CSE, NRCM 52 T.Aparna Asst. Prof 

 

 

 

The gradient specifies the direction of steepest increase of E, the training rule for 

gradient descent is 

 

 

 

 
 Here η is a positive constant called the learning rate, which determines the step 

size in the gradient descent search.

 The negative sign is present because we want to move the weight vector in the 

direction that decreases E.

 
This training rule can also be written in its component form 

 

 

 

 

 

 

Calculate the gradient at each step. The vector of Ὁ 
ύὭ 

derivatives that form the 

 

gradient can be obtained by differentiating E from Equation (2), as 
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GRADIENT DESCENT algorithm for training a linear unit 

 

 

 

 

 

 

 

 

 

 

 
 

To summarize, the gradient descent algorithm for training linear units is as follows: 

 Pick an initial random weight vector.

 Apply the linear unit to all training examples, then compute Δwi for each weight 

according to Equation (7).

 Update each weight wi by adding Δwi, then repeat this process

 

 
Issues in Gradient Descent Algorithm 

 
Gradient descent is an important general paradigm for learning. It is a strategy for searching 

through a large or infinite hypothesis space that can be applied whenever 

1. The hypothesis space contains continuously parameterized hypotheses 

2. The error can be differentiated with respect to these hypothesis parameters 

 
The key practical difficulties in applying gradient descent are 

1. Converging to a local minimum can sometimes be quite slow 

2. If there are multiple local minima in the error surface, then there is no guarantee that 

the procedure will find the global minimum 
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Stochastic Approximation to Gradient Descent 

 
 The gradient descent training rule presented in Equation (7) computes weight updates 

after summing over all the training examples in D

 The idea behind stochastic gradient descent is to approximate this gradient descent 

search by updating weights incrementally, following the calculation of the error for 

each individual example

∆wi = η (t – o) xi 

 
 where t, o, and xi are the target value, unit output, and ith input for the training example 

in question
 

 

 

One way to view this stochastic gradient descent is to consider a distinct error function 

E d( ᴆ×ᴆᴆO ) f or ea ch in div id ual trainin g e x a m ple  d as fo ll ow s 

 

 

 
 Where, td and od are the target value and the unit output value for training example d.

 Stochastic gradient descent iterates over the training examples d in D, at each iteration 

alte ri ng the  w eigh t s a c co rd in g to t he gra di ent w ith res pect t o E d( ×ᴆᴆᴆO )

 The sequence of these weight updates, when iterated over all training examples,provides 

a reasonable approximation to descending the gradient with respect to our origi nal err or 

f u nct i on  E d( ᴆ×ᴆᴆO )

 By making the value of η sufficiently small, stochastic gradient descent can be made to 

approximate true gradient descent arbitrarily closely
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The key differences between standard gradient descent and stochastic gradient descent are 

 In standard gradient descent, the error is summed over all examples before updating 

weights, whereas in stochastic gradient descent weights are updated upon examining 

each training example.

 Summing over multiple examples in standard gradient descent requires more 

computation per weight update step. On the other hand, because it uses the true gradient, 

standard gradient descent is often used with a larger step size per weight update than 

stochastic gradient descent.

 In cases where there are multiple local minima with respect to stochastic gradient 

descent can sometimes avoid falling into these local minima because it uses the various

 ɳE  ( ᴆ×ᴆᴆO ) rat h er than  ɳE( ᴆ×ᴆᴆO ) to g ui de it s search 
d 

 

 

 

MULTILAYER NETWORKS AND THE BACKPROPAGATION 

ALGORITHM 

Multilayer networks learned by the BACKPROPAGATION algorithm are capable of 

expressing a rich variety of nonlinear decision surfaces. 

 
Consider the example: 

 Here the speech recognition task involves distinguishing among 10 possible vowels, all 

spoken in the context of "h_d" (i.e., "hid," "had," "head," "hood," etc.).

 The network input consists of two parameters, F1 and F2, obtained from a spectral 

analysis of the sound. The 10 network outputs correspond to the 10 possible vowel 

sounds. The network prediction is the output whose value is highest.

 The plot on the right illustrates the highly nonlinear decision surface represented by the 

learned network. Points shown on the plot are test examples distinct from the examples 

used to train the network.
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A Differentiable Threshold Unit (Sigmoid unit) 

 
 Sigmoid unit-a unit very much like a perceptron, but based on a smoothed, differentiable 

threshold function.
 

 
 The sigmoid unit first computes a linear combination of its inputs, then applies a 

threshold to the result and the threshold output is a continuous function of its input.

 More precisely, the sigmoid unit computes its output O as

 

 

 

 

σ is the sigmoid function 

 

 
The BACKPROPAGATION Algorithm 

 
 The BACKPROPAGATION Algorithm learns the weights for a multilayer network, 

given a network with a fixed set of units and interconnections. It employs gradient 

descent to attempt to minimize the squared error between the network output values and the 

target values for these outputs.

 In BACKPROPAGATION algorithm, we consider networks with multiple output units 

rather than single units as before, so we redefine E to sum the errors over all of the 

network output units.
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where, 

 outputs - is the set of output units in the network

 tkd and Okd - the target and output values associated with the kth output unit

 d - training example

 

 

Algorithm: 

 
BACKPROPAGATION (training_example, Л, nin, nout, nhidden ) 

Each trai nin g  example  is a  pai r of th e for m  (ὼᴆ O,  ὸO ),  where  (ὼO  ) is the vector of  network 

input valu es, (ὸO ) and i s the ve ctor of target n etwo rk output val u es. 

Л is the learning rate (e.g., .05). ni, is the number of network inputs, nhidden the number 

of units in the hidden layer, and nout the number of output units. 

The input from unit i into unit j is denoted xji, and the weight from unit i to unit j is 

denoted wji 
 

 Create a feed-forward network with ni inputs, nhidden hidden units, and nout output 

units.

 Initialize all network weights to small random numbers

 Until the termination condition is met, Do

 For each (ᴆὼO,  ὸO ), in trainin g exa m ples, Do 

Propagate the input forward through the network: 
1. Input the instance ᴆὼO, to the  netw ork and com p ute the outp ut ou of ever y 

unit u in the network. 

Propagate the errors backward through the network: 
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Adding Momentum 

Because BACKPROPAGATION is such a widely used algorithm, many variations have been 

developed. The most common is to alter the weight-update rule the equation below 

 

 
by making the weight update on the nth iteration depend partially on the update that occurred 

during the (n - 1)th iteration, as follows: 

 

 

 
 

Learning in arbitrary acyclic networks 

 

 BACKPROPAGATION algorithm given there easily generalizes to feedforward 

networks of arbitrary depth. The weight update rule is retained, and the only change is 

to the procedure for computing δ values.

 In general, the δ, value for a unit r in layer m is computed from the δ values at the next 

deeper layer m + 1 according to

 

 

 
 

 The rule for calculating δ for any internal unit

 

 

 
 

Where, Downstream(r) is the set of units immediately downstream from unit r in the network: 

that is, all units whose inputs include the output of unit r 

 

 
Derivation of the BACKPROPAGATION Rule 

 

 Deriving the stochastic gradient descent rule: Stochastic gradient descent involves 

iterating through the training examples one at a time, for each training example d 

descending the gradient of the error Ed with respect to this single example

 For each training example d every weight wji is updated by adding to it Δwji
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Here outputs is the set of output units in the network, tk is the target value of unit k for training 

example d, and ok is the output of unit k given training example d. 

 
The derivation of the stochastic gradient descent rule is conceptually straightforward, but 

requires keeping track of a number of subscripts and variables 

 

 xji = the ith input to unit j

 wji = the weight associated with the ith input to unit j

 netj = Σi wjixji (the weighted sum of inputs for unit j )

 oj = the output computed by unit j

 tj = the target output for unit j

 σ = the sigmoid function

 outputs = the set of units in the final layer of the network

 Downstream(j) = the set of units whose immediate inputs include the output of unit j
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Consider two cases: The case where unit j is an output unit for the network, and the case wherej 

is an internal unit (hidden unit). 

 
Case 1: Training Rule for Output Unit Weights. 

wji can influence the rest of the network only through netj , netj can influence the network only 

through oj. Therefore, we can invoke the chain rule again to write 
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Case 2: Training Rule for Hidden Unit Weights. 

 In the case where j is an internal, or hidden unit in the network, the derivation of the 

training rule for wji must take into account the indirect ways in which wji can influence 

the network outputs and hence Ed.

 For this reason, we will find it useful to refer to the set of all units immediately 

downstream of unit j in the network and denoted this set of units by Downstream( j).

 netj can influence the network outputs only through the units in Downstream(j). 
Therefore, we can write
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REMARKS ON THE BACKPROPAGATION ALGORITHM 
 

1. Convergence and Local Minima 

 The BACKPROPAGATION multilayer networks is only guaranteed to converge toward 

some local minimum in E and not necessarily to the global minimum error.

 Despite the lack of assured convergence to the global minimum error, 

BACKPROPAGATION is a highly effective function approximation method in 

practice.

 Local minima can be gained by considering the manner in which network weights 

evolve as the number of training iterations increases.

 
Common heuristics to attempt to alleviate the problem of local minima include: 

1. Add a momentum term to the weight-update rule. Momentum can sometimes carry the 

gradient descent procedure through narrow local minima 

2. Use stochastic gradient descent rather than true gradient descent 

3. Train multiple networks using the same data, but initializing each network with different 

random weights 

 
2. Representational Power of Feedforward Networks 

 
What set of functions can be represented by feed-forward networks? 

The answer depends on the width and depth of the networks. There are three quite general  

results are known about which function classes can be described by which types of 

Networks 

 
1. Boolean functions – Every boolean function can be represented exactly by somenetwork 

with two layers of units, although the number of hidden units required grows 

exponentially in the worst case with the number of network inputs 

 
2. Continuous functions – Every bounded continuous function can be approximated with 

arbitrarily small error by a network with two layers of units 

 
3. Arbitrary functions – Any function can be approximated to arbitrary accuracy by a 

network with three layers of units. 

 
3. Hypothesis Space Search and Inductive Bias 

 
 Hypothesis space is the n-dimensional Euclidean space of the n network weights and 

hypothesis space is continuous. 
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 As it is continuous, E is differentiable with respect to the continuous parameters of the 

hypothesis, results in a well-defined error gradient that provides a very useful structure 

for organizing the search for the best hypothesis. 

 It is difficult to characterize precisely the inductive bias of BACKPROPAGATION 

algorithm, because it depends on the interplay between the gradient descent search and 

the way in which the weight space spans the space of representable functions. However, 

one can roughly characterize it as smooth interpolation between data points. 

 
4. Hidden Layer Representations 

 
BACKPROPAGATION can define new hidden layer features that are not explicit in the input 

representation, but which capture properties of the input instances that are most relevant to 

learning the target function. 

 
Consider example, the network shown in below Figure 
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 Consider training the network shown in Figure to learn the simple target function f (x) 

= x, where x is a vector containing seven 0's and a single 1. 

 The network must learn to reproduce the eight inputs at the corresponding eight output 

units. Although this is a simple function, the network in this case is constrained to use 

only three hidden units. Therefore, the essential information from all eight input units 

must be captured by the three learned hidden units. 

 When BACKPROPAGATION applied to this task, using each of the eight possible 

vectors as training examples, it successfully learns the target function. By examining the 

hidden unit values generated by the learned network for each of the eight possible input 

vectors, it is easy to see that the learned encoding is similar to the familiar standardbinary  

encoding of eight values using three bits (e.g., 000,001,010,. . . , 111). The exact values of 

the hidden units for one typical run of shown in Figure. 

 This ability of multilayer networks to automatically discover useful representations at 

the hidden layers is a key feature of ANN learning 

 

 
5. Generalization, Overfitting, and Stopping Criterion 

 
What is an appropriate condition for terminating the weight update loop? One choice is to 

continue training until the error E on the training examples falls below some predetermined 

threshold. 

To see the dangers of minimizing the error over the training data, consider how the error E 

varies with the number of weight iterations 
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 Consider first the top plot in this figure. The lower of the two lines shows the 

monotonically decreasing error E over the training set, as the number of gradient 

descent iterations grows. The upper line shows the error E measuredover a 

different validation set of examples, distinct from the training examples. This 

line measures the generalization accuracy of the network-theaccuracy with 

which it fits examples beyondthe training data.

 

 The generalization accuracy measured over the validation examples first 

decreases, then increases, even as the error over the training examples 

continues to decrease. How can this occur? This occurs because the weights 

are being tuned to fit idiosyncrasies of the training examples that are not 

representative of the general distribution of examples. The large number of 

weight parameters in ANNs provides many degrees of freedom for fitting 

such idiosyncrasies

 

 Why does overfitting tend to occur during later iterations, but not during 

earlier iterations?

By giving enough weight-tuning iterations, BACKPROPAGATION will 

often be able to create overly complex decision surfaces that fit noise in the 

training data or unrepresentative characteristics of the particular training 

sample. 

 

 
 

A: Bayesian learning 

Module-3 

 

Bayesian learning provides a quantitative approach which updates 

probability for ahypothesis upon more information being available. 
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Bayesian learning uses: 

 Prior hypothesis.

 New evidences or information.

Features of Bayesian learning methods include: 

 Each observed training example can incrementally decrease or increase the estimated 

probability that a hypothesis is correct.

 Prior knowledge can be combined with observed datato determine the final 

probability of a hypothesis.

 Bayesian methods can accommodate hypotheses that make probabilistic predictions.

 New instances can be classified by the combining the predictions of multiple 

hypotheses, weighed bytheir probabilities.

 In cases, where Bayesian learning seems to be difficult, they can provide a standard of 

optimal decision making against which other practical methods can be measured.

The Bayesian learning is used to calculate the validity of a hypothesis for the given 

data. Thekey to this estimation is the Bayes theorem. 

How do we specify that the given hypothesis best suits our data? 

One way to define the best hypothesis is to check if the hypothesis has the 

maximumprobability for the given data D. 

Bayes theorem comes up with a way to find the best hypothesis using the prior 

probabilitiesgiven and the observed data. The outcome of the Bayes theorem will be 

the posterior hypothesis. 

Bayes Theorem: 

 

P(h)= This is prior probability that the hypothesis holds, without observing the 

trainingexamples. 

P(D)=This is the probability of given data D, without the knowledge on which 

hypothesisholds. 

P (D| h) = This denotes the probability of data D for the given hypothesis h. 

P (h| D) = This denotes the posterior hypothesis. It is an estimate that the hypothesis 

h holdsfor the given observed data. (It is the probability of individual hypothesis, 

given the data) 

P (h| D) increases with respect to increase in P(h) and P (D| h). 
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Maximum A Posteriori (MAP) hypothesis: 

The goal of Bayesian learning is finding the maximally probable hypothesis. This 

is calledMaximum a posteriori (MAP) hypothesis. 

 

 

 
 

(2) 
 
 
 

(3) 

 
While, deducing to step (3), we can ignore P(D) as it is a constant and is independent 

of h. His the hypothesis space that includes all the candidate hypotheses. 

In some cases, we assume that every hypothesis ‘h’ of the hypothesis space ‘H’, 

has equalprobability (P(hi) = P(hj) for all hi and hj in H). Then, step (3) can be 

further solved as, 
 

So, any hypothesis that maximizes P (D| h) is called the maximum likelihood 

hypothesis,hML. 

Let us apply Bayes theorem to an example: 

We have prior knowledge that only 0.008 have cancer over the entire population. The 

lab testreturns a correct positive result in only 98% of the cases. The lab test returns a 

negative resultin 97% of the cases. Suppose we now consider a new patient for whom 

lab test returns a positive result, should we diagnose the patient or not? 

So, the given data is P(cancer) = 

0.008P(~cancer) =1-0.008=0.992 

P (+| cancer) = 0.98 

P(-|cancer) =1-0.98=0.02 

P(-|~cancer) = 0.97 

P(+|~cancer) 

=1=0.97=0.03hMAP = 

argmax P(D|h) P(h) 

hMAP = argmax P(+|cancer) P(cancer) 
 

(1) 
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hMAP = argmax P(+|~cancer) 

P(~cancer) 

P(+|cancer) P(cancer) = 0.98 * 0.008= 0.0078 

P(+|~cancer) P(~cancer) = 0.03 * 0.992 =0.0298 

So, hMAP = 0.0298. So, the patient needn’t be 

diagnosed.Bayes Theorem and Concept learning 

In concept learning, we search for hypothesis that best fits the training data from 

a largespace of hypotheses. 

Bayes theorem, also follows a similar approach. It calculates the posterior hypothesis 

of eachhypothesis given the training data. This posterior hypothesis is used to find 

out the best probable hypothesis. 

Brute force Bayes concept learning 

Brute force MAP learning 

algorithm 

This algorithm provides a standard to judge the performance of other concept 

learningalgorithms. 

1. For each hypothesis h in H, calculate the posterior hypothesis. 
 

2. Output the hypothesis hMAP with the highest posterior probability 
 

For specifying values of P(h) and P(D|h), we make few assumptions: 

1. The training data D is not erroneous data. 

2. The target concept c is contained in the hypothesis. 

3. Any hypothesis is assumed to be most probable than any other. 

So, with the above assumptions: 

               (1) 

 
               (2) 

P(D|h) is the probability of data for given world of hypothesis holds h.Sice, we are 
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assuming that it is a noise free data, the probability is either 1 or 0, implying 1 if 

the givenhypothesis is consistent with h, else 0 (i.e., inconsistent). 

So, if we substitute the values of P(h) and P(D|h) into the Bayes theorem, 

 

            (3) 

Considering h to be an inconsistent hypothesis, substitute corresponding values of 

(1) and 

(2) into (3) 
 

Considering h to be a consistent hypothesis, substitute corresponding values of (1) 

and (2)into (3) 
 

VSH,D is the subset of hypotheses from H that are consistent with D. The sum 

over allhypotheses of P(h|D) is 1. The value of P(D) can be derived as, 

  

So, we can conclude that, 
 

Schematically, this process can be depicted as, 
 

From the figure, we can understand that: 

1. Initially fig (a), all the hypotheses have same probability. 

2. As the data is being observed fig (b), the posterior probability of the inconsistent 
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hypothesis becomes zero. 

3. Eventually, we are approaching a state where we have hypotheses that are consistent 

with the data given. 

MAP hypothesis and consistent learners 

The learning algorithm is a consistent learner if it outputs hypothesis that commits 

zero errors. So, a consistent learner outputs a MAP hypothesis for uniform prior 

probability distribution over H and for noise- free data. 

Considering, how can we use Bayesian learning in Find-S and Candidate 

eliminationalgorithm which do not use any numerical approaches (like 

probability)? 

Find-S algorithm outputs the maximally specific consistent hypothesis. So as 

Find-S algorithm outputs a consistent hypothesis, it can be implied that it outputs 

MAP hypothesis under the probability distributions P(h) and P(D|h). Though 

Find-S doesn’t manipulate any probabilities explicitly, these probabilities at 

which MAP hypothesis canbe achieved are used for characterizing the behaviour 

of Find-S. 

Though Bayesian learning takes a lot of computation, it can be used to 

characterize the behaviour of other algorithms. As in inductive bias of learning 

algorithm where set of assumptions made; Bayesian interpretation presents a 

probabilistic approach using Bayestheorem to find the assumptions to deduce a 

MAP hypothesis. 

For, Find-S and Candidate elimination algorithms, the set of assumptions can be “the 

prior probabilities over H are given by the distribution P(h), and the strength of data in 

accepting or rejecting a hypothesis is given by P(D|h).ò 

Maximum Likelihood and Least- squared error hypothesis 

In learning a continuous-valued target function, Bayesian learning states that under 

certain assumptions any learning algorithm that minimizes the squared error between the 

output hypothesis predictions and the training data will  output a maximum likelihood. 

Consider an example of learning a real-valued function, which has f as its target 

function.The training examples <xi, di> where di=f(xi)+ei. Here f(xi) is the noise- 

free value of the target function an ei is representing error. The error ei 

corresponded to the variance. 
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  (1) 
 
 

We further assume that, x is independent of h, so (1) can be written as: 

 

        (2) 

In general, equation (2) can be depicted as: 

  (3) 
 
 

 

The equation (3) can be re-expressed as: 
 

     (4) 

 
The equation (4) can be substituted in equation (1), we get: 

 

        (5) 

So, the maximum likelihood can be derived as: 
 

       (6) 

By substituting, (5) in (6), we get, 

 
  (7) 

 
 

P(xi) can be discarded as it is constant, 

         (8) 

So, by applying logarithm to (8), the maximum likelihood will be, 
 

Gradient search to maximize likelihood in neural net 

Gradient ascent can be used to define maximum likelihood hypothesis. The partial 

derivativeof G (h, D) with respect to weight wjk from input k to unit j is: 
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the neural network is constructed from a single layer of sigmoid units, we have, 

 

         (2) 

Where, 

xijk is the kth input to unit j for the ith training 

example. is the derivative of sigmoid 

squashing function. Substituting (2) in (1), 

              (3) 

We are using gradient ascent to maximize P(D|h), we use weight-update rule: 
 

 

where, 
 

where is the small positive constant that determines the step size of the gradient 

ascentsearch. 

This weight update rule can be used to maximize the 

hML.Minimum Description length principle 

Minimum description length principle uses basics of information theory to 

modify thedefinition of hMAP. 

Consider hMAP, 

 

        (1) 

Minimizing (1) in terms to log2, 
 

  (1) 



MACHINE LEARNING (DS4102PC/ CY4101PC) 

Dept of CSE, NRCM 75 T.Aparna Asst. Prof 

 

 

 

 

 

 

 

Minimizing (2) to its negative, 

 
      (3) 

Equation (3) can be interpreted as a statement that short hypotheses are preferred. 

As in information theory, we minimize the expected code length by assigning 

shorter codes to messages that are more probable. We will use code C, that encodes 

the message i, this isdenoted with Lc(i). 

So, equation (3), can be interpreted as, 

-log2 P(h): It is the size of the description of hypothesis space H. So, = -log2 P(h).CH 

isthe optimal code for hypothesis space H. 

-log2 P(D|h): It is the description length of training data D given the hypothesis h. 

= -log2 P(D|h). CD|h is the optimal code for describing data D assuming that 

bothsender and receiver know the hypothesis. 

So, equation (3), can be written as, 

 

 

 
The minimum description length (MDL) principle suggests to choose 

hypothesis thatminimizes the sum of two description lengths. 

So, 

 

 

 
If we consider, C1 as the optimal coding for CH and C2 as the optimal coding for 

CD|h, thenhMAP= hMDL. 

Naïve Bayes Classifier 

Naïve Bayes classifier is used for learning tasks that describe the instances with 

conjunctionof attribute values. A set of training examples is described by the tuple of 

attribute values < a1, a2, …., an>. We can use the Bayesian approach to classify the 

new instance and to assign 

it to the most probable target value, 

 
          (1) 

By Bayes theorem, the expression (1) can be rewritten as: 
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(2) 

The naïve Bayes classifier assumes that the attribute values are conditionally 

independent given the target value. That is, the probability of observing the 

conjunction a1, a2, …, an isproduct of probabilities of the individual attributes. 

Naïve Bayes assumption: 

 

 
By substituting (3) in (2), 

(3) (3) 
 
 
 

(4) : This is the output ofthe naïve Bayes classifier. 

B: Instance-based learning 

Instance-based learning methods store the training examples and classify them only 

when anew instance has to be classified. When a new query is given to these 

methods, a set of similar instances are retrieved from memory and are used to 

classify the new instance. 

Instance-based learning methods can construct a different approximation for each 

distinct query instance that must be classified, that is, rather than estimating the target 

function as a whole for the entire instance space, instance-based learning methods 

estimate target functionfor every new instance that has to be classified. 

Instance-based learning methods are called “Lazy learnersò, as they do not 

process thetraining data set until a new instance has to be classified. 

Through instance-based learning though we have complex target function, it still 

can bedescribed by a collection of less complex local approximations. 

The instance-based learning approaches cost high in classifying data, this is because 

the classification is only done when a new instance is observed. These also try to 

consider all theattributes while retrieving the similar training examples from the 

memory. This way finding the set of similar training examples from a large collection 

of data, might be tedious. 
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K-nearest neighbor learning algorithm (KNN) 

KNN algorithm assumes that all instances correspond to points in the n-dimensional 

space. Itis defined using Euclidean distance. If x is the arbitrary instance, the vector 

 
where ar(x) denotes the value of the rth attribute of instance 
x. 

The distance between two instances xi and xj is defined to be d(xi,xj), where, 
 

KNN algorithm can be used for estimating discrete values and continuous values. 
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UNIT-III 

Bayesian learning 

Bayesian learning provides a quantitative approach which updates 

probability for ahypothesis upon more information being available. 

Bayesian learning uses: 

 Prior hypothesis. 

 New evidences or information. 

Features of Bayesian learning methods include: 

 Each observed training example can incrementally decrease or increase the estimated 

probability that a hypothesis is correct. 

 Prior knowledge can be combined with observed datato determine the final 

probability of a hypothesis. 

 Bayesian methods can accommodate hypotheses that make probabilistic predictions. 

 New instances can be classified by the combining the predictions of multiple 

hypotheses, weighed bytheir probabilities. 

 In cases, where Bayesian learning seems to be difficult, they can provide a standard of 

optimal decision making against which other practical methods can be measured. 

The Bayesian learning is used to calculate the validity of a hypothesis for the given 

data. Thekey to this estimation is the Bayes theorem. 

How do we specify that the given hypothesis best suits our data? 

One way to define the best hypothesis is to check if the hypothesis has the 

maximumprobability for the given data D. 

Bayes theorem comes up with a way to find the best hypothesis using the prior 

probabilitiesgiven and the observed data. The outcome of the Bayes theorem will be 

the posterior hypothesis. 

Bayes Theorem: 

 

P(h)= This is prior probability that the hypothesis holds, without observing the 

trainingexamples. 

P(D)=This is the probability of given data D, without the knowledge on which 

hypothesisholds. 

P (D| h) = This denotes the probability of data D for the given hypothesis h. 

P (h| D) = This denotes the posterior hypothesis. It is an estimate that the hypothesis 

h holdsfor the given observed data. (It is the probability of individual hypothesis, 
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given the data) 

P (h| D) increases with respect to increase in P(h) and P (D| h). 

 

Maximum A Posteriori (MAP) hypothesis: 

The goal of Bayesian learning is finding the maximally probable hypothesis. This 

is calledMaximum a posteriori (MAP) hypothesis. 

 

 

 
 

(2) 
 
 
 

(3) 

 
While, deducing to step (3), we can ignore P(D) as it is a constant and is independent 

of h. His the hypothesis space that includes all the candidate hypotheses. 

In some cases, we assume that every hypothesis ‘h’ of the hypothesis space ‘H’, 

has equalprobability (P(hi) = P(hj) for all hi and hj in H). Then, step (3) can be 

further solved as, 
 

So, any hypothesis that maximizes P (D| h) is called the maximum likelihood 

hypothesis,hML. 

Let us apply Bayes theorem to an example: 

We have prior knowledge that only 0.008 have cancer over the entire population. The 

lab testreturns a correct positive result in only 98% of the cases. The lab test returns a 

negative resultin 97% of the cases. Suppose we now consider a new patient for whom 

lab test returns a positive result, should we diagnose the patient or not? 

So, the given data is P(cancer) = 

0.008P(~cancer) =1-0.008=0.992 

P (+| cancer) = 0.98 

P(-|cancer) =1-0.98=0.02 

P(-|~cancer) = 0.97 

P(+|~cancer) 

=1=0.97=0.03hMAP = 

 

(1) 
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argmax P(D|h) P(h) 

hMAP = argmax P(+|cancer) P(cancer) 

hMAP = argmax P(+|~cancer) 

P(~cancer) 

P(+|cancer) P(cancer) = 0.98 * 0.008= 0.0078 

P(+|~cancer) P(~cancer) = 0.03 * 0.992 =0.0298 

So, hMAP = 0.0298. So, the patient needn’t be 

diagnosed.Bayes Theorem and Concept learning 

In concept learning, we search for hypothesis that best fits the training data from 

a largespace of hypotheses. 

Bayes theorem, also follows a similar approach. It calculates the posterior hypothesis 

of eachhypothesis given the training data. This posterior hypothesis is used to find 

out the best probable hypothesis. 

Brute force Bayes concept learning 

Brute force MAP learning 

algorithm 

This algorithm provides a standard to judge the performance of other concept 

learningalgorithms. 

1. For each hypothesis h in H, calculate the posterior hypothesis. 
 

2. Output the hypothesis hMAP with the highest posterior probability 
 

For specifying values of P(h) and P(D|h), we make few assumptions: 

4. The training data D is not erroneous data. 

5. The target concept c is contained in the hypothesis. 

6. Any hypothesis is assumed to be most probable than anyother. 

So, with the above assumptions: 

 
  (1) 
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  (2) 
 

P(D|h) is the probability of data for given world of hypothesis holds h.Sice, we are 

assuming that it is a noise free data, the probability is either 1 or 0, implying 1 if 

the givenhypothesis is consistent with h, else 0 (i.e., inconsistent). 

So, if we substitute the values of P(h) and P(D|h) into the Bayes theorem, 

 

            (3) 

Considering h to be an inconsistent hypothesis, substitute corresponding values of 

(1) and 

(2) into (3) 
 

Considering h to be a consistent hypothesis, substitute corresponding values of (1) 

and (2)into (3) 
 

VSH,D is the subset of hypotheses from H that are consistent with D. The sum 

over allhypotheses of P(h|D) is 1. The value of P(D) can be derived as, 
 

So, we can conclude that, 
 

Schematically, this process can be depicted as, 
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From the figure, we can understand that: 

4. Initially fig (a), all the hypotheses have same probability. 

5. As the data is being observed fig (b), the posterior probability of the inconsistent 

hypothesis becomes zero. 

6. Eventually, we are approaching a state where we have hypotheses that are consistent 

with the data given. 

MAP hypothesis and consistent learners 

The learning algorithm is a consistent learner if it outputs hypothesis that commits  

zero errors. So, a consistent learner outputs a MAP hypothesis for uniform prior 

probability distribution over H and for noise- free data. 

Considering, how can we use Bayesian learning in Find-S and Candidate 

eliminationalgorithm which do not use any numerical approaches (like 

probability)? 

Find-S algorithm outputs the maximally specific consistent hypothesis. So as 

Find-S algorithm outputs a consistent hypothesis, it can be implied that it outputs 

MAP hypothesis under the probability distributions P(h) and P(D|h). Though 

Find-S doesn’t manipulate any probabilities explicitly, these probabilities at 

which MAP hypothesis canbe achieved are used for characterizing the behaviour 

of Find-S. 

Though Bayesian learning takes a lot of computation, it can be used to 

characterize the behaviour of other algorithms. As in inductive bias of learning 

algorithm where set of assumptions made; Bayesian interpretation presents a 

probabilistic approach using Bayestheorem to find the assumptions to deduce a 

MAP hypothesis. 

For, Find-S and Candidate elimination algorithms, the set of assumptions can be “the 

prior probabilities over H are given by the distribution P(h), and the strength of data in 

accepting or rejecting a hypothesis is given by P(D|h).ò 

Maximum Likelihood and Least- squared error hypothesis 

In learning a continuous-valued target function, Bayesian learning states that under 

certain assumptions any learning algorithm that minimizes the squared error between the 

output hypothesis predictions and the training data will  output a maximum likelihood. 

Consider an example of learning a real-valued function, which has f as its target 

function.The training examples <xi, di> where di=f(xi)+ei. Here f(xi) is the noise- 

free value of the target function an ei is representing error. The error ei 

corresponded to the variance. 
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So, we can find the least-squared error hypothesis using the maximum 

likelihoodhypothesis. 

          (1) 

Assuming that the training examples are mutually independent given h, P(D|h) 

can be written as product of p (di, h), where p is the probability densityfunction. 

The mean isequal to target function or the hypothesis. 

       (2) 

 

 
  (3)Applying logarithm, we get, 
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  ( 
 

The first term is not dependent on the hypothesis h, so can be discarded. 

 

             (5) 

We can discard the remaining constants. In the equation (5), we are 

maximizing thenegative quantity, which implies minimizing the positive 

qu 

 
  (6) 

 

 

The equation (6) shows the minimum likelihood hypothesis that minimizes the 

sum of thesquared errors between the observed training data di and the hypothesis 

predictions h(xi). 

Maximum likelihood hypothesis for predicting probabilities 

Suppose that we wish to learn a target function fô: X{0,1}, such that fô(x)= P(f(x)=1). 

In order to find the minimum likelihood hypothesis, we must find P(D|h) where 

D is thetraining data such as D= {<x1,d1>…. <xm,dm>}, di is the observed 0 or 1 

value for f(xi). 

Assuming that xi and di are random variables, and assuming that each training 

example isindependently drawn, we can say that, 

          (1) 

We further assume that, x is independent of h, so (1) can be written as: 

 

        (2) 

In general, equation (2) can be depicted as: 

  (3) 
 
 

 

The equation (3) can be re-expressed as: 
 

(3) T.Aparna Asst. Prof De 
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  (1) 

 

 

 

 

 

The equation (4) can be substituted in equation (1), we get: 

 

        (5) 

So, the maximum likelihood can be derived as: 
 

       (6) 

By substituting, (5) in (6), we get, 

 
  (7) 

 
 

P(xi) can be discarded as it is constant, 

         (8) 

So, by applying logarithm to (8), the maximum likelihood will be, 

Gradient search to maximize likelihood in neural net 

Gradient ascent can be used to define maximum likelihood hypothesis. The partial 

derivativeof G (h, D) with respect to weight wjk from input k to unit j is: 
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If the neural network is constructed from a single layer of sigmoid units, we have, 

 

         (2) 

Where, 

xijk is the kth input to unit j for the ith training 

example. is the derivative of sigmoid 

squashing function. Substituting (2) in (1), 

              (3) 

We are using gradient ascent to maximize P(D|h), we use weight-update rule: 
 

 

where, 
 

where is the small positive constant that determines the step size of the gradient 

ascentsearch. 

This weight update rule can be used to maximize the 

hML.Minimum Description length principle 

Minimum description length principle uses basics of information theory to 

modify thedefinition of hMAP. 

Consider hMAP, 

 
 

  (1) 
 
 

Minimizing (1) in terms to log2, 
 
 

 
 

Minimizing (2) to its 

negative, 

 

  (2) 

 
 
 

 
  (3) 
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Equation (3) can be interpreted as a statement that short hypotheses are preferred. 

As in information theory, we minimize the expected code length by assigning 

shorter codes to messages that are more probable. We will use code C, that encodes 

the message i, this isdenoted with Lc(i). 

So, equation (3), can be interpreted as, 

-log2 P(h): It is the size of the description of hypothesis space H. So, = -log2 P(h).CH 

isthe optimal code for hypothesis space H. 

-log2 P(D|h): It is the description length of training data D given the hypothesis h. 

= -log2 P(D|h). CD|h is the optimal code for describing data D assuming that 

bothsender and receiver know the hypothesis. 

So, equation (3), can be written as, 

 

 

 
The minimum description length (MDL) principle suggests to choose 

hypothesis thatminimizes the sum of two description lengths. 

So, 

 

 

 
If we consider, C1 as the optimal coding for CH and C2 as the optimal coding for 

CD|h, thenhMAP= hMDL. 

Naïve Bayes Classifier 

Naïve Bayes classifier is used for learning tasks that describe the instances with 

conjunctionof attribute values. A set of training examples is described by the tuple of 

attribute values < a1, a2, …., an>. We can use the Bayesian approach to classify the 

new instance and to assign 

it to the most probable target value, 

 
          (1) 

By Bayes theorem, the expression (1) can be rewritten as: 

        (2) 

The naïve Bayes classifier assumes that the attribute values are conditionally 

independent given the target value. That is, the probability of observing the 

conjunction a1, a2, …, an isproduct of probabilities of the individual attributes. 
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Naïve Bayes assumption: 
 

 

By substituting (3) in 

(2), 

(4)  

 
 
 

 

(4) (4) 
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: This is the output of the naïve Bayes classifier. 

B: Instance-based learning 

Instance-based learning methods store the training examples and classify them only 

when anew instance has to be classified. When a new query is given to these 

methods, a set of similar instances are retrieved from memory and are used to 

classify the new instance. 

Instance-based learning methods can construct a different approximation for each 

distinct query instance that must be classified, that is, rather than estimating the 

target function as a whole for the entire instance space, instance-based learning 

methods estimate target functionfor every new instance that has to be classified. 

Instance-based learning methods are called “Lazy learnersò, as they do not 

process thetraining data set until a new instance has to be classified. 

Through instance-based learning though we have complex target function, it still 

can bedescribed by a collection of less complex local approximations. 

The instance-based learning approaches cost high in classifying data, this is because 

the classification is only done when a new instance is observed. These also try to 

consider all theattributes while retrieving the similar training examples from the 

memory. This way finding the set of similar training examples from a large collection 

of data, might be tedious. 

K-nearest neighbor learning algorithm (KNN) 

KNN algorithm assumes that all instances correspond to points in the n-dimensional 

space. Itis defined using Euclidean distance. If x is the arbitrary instance, the vector 

 
where ar(x) denotes the value of the rth attribute of instance 
x. 

The distance between two instances xi and xj is defined to be d(xi,xj), where, 
 

KNN algorithm can be used for estimating discrete values and continuous values. 

 

 

Naïve Bayes assumption: 
 

        (3) 

By substituting (3) in 

(2), 
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: This is the output of the naïve Bayes classifier. 

B: Instance-based learning 

Instance-based learning methods store the training examples and classify them only 

when anew instance has to be classified. When a new query is given to these 

methods, a set of similar instances are retrieved from memory and are used to 

classify the new instance. 

Instance-based learning methods can construct a different approximation for each 

distinct query instance that must be classified, that is, rather than estimating the target 

function as a whole for the entire instance space, instance-based learning methods 

estimate target functionfor every new instance that has to be classified. 

Instance-based learning methods are called “Lazy learnersò, as they do not 

process thetraining data set until a new instance has to be classified. 

Through instance-based learning though we have complex target function, it still 

can bedescribed by a collection of less complex local approximations. 

The instance-based learning approaches cost high in classifying data, this is because 

the classification is only done when a new instance is observed. These also try to 

consider all theattributes while retrieving the similar training examples from the 

memory. This way finding the set of similar training examples from a large collection 

of data, might be tedious. 

K-nearest neighbor learning algorithm (KNN) 

KNN algorithm assumes that all instances correspond to points in the n-dimensional 

space. Itis defined using Euclidean distance. If x is the arbitrary instance, the vector 

 
where ar(x) denotes the value of the rth attribute of instance 
x. 

The distance between two instances xi and xj is defined to be d(xi,xj), where, 
 

KNN algorithm can be used for estimating discrete values and continuous values. 
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- It is the class label for xq. 

- It is the class label of xi. 

The above algorithm can be used to find the discrete-values target function. For 
continuous 

value, the value returned by the algorithm is: 
 

So, in KNN, when a new instance xq is given to classify, the algorithm finds outs the 

‘k’ nearest neighbor’s for xq, and then classifies instance xq based on the class labels of 

these ‘k’nearest neighbours. 

Distance weighted nearest neighbour algorithm 

The KNN can be further improved by adding a weight to the existing instances. The 

highest weight is assigned to the instances that are near to xq. So, the value returned by 

the algorithmwould be: 
 

where, 
 

If xq exactly matches with xi, the     is assigned with . 

 

 
Remarks on k- nearest neighbor algorithm 

 KNN is robust to noisy training data. 

 KNN effectively works on the large set of training models. 

Locally weighted regression 

In KNN, we have observed that the target function f(x) is at single query point x=xq. 

Locallyweighted regression finds the approximation for f over a local region 

surrounding xq. As its name suggests, locally weighted regression is used to 

approximate real-valued functions using weight, based on the distances from the query 
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point over a locally surrounded region ofxq. 

Generally, regression is of the form, 

 
W0 – Bias. 

ai(x) – Denotes the value of ith attribute of instance x. 

The error function that was used for global approximation was: 

 

 

 
And we used a training rule to adjust the weights: 

 , where, 

- it is the change in weight. 
- Learning rate. 

x: instance. 

D: complete 

dataset. 

To find the local approximation, we can redefine the error criterion E, using the 

threepossible approaches: 

1. Minimize the squared errors over the k nearest neighbors: 

 
 

2. Minimize the square error over entire dataset D, while weighting the error of each 

training example by some decreasing function K od its distance from xq: 

 

 

3. 

Considering the 3 criteria might be a good option as the computation cost is 

independent ofthe total number of training examples. 

Radial Basis Functions (RBF) 

Radial basis network is used for global approximation of the target function 

which isrepresented be a linear combination of many local kernel functions. 

In RBF, the learned hypothesis is the function of the form: 
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where, 

xu: Instance. 

Ku (d (xu, x)): Kernel function which decreases as distance d (xu, x) increases. 

onstant that specifies the no. of kernel functions to be included. 

   - It is the global approximation to f(x). 

The kernel function is given by: 
 

RBF networks are trained in two stage process: 

1. The k value is defined to determine the no. of hidden layers, and each hidden layer u 

is defined using and  . 

2. The weights wu are defined to maximize the fit ofthe network to the training data. 
 

Case-Based reasoning (CBR) 

CBR is an instance- based learning approach that represents its instances as 

symbolicrepresentations. There are three components required for CBR: 

1. Similarity function like Euclidean 

function. 2.Approximation and adjustment 

of instance.3.Symbolic representation 

Let’s design a CADET (Case-based design model) for designing a water faucet. To 

design anew model for a water faucet, CADET uses its previously stored models to 

approximate thesymbolic representation for a new water faucet. 
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So, to design a model for the scenario given in the above diagram, the CADET has 

found a similarity with the T-junction pipe (which is from its library). In T- junction 

pipe, T, Q are quantitative parameters that represent temperature and waterflow 

respectively. So, if T1, Q1 ispositive, it means that there is water flow to T3, Q3 from 

that end. The temperature can be considered either to be cold or warm, and it depends 

on the application build. So, let’s assume T1 is cold and T2 is warm. So Q1 is +, it 

means Q3 gets cold water. Similarly, if Q2 is 

+, Q3 has water flow from that end with warm 

water.Remarks on lazy learner and eager learner 

Lazy method takes less computation during the training and more compute time 

during theprediction of target value for a new query. Lazy learners upon seeing the 

new instance xq decide to generalize the training data, whereas, eager learners by the 

time they have a new instance, they already have an approximated target function. 

The lazy methods use effectively richer hypothesis space as it follows local 

approximation tothe target function for each instance. Though eager methods tend to 

form local approximations too, they don’t have ability as lazy learners do. 

GENETIC ALGORITHMS 

Genetic algorithms provide learning methods that can be compared to biological 

evolution. The hypotheses are described by set of strings or symbolic expressions or 

even computer programs. Genetic Algorithms perform repeated mutation to get the 

best hypothesis. The besthypothesis is the one that optimizes the fitness score. The 

algorithm iteratively works on a setof hypotheses called as population, and in each 

iteration the members are evaluated based on a fitness function. The members that are 

mostly fit are made as new population. Some of these separated members are passed to 
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the next generation and few others are used for creating off-springs using crossover 

and mutation. This process is repeated until best hypotheses is formed. 
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UNIT-IV 

GENETIC ALGORITHMS 

Genetic algorithms provide learning methods that can be compared to biological 

evolution. The hypotheses are described by set of strings or symbolic expressions or 

even computer programs. Genetic Algorithms perform repeated mutation to get the 

best hypothesis. The besthypothesis is the one that optimizes the fitness score. The 

algorithm iteratively works on a setof hypotheses called as population, and in each 

iteration the members are evaluated based on a fitness function. The members that are 

mostly fit are made as new population. Some of these separated members are passed to 

the next generation and few others are used for creating off-springs using crossover 

and mutation. This process is repeated until best hypotheses is formed. 

 

The inputs to this algorithm are: 

1. Fitness function to rank the hypotheses. 

2. Threshold, which specifies about level of fitness for termination. 

3. Size of population. 

4. Parameters on how the off-springs must be generated. 

At every iteration, hypotheses are generated for the current population. A 

probabilisticapproach is used to choose hypotheses that are to be passed to next 

generation: 

     (1) 

 
These selected hypotheses are passed to next generation along with few other members that 

are formed through crossover. In crossover, two hypotheses are chosen (consider them 

to be parent) from current population based on (1); some properties of each them are 

separated andcombined to form new hypotheses. 

Genetic Algorithm operators 
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The most common operators in Genetic algorithm are mutation and crossover. 

Mutations areusually performed after crossover. 

The crossover operator produces two off-springs from two parents. It copies selected 

bits from each parent and generates the new offspring by combining these selected 

bits. How dowe choose these selected bits? For this we use an additional string called 

crossover mask. 

 
 

1. Single crossover: The crossover mask always begins with contiguous n number of 

1’s, followed by necessary 0’s. 

The first offspring is combined with bits selected from first parent and then 

bits selected from second parent. The second offspring contains the bits that 

are not usedin the first offspring. 

 

2. Two-point crossover: The crossover mask begins with n0 0s and n1 1s, followed by 
necessary number of zeroes. The offspring in two-point crossover is created by 
substituting intermediate segments ofone parent into the middle of the second parent. 

 

3. Uniform crossover: The crossover mask is generated in random. The off-springs are 

produced from combining the uniform bits from each parent. 

 

Mutations are performed by changing the bits from a single parent. 
 

Fitness function and Selection 

Fitness function is used to rank the hypotheses so that they can be transferred to 

the nextgeneration. 

Different fitness measures can be used to select the hypotheses: 

1. Fitness proportionate selection or Roulette wheel selection: It proposes that the 

probability of the hypotheses will be selected is given by ratio of its fitness to the 

fitness of other members in the current population. 

2. Tournament selection: Two hypotheses are chosen randomly, and using some 

probability measure p, the more fit hypotheses is estimated. 
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3. Rank Selection: The hypotheses in the current population are sorted based on their 

fitness score. Based on the fitness rank of these sorted hypotheses, the hypotheses are 

selected that are to be transferred to the next generation. 

Hypothesis Space Search 

Genetic Algorithms use randomized beam search method to get the maximally fit 

hypothesis.Genetic algorithm experiences crowding. Crowding is a phenomena where 

the highly fit individuals in the population quickly reproduces and eventually, the 

population is dominated with these individuals and individuals that are similar to these. 

Because of crowding, there with be less diversity in the population, which effects the 

process of genetic algorithm. 

How can we reduce crowding? 

1. Selecting a different fitness function other than Roulette wheel selection. 

2. Restricting the kinds of individuals to generate off-springs. 

Population Evolution and the schema theorem 

The schema theorem provides a mathematical approach to characterize evolution of 

the population within the genetic algorithm. It is based on the patterns that are used 

to describethe set of bit strings. 

A schema in any string is composed of 0s, 1s, *’s. *’s can be interpreted as “don’t care” 

conditions. The schema theorem characterizes in terms of number of instances 

representing each schema. Suppose m (s, t) is the number of instances of schema s in the 

population at thetime t. Schema theorem describes an expected value m (s, t+1) in terms 

of m (s, t). 

To calculate m (s, t+1) which is also considered as E (m (s, t+1) ), we use the probabilistic 

distribution: 

 

f(h)- fitness of individual bit string h. 

- Average fitness of all the individuals in the population. 

The probability that we will select a hypothesis from the representative schema s is: 
 

 

n- number of individuals in the population. 
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- indicates that h belongs to schema and also the population. 

- average fitness of instances of schema s at time t. 
 

As we have n independent selection steps, we can create a new generation that is n 

times theprobability. 
 

The schema theorem considers only the single- point crossover and the negative 

influence ofgenetic operators. So, the schema theorem thus provides a lower bound to 

the expected frequency of schema s: 
 

, 

Where, 

pc- probability of single-point 

crossover. pm- probability that a bit 

will be mutated. 

o(s)- the number of defined bits in the schema. 

d(s)- distance between left most and rightmost defined bits 

in s.l- length of individual bit strings in population. 

Genetic programming 

Here, the individuals that are evolving are computer programs. 

The programs are represented in form of trees corresponding to their parse trees. Every 

function call is represented by the node in the tree, and its arguments are the 

descendant nodes of the tree. Let us suppose a function sin(x) + Ѝὼ2 + ώ. The tree 

representation of this 

equation would be as: 

 

In every iteration, a new generation of individuals is produced. The crossover 

operations are performed by replacing a randomly chosen subtree of one parent 
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program by a subtree fromanother parent program. 

Remarks on Genetic programming 

1. These evaluate computer programs. 

2. Theyprovide intriguing results despite the huge size of hypothesis space it has to 

search. 

3. The performance depends on the choice of representation and on choice of fitness 

function. 

Models of evolution and 

learningLamarckian Evolution 

He proposed that the experiences inculcated by an individual during the lifetime, will be 

directly affecting the genetic makeup of their offspring. Despite the current view that 

states the experiences learned during the lifetime will not affect the genetic make up 

of off-spring,Lamarckian proposal is believed to improve the effectiveness of 

computerized genetic algorithms. 

Baldwin effect 

It is based on the following observations: 

1. If a species is evolving in a changing environment, there will be evolutionary pressure 

that favour individuals that have capability to learn in their lifetime. 

2. The individuals who are able to learn many traits depend less on their genetic code. 

Theysupport diverse gene pool, which results in rapid evolutionaryadaptation. 

Baldwin effect suggested that by increasing survivability, the individual learning 

supportsmore rapid evolutionary progress, which increases the chance for species 

to evolve genetically. 
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Parallelizing genetic algorithms 

The population is subdivided into groups called demes. Each deme has a different 

computational node and a standard genetic algorithm is used on each node. The transfers 

between demes is done through migration process, where individuals in one deme are 

transferred to another. The cross-over is first done inside the deme, if the threshold is not 

met, then the crossover is done with other demes. The communication and cross- 

fertilization are less frequent. Parallelization reduces the problem of crowding that 

occurred in non-parallel genetic algorithms. 
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Learning Sets of Rules 

There are different ways to learn rules, rules can be considered as the hypothesis. We can 

use decision trees, or genetic algorithms in order to derive hypothesis. But there are few 

algorithms that directly learn rules unlike decision tree which first constructs tree and then 

generates rules. These algorithms that directly learn rule sets uses sequential covering 

algorithms which learns a single rule at a time with every iteration. The sequential covering 

algorithms finally result a setof rules (hypotheses). 

The rules are expressed using Horn clauses (IF-THEN representation) 
 

The predicate Parent (x, y) implies that y is parent of x and the predicate Ancestor (x, y) 

implies that y is ancestor of x. If we observe the second rule, it can be understood as, if z 

is the parent ofx and y is ancestor of z, then y will be the ancestor of x. 

Sequential Covering algorithm 

Sequential covering algorithm uses LEARN_ONE_RULE subroutine and sequentially 

learns rules which cover full set of positive examples. In every iteration a new rule is formed 

and is added to the Learned_rules set, and the training examples that are correctly classified 

with the new rule are removed. This is an iterative process and it happens until a desired 

fraction of positive training examples are classified. 
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So, how do we implement LEARN_ONE_RULE? 

We can implement a LEARN_ONE_RULE, by using similar approach as ID3. Initially, a 

general rule is formed, which is eventually made more specific by adding new attributes. 

This follows a greedy approach. LEARN_ONE_RULE though doesn’t cover the entire 

dataset; it provides rules that have high accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Each hypothesis in the LEARN_ONE_RULE is the conjunction of attribute value. The 

result ofthe LEARN_ONE_RULE a rule whose performance is high. As this 

LEARN_ONE_RULE is called multiple times by the sequential covering algorithm; 

collection of rules is formed that cover the training examples. 



MACHINE LEARNING (DS4102PC/ CY4101PC) 

Dept of CSE, NRCM 104 T.aparna Asst. Prof 

 

 

 

 

 

 Variations 

There are some other approaches that can be used to find set of if-then rules: 

1. Negative-as-failure: This classifies any instance as negative if it doesn’t prove to be 

positive. 

2. AQ Algorithm: This learns a disjunctive set of rules that together cover the target 

function. 

There are other evaluation functions as LEARN_ONE_RULE, which can be used to 

evaluate theperformance: 

1. Relative frequency: n denotes the no. of examples that rule matches and ncdenotes the no. 

of examples that are correctly classified. 
 

2. M-estimate ofaccuracy: This approach is preferred when data is scarce. 
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n- no. of examples. 
nc- no. of examples correctly classified. 

p- prior probability from entire dataset. 

m- weight or equivalent no. of examples for weighing p. 

3. Entropy: It measures the uniformityof the target function values. 

 
 

Terminology 

Learning first-order rules 

 

There are some terminologies: 

1. All expressions are composed of constants (Capital symbols), variables (lowercase 

values), predicate symbols (true or false) and functions. 

2. Term: It is a constant, anyvariable or any function applied on term. 

3. Literal: A literal is any predicate or its negation applied to anyterm. 

4. Clause: A clause is disjunction of literals. 

5. Horn Clause: It is a clause containing at most one positive example. 

H is a positive literal. The above expression can be 

represented as,This is equivalent to: 

 

First-Order Horn Clauses: 

First order horn clauses provide generalized rules whereas prepositional 

representations are more specific. Assume an example where the target value of 

Daughter(x,y) is to be found. 

Daughter(x,y) is true if x is daughter of y, else it is false. So the positive example of this 
scenario is given as: 
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So, the prepositional representation would be as, 
 

This rule is more specific, so first-order representations are used to provide more 

generalizedrules: 
 

x, y are variables that can bound to any person. 

First-order horn clauses also refer to variables that do not exist in postconditions, but occur in 

preconditions. 
 

In the above rule, z is in pre-condition but not in postcondition. Whenever a variable occurs 

in only preconditions, such rules are satisfied as long as there’s binding of variable that 

satisfies thecorresponding literal. 

Learning sets of first-order rules: FOIL 

FOIL algorithm seems to be same as Sequential covering algorithm as it uses the 

LEARN_ONE_RULE routine and also it learns sets of first-order rules, one at a time. FOIL 

restricts the literals that contain function symbols. FOIL is more expressive than Horn 

clauses. 

FOIL algorithm learns one rule at time, and removes the positive examples covered by the 

rules in every iteration. The inner loop accommodates first-order rules. FOIL seeks only 

rules that predict when the target literal is True. The outer loop adds a new rule to disjunctive 

hypothesis, Learned_rules. With every new rule we generalize the current disjunctive 

hypothesis. The inner loop of FOIL performs general_to_specific search on thesecond 

hypothesis space to find preconditions that form pre-conditions of new rule. 



MACHINE LEARNING (DS4102PC/ CY4101PC) 

Dept of CSE, NRCM 107 T.aparna Asst. Prof 

 

 

 

 

 

 

How FOIL is different? 

1. In inner loop, FOIL employs a detailed approach to generate candidate specializations of 

the rule. 

2. FOIL uses Foil_Gain as it’s performance unlike entropy that is used in 

LEARN_ONE_RULE. FOIL covers only positive examples. 

FOIL will form recursive rules when target predicate is included in the list of predicates. In 

case of noise-free data, FOIL continues to ass new literals to the rule until no negative 

example is covered. To handle noisy data, the search is continued until some limit of 

accuracy, coverage andcomplexity. 

Induction as inverted Deduction 
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Induction means to derive a principle from set of observations, whereas deduction 

means to generate different observations from the principle or theory. Inductive logic 

programming is also based on observation that induction is just the inverse of 

deduction. The learning means to discover hypothesis that satisfies both given training 

data D, back ground knowledge B. Here, xidenotes the instance and f(xi) is the target 

value. So, the hypothesis has to classify 

f(xi)deductively from hypothesis h, background knowledge B, and the description xi. 
 

( 
1 
) 

So, f(xi) follows deductively from (B ^ h ^ xi) or it can also be said as “(B ^ h ^ xi) entails 
f(xi) “. 

 

(1) describes the constraint that must satisfy every training instance xiand the target value 

f(xi) must follow deductively from B, h, and xi. 

To understand the role of back ground knowledge, let us consider a positive 

example Child (Bob, Sharon), where the instance is described by literals Male 

(Bob), Female (Sharon), and Father (Sharon, Bob). The background knowledge 

is provided as, 

Parent (u, v)  Father (u, v). So, this situation can be described using (1) as: 
 



MACHINE LEARNING (DS4102PC/ CY4101PC) 

Dept of CSE, NRCM 109 T.aparna Asst. Prof 

 

 

 

 

 

So, the probable hypotheses that satisfy the constraint (B ^ h ̂  xi) ├ f(xi), could be: 
 

 

 

 
 

h1could have been generated even if there is no background knowledge. But, h2 

can only be generated with some background knowledge. 

In this example, we have added a new predicate Parent which was not present in 

the original description of xi. This process of augmenting predicates based on the 

back ground knowledgeis called constructive induction. 

An inverse entailment operator produces the hypothesis that satisfies equation (1) 

by taking training data and background knowledge as input. It is represented as O 

(B, D). 
 

To choose hypotheses that follow the constraint, the inductive logical 

programming uses Minimum description length principle. 

Few observations while formulating the inverse entailment operator: 

1. This formulation subsumes the common definition of finding the learning task as 

finding some general concept that matches a given set oftraining examples. 

2. By using background knowledge B, we can provide a rich definition of when the 

hypothesis might fit the data and also provide learning methods which search for 

hypotheses using B, rather than just searching the space of syntactically legal 

hypotheses. 

There are also some difficulties faced by the inductive logical programming 

upon following this formulation: 

1. They need noise-free data. 

2. The search through the space of hypotheses is difficult in general case, as there are 

manyhypotheses that satisfy (B ^ h ^ xi) ├ f(xi). 

3. The complexityof hypothesis space increases with increase in background knowledge. 

 

 
Inverting Resolution 

The resolution rule is a sound and complete rule for deductive inference in first- 

order 

logic. 
 



MACHINE LEARNING (DS4102PC/ CY4101PC) 

Dept of CSE, NRCM 110 T.aparna Asst. Prof 

 

 

 

 
 

How can we invert the resolution rule to form an inverse entailment operator? 

Let L be an arbitrary propositional literal, and P and R be arbitrary prepositional 

clauses. Theresolution rule is: 

 

The rule has two assertions, P ˅ L and ¬L ˅ R, it is obvious that L and ¬L are false. 

So, either Por R must be true. 

 

Assume that there are two clauses C1 and C2, the resolution operators identify the literal, 

suppose M, that exists as positive literal in C1 and negative literal in C2. The propositional 

resolution operator then comes to a conclusion based on the resolution rule. For 

example, 

M= ¬KnowMaterial, which is in C1 and C2 has ¬(¬KnowMaterial). The conclusion 

from the clause is union of literals C1-{L}=PassExam and C2-{¬L} = ¬Study. This 

conclusion is based onthe resolution rule. 
 

 
 

The inductive entailment operator must derive one initial operator, suppose C2, 

with given a resolvent C and the other initial operator C1. 

For example, consider C= A ˅ B and the initial clause C1= B ˅ D. We must derive 

C2. If we observe the definition of resolution rule, any literal that occurs inC but 

not in C1 must be present in C2 and the literal that is in C1 but not in C, 
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must have been removed from the resolution rule, and its negation is in C2. So, 

C2= A ˅ ¬D. There may be some other possibilities of C2 such that C2 and C1 

produce a resolvent C. 
 

First-Order  Resolution 

The resolution rule can be extended to first-order expressions using unifying 

substitutions. Substitution is mapping of variables to terms. Suppose, θ = {x/Bob, 

y/z}, this indicates x can be replaced with Bob and y can be replaced with z. Wθ 

indicates the result of applying to substitution θ to expression W. Suppose, 

L=Father(x, Bill ), the substitution Lθ= Father ( Bob 

,Bill). 

Unifying substitution: θ is a unifying substitution when L1 θ=L2 θ. The significance 

of unifying substitution is the resolvent of the clauses C1 and C2 is found by 

identifying a literal M, that appears in C1 such that it is ¬M in C2. The resolution 

rule to find resolvent C: 
 

 
 

Inverting Resolution: First-order Case 

In this θ is factored as θ1 and θ2 . θ1 has substitutions that relate to C1 and θ2 has 

substitutionsof C2. So, 
 

 

 
This is factorized as 

 

 

(1) 

 

 
(2) 
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(2) Can be expressed as: 

(3)  

 

C2 can be found by substituting L2 = ¬L1 θ1 θ2
-1. So the inverse resolution rule for 

the first-orderlogic is: 

(4)  

 
Progol 

Progol system employs an apprach where,the inverse entailment can also be used to 

generate a most specific hypothesis, that satisfies both background knowledge and 

observed data. This most specific hypothesis along with an additional constraint( that 

is, the hypotheses considered are 

more general than this specific hypothesis) is used to bound a general-to-specific 

search through hypothesis space. 

The algorithm of such system would be as: 

1. The user specifies a restricted language of first-order expressions to be used as 
hypothesisspace H. 

2. Progol uses sequential covering slgorithm to learn a set of expressions from H that 

cover the data. 

3. Progol then performs a general-to-specific search of hypothesis space bounded by the 

most general possible hypothesis and by the specific bound hi. Within this set of 

hypotheses, it seeks the hypothesis having minimum description length. 
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REINFORCEMENT LEARNING 

Each time the agent performs an action in its environment, a trainer may provide a reward 

or penalty to indicate the desirability of the resulting state. For example, when training an 

agent to play a game the trainer might provide a positive reward when the game is won, 

negative reward when it is lost, and zero reward in all other states. Thetask of the 

agent is to learn from this 

indirect, delayed reward, to choose sequences of actions that produce the greatest 

cumulativereward. 
 

• These algorithms are 

optimization problems. 

dynamic programming algorithms 

frequently 

used to solve 
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• For example, a mobile robot may have sensors such as a camera and sonars, and actions 

such as "move forward" and "turn." Its task is to learn a control strategy, or policy, for 

choosing actions that achieve its goals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 7. Reinforcement learning 

 

Figure 7 tells, An agent interacting with its environment. The agent exists in an 

environment described by some set of possible states S. It can perform any of a set of 

possible actions A. Eachtime it performs an action at in some state st the agent receives a 

real-valued reward rt, that indicates the immediate value of this state-action transition. 

This produces a sequence of states 

si, actions ai, and immediate rewards ri as shown in the figure. The agent's task is to learn 

a control policy, π : SĄA, that maximizes the expected sum of these rewards, with future 

rewards discounted exponentially by their delay. 

• One of best application of reinforcement learning is: 

 
Tesauro (1995) describes the TD-GAMMON program, which has used 

reinforcement learning to become a world-class backgammon player. This program, 

after training on 1.5 million self-generated games, is now considered nearly equal to 

the best human players in the world and has played competitively against top-ranked 

players in international backgammon tournaments. 
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Reinforcement learning problem differs from other function approximation 

tasks 

• Delayed reward: The trainer provides only a sequence of immediate reward values as the 

agent executes its sequence of actions. The agent, therefore, faces the problem of temporal 

credit assignment: determining which of the actions in its sequence are to be credited with 

producing the eventual rewards. 

• Exploration: The learner faces a tradeoff in choosing whether to favor exploration of 

unknown states and actions (to gather new information), or exploitation of states and 

actions that it has already learned will yield high reward (to maximize its cumulative 

reward). 

• Partially observable states. Although it is convenient to assume that the agent's sensors 

can perceive the entire state of the environment at each time step, in many practical 

situations sensors provide onlypartial information. 

For example, a robot with a forward-pointing camera cannot see what isbehind it. 

In such cases, it may be necessary for the agent to consider its previous observations 

together with its current sensor data when choosing actions, and the best policy may 

be one that chooses actions specifically to improve the observability of the 

environment 

• Life-long learning. Unlike isolated function approximation tasks, robot learning often 

requires that the robot learn several related tasks within the same environment, using the 

same sensors. 

For example, a mobile robot may need to learn how to dock on its battery charger, 

how tonavigate through nar- row corridors, and how to pick up output from laser 

printers. This setting raises the possibility of using previously obtained experience 

or knowledge to reduce sample complexity when learning new tasks. 
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Learning Task 

• In a Markov decision process (MDP) the agent can perceive a set S of distinct states of its 

environment and has a set A ofactions that it can perform. 

•  At each discrete time step t, the agent senses the current state st, chooses a current action 

‘a’ and performs it. 

• The environment responds by giving the agent a reward r = r (st, a,) and by producing the 

succeeding state st+1 = f(st,at). 

• Here the functions f and r are part of the environment and are not necessarily known to 

the agent. 

• In MDP, f(st,at) and r(st,at) depend on current state or action ,not on earlier state or 

action. 

• The task of the agent is to learn a policy, π : SĄA, for selecting its next action at, based 

on the current observed statest. 
 

• The policy which maximizes the above value is optimal policy i.e. which produces the 

greatest possible cumulative reward 

Here we illustrate above with an example: 

1. The six grid squares in this diagramrepresent six possible statesfor the agent. 

2. Each arrow in the diagram represents a possible action the agent can take to move from 

one state to another. 

3. The immediate reward in this particular environment is defined to be zero for all state- 

action transitions except for those leading into the state labeled G. 

4. The state G is goal state , if the agent enters into this state remains in this state and can 

receive the reward and we also call G as absorbing state. 

5. Once all states, actions, immediate rewards are defined then we choose value for discount 

factorγ 
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6. Here we assume γ=0.9. The value of V* for this state is 100 because the optimal policy in 

this state selects the "move up" action that receives immediate reward 100. Thereafter, the 

agent will remain in the absorbing state and receive no further rewards. 

7. Similarly, the value of V* for the bottom center state is 90. This is because the optimal 

policy will move the agent from this state to the rightthen upward (generating an immediate 

reward of 100). Thus, the discounted future reward from the bottom center state is 0+ γ 

(100) + γ2(0) + γ3(0) + =90 (policy that direct along shortest path to 

G) 
 

 

 

 

 
 

Fig 8. A simple deterministic world to explain basic of Q- 

Learning 
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Q LEARNING: 

It is difficult to learn the function π* : SĄA directly, because the available training data 

does notprovide training examples of the form (s, a). Intsead the training information is 

the sequence of 

immediate rewards r(si, ai) for i = 0, 1,2, . . . . This kind of information is easier to 

learn 

evaluation function defined over states or actions that implement optimal policy. 

The agent can acquire the optimal policy by learning V*, provided it has perfect knowledge 

of the immediate reward function r and the state transition function δ. When the agent knows 

the functions r and δ used by the environment to respond to its actions, itcan then use 

Equation to calculate the optimal action for any state s. 

 

 

 
(1) 

 

Only when we have the perfect knowledge on δ and r then by using the equation we can 

lear optimal policy. But incase if we donnot know the values we cant evaluate equation. So 

we go forQ Equation. 

Q Equation: 

Let us define the evaluation function Q(s, a) so that its value is the maximum dis- counted 

cumulative reward that can be achieved starting from state s and applying action a as the 

first action. 

 
 

(2) 
 

Q(s, a) is exactly the quantity that is maximized in Equation (stated in Q Learning) in order 

to choose the optimal action a in state s. Therefore, we can rewrite that Equation in terms 

of Q(s, a)as 

 

 

 
(3) 

Now if the agent learns Q function even if he is not having knowledge of δ and r we can 
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find the optimal policy. 
 

 

Algorithm for Q-Learning: 

relationship between Q and V*,V*(S) = max 

Q(s, a') 

a' 

 

 

 
 

(4) 

 
 

now rewriting the equation (2) 
 

 

 

 

 
To describe the algorithm, 

we 

 
(5)  

 

will use the symbol Q^, of the actual Q function. The 

agent 
 

repeatedly observes its current state s, chooses some action a, executes this action, then 

observes the resulting reward r’ = r(s, a) and the new state s' =δ (s, a). It then updates the 

table entry for Q^(s, a) following each such transition, according to the rule: 
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Example: 

To illustrate the operation of the Q learning algorithm, consider a single action taken by an 

agent, and the corresponding refinement to Q^ shown in Figure. In this example, the agent 

moves one cell to the right in its grid world and receives an immediate reward of zero for 

this transition. It then applies the training rule of Equation (5) to refine its estimate Q^ for 

the state-action transition it just executed. According to the training rule, the new Q^ 

estimate for this transition is the sum of the received reward (zero) and the highest Q^ value 

associated with the resulting state (100), discounted by y (0.9). Each time the agent moves 

forward from an old state to a new one, Q learning propagates Q^ estimates backward from 

the new state to the old. At the same time, the immediate reward received by the agent for 

the transition is used to augment these propagated values of Q^. 

Consider applying this algorithm to above mentioned example in Learning and then 

training consists series of episodes. when thisepisodes reach end the agent is transported 

to a new, randomly chosen, initial state for the next episode. 
 

 

 

NONDETERMINISTIC REWARDS AND ACTIONS 

• Above we considered Q-Learning as deterministic, now we take as nondeterministic in 

which the reward function r(s, a) and state transition function f(s, a) may have probabilistic 

outcomes. 
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• In such cases, the functions delta(s, a) and r(s, a) can be viewed as first producing a 

probability distribution over outcomes based on s and a, and then drawing an outcome at 

randomaccording to this distribution 

• When these probabilistic outcomes doesnot depend on previous state or action then we call 

that as nondeterministic Markov decision process. 

• Now we extend the Q-Learning deterministic case to handle nondeterministic MDPs. 

• In the nondeterministic case we must first restate the objective of the learner to take that 

outcomes are no longer deterministic. 

• The generalization is to redefine the value of policy to bethe expected value (over these 

nondeterministic outcomes) of the discounted cumulative reward received by applying this 

policy 
 

Next we generalize our earlier definition of Q from Equation, again by taking its 

expectedvalue. 
 
 
 

• To summarize, we have simply redefined Q(s, a) in the nondeterministic case to be the 

expected value of its previouslydefined quantity for the deterministic case. 
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TEMPORAL DIFFERENCE LEARNING 

• Q learning is a special case of a general class oftemporal difference algorithms that learn 

byreducing discrepancies between estimates made bythe agent at different times. 

• Temporal difference (TD) learning refers to a class of model-free reinforcement learning 

methods which learn by bootstrapping from the current estimate ofthe value function. 

GENERALIZING FROM EXAMPLES 

The algorithms we discussed perform a kind of rote learning and make no attempt to 

estimate theQ value for unseen state-action pairs by generalizing from those that have 

been seen. 

It is easy to incorporate function approximation algorithms such as BACK- 

PROPAGATION into the Q learning algorithm, by substituting a neural network for the 

lookup table and usingeach Q^(s, a) update as a training example. 

In practice, a number of successful reinforcement learning systems have been 

developed by incorporating such function approximation algorithms in place of the 

lookup table. Tesauro'ssuccessful TD-GAMMON program for playing backgammon 

used a neural network and theBACKPROPAGATION algorithm together with a 

TD(λ) training rule. 
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UNIT-V 

Analytical Learning 

Introduction 

• Inductive learning methods, i.e. methods that generalize from observed training 
examples. 

• The key practical limit on these inductive learners is that they perform poorly when 
insufficient data is available. 

• One way is to develop learning algorithms that accept explicit prior knowledge as an 

input, in addition to the input training data. 

• Explanation-based learning is one such approach. 

• It uses prior knowledge to analyze, or explain, each training example in order to infer 
which example features are relevant to the target function and which are irrelevant. 

• These explanation helps in generalizing more accuratelythan inductive learning 

• Explanation- based learning uses prior knowledge to reduce the complexity of the 

hypothesis space to be searched, thereby reducing space complexity and improving 

generalization accuracy of the learner. 

 

 

Example 1: 

Let us consider the task of learning to play chess. Here we are making our program to 

recognize the game position i.e. target concept as "chessboard positions in which black will 

lose its queen within two moves." Figure 1 shows the positive samples of training concept. 

Now if we take inductive learning method to perform this task, it would be difficult because 

the chess board is fairly complex (32 pieces can be on any 64 square) andparticular patterns 

i.e. to place the pieces in the relative positions (placing them exactly following game 

rules).So for all these we need to provide thousand of training examples similar to figure 1 

to expect an inductively learned hypothesis to generalize correctly to new situations. 
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Even after considering only the single example shown in Figure 1 , most would be willing 

to suggest a general hypothesis for the target concept, such as "board positions in which the 

black king and queen are simultaneously attacked," and would not even consider the 

(equally 

consistent) hypothesis "board positions in which four white pawns are still 

locations."So we can’t generalize successfully with that one example. 

 

in their original 

Now why to consider training example as positive target concept? “Because white's 

knight is attacking both the king and queen, black must move out of check, thereby al- 

lowing the knightto capture the queen." They provide the information needed to rationally 

generalize from the details of the training example to a correct general hypothesis. 

What knowledge is needed to learn chess? It is simply knowledge of which moves are 

legal for the knight and other pieces, the fact that players must alternate moves in the game, 

and the fact that to win the game one player must capture his opponent's king. 

However, in practice this calculation can be frustratingly complex and despite the fact that 

we humans ourselves possess this complete, perfect knowledge of chess, we remainunable 

to play the game optimally. 

Inductive and Analytical Learning Problems 

ü In inductive learning, the learner is given a hypothesis space H from which it must select 

an output hypothesis, and a set of training examples D = {(xl, f (x~)), . . . (x,, f (x,))} where 

f (xi) is the target value for the instance xi. The desired output of the learner is a hypothesis 

h from H that is consistent with these training examples. 

 

ü In analytical learning, the input to the learner includes the same hypothesis space H and 

training examples D as for inductive learning. In addition, the learner is 

provided an 

additional input: A domain theory B consisting of background knowledge that 
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can be used to explain observed training examples. The desired output of,the learner 

is a hypothesis h from H that is consistent with both the training examples D and 

the domain theory B. 

To illustrate, in our chess example each instance xi would describe a particular chess 

position,and f (xi) would be True when xi is a position for which black will lose its queen 

within two 

moves, and False otherwise. Now we define hypothesis space H to consist of sets of Horn 

clauses (if-then rules) where predicates used rules refer to the positions or relative positions 

of specific pieces on the board. The domain theory B would consist of a formalization of 

the rulesof chess. 

Note in analytical learning, the learner must output a hypothesis that is consistent with both 

the training data and the domain theory. 

Example2: 
 

 

Table 1. 

SafeToStack 

The example 2 is about Analytical Learning problem SafeToStack 

(x, y). 

 

Here we chosen 
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hypothesis space H which is set of hypothesisfrom first order if- then rules (i e. Horn Clause). 

The example Horn clause hypothesis shown in the table asserts that it is SafeToStack any 

objectx on any object y, if the Volume of x is Lessthan the Volume of y. The Horn clause 

hypothesis can refer to any of the predicates used to describe the instances, as well as several 

additional predicates and functions. One such example is SafeToStack(obj1, obj2) shown in 

table. 

Here domain theory considered will explain certain pairs of objects can be safely stacked 

on one another (same as chess example it takes all the rules of the game). The domain theory 

shown in 

the table includes assertions such as "it is safe to stack x on y if y is not Fragile. Here the 

domaintheory also uses subsequent theories i.e. pedicators such as Lighter has more 

primitive attributes 

like weight,vol,etc which 

helpsclassify. 

to generalize more accurately and the 

given 

is sufficient to 
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LEARNING WITH PERFECT DOMAIN THEORIES: 

PROLOG-EBG 

• we consider explanation-based learning from domain theories that are perfect, that is, 

domain theories that are correct and complete. 

• A domain theory is said to be correct if each of its assertions is a truthful statement about 
the world. 

• A domain theory is said to be complete with respect to a given target concept and 

instance space, if the domain theorycovers everypositive example in the instance space. 
• But our definition of completeness does not require that the domain theory be able to 

prove that negative examples do not satisfy the target concept. 

• So we now with help of PROLOG-EBG explain definition of completeness includes full 
coverage of both positive and negative examples by the domain theory. 

PROLOG-EBG Algorithm: 

PROLOG-EBG is a sequential covering algorithmthat considers the training data 

incrementally. 
 

For each new positive training example that is not yet covered by a learned Horn clause, it 

formsa new Horn clause by: 

(1) explaining the new positive training example, 

(2) analyzing this explanation to determine an appropriate generalization, and 

(3) refining the current hypothesis by adding a new Horn clause rule to cover this positive 

example, as well as other similar instances. 
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The bottom of this figure depicts in graphical form of +ve training example Sa eToStack( 

Objl , 0bj2 ) from Table 1. The top of the figure depicts the explanation constructed for this 

training example. Notice the explanation, or proof, states that it is SafeToStackObjl on0bj2 

because Objl is Lighter than Obj2. Furthermore, Objl is known to be Lighter, becauseits 

Weight can be inferred from its Density and Volume, and because the Weight of 0bj2 can 

be inferred from the default weight of an Endtable. The specific Horn clauses that underlie 

this explanation are shown in the domain theory of Table 1 . Notice that the explanation 

mentions only a small fraction ofthe known attributes of Objl and 0bj2 (i.e., those attributes 

corresponding to the shaded region in 

the figure). While only a single explanation is possible for the training exa ple and domain 

theory shown here, in general there may be multiple possible explanations. In such cases, 

any or all of the explanations may be used. In the case of PROLOG-EBG, the explanation 

is generated using a backward chaining search as performed by PROLOG. PROLOG, halts 

once it finds the first valid proof. 

For example, the explanation of Figure 2 refers to the Density of Objl, but not to its Owner. 

Therefore, the hypothesis for SafeToStack(x,y) should include Density(x, 0.3), but not 

Owner(x, 
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Fred). By collecting just the features mentioned in the leaf nodes of the explanation in Figure 

2 and substituting variables x and y for Objl and Obj2, we can form a general rule that is 

justified by the domain theory: 

 

 
SafeToStack(x, y) ă Volume(x, 2) ̂  Density(x, 0.3) ̂  Type(y, Endtable) 

 
 

The body of the above rule includes each leaf node in the proof tree, except for the leaf 

nodes 

"Equal(0.6, times(2,0.3)" and "LessThan(0.6,5)." We omit these two because they 

are by 

definition always satisfied, independent of x and y. 

The above rule constitutes a significant generalization of the training example, because it 

omits many properties of the example (e.g., the Color of the two objects) that are irrelevant 

to the targetconcept. PROLOG- EBG computes the most general rule that can be justified 

by the explanation, by computing the weakest preimage of the explanation, defined as 

follows: 
 

 

For example, the weakest preimage of the target concept SafeToStack(x,y), with respect to 

the explanation from Table 1, is given by the body of the following rule. This is the most 

generalrule that can be justified by the explanation of Figure 2: 
 

Notice this more general rule does not require the specific values for Volume and Density 

that were required by the first rule. Instead, it states a more general constraint on the values 

of these attributes. The below figure depicts weakest preimage of SafeToStack. 
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The Weakest Preimage of target concept w.r.t explanation is produced by regression. It 

works 

iteratively through explanation first computing weakest preimage then weakest 

preimage of 

resulting expression and so on. It terminates when it has completed iterating all over 

steps inexplanation and yields weakest condition of target concept. 

 

 

REMARKS ON EXPLANATION-BASED LEARNING 

• Unlike inductive methods, PROLOG-EBG produces justified general hypotheses by 
using prior knowledge to analyze individual examples. 

• The explanation of how the example satisfies the target concept determines which 

example attributes are relevant: those mentioned by the explanation. 
 

• The further analysis of the explanation, regressing the target 

concept 

to determine its 
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weakest preimage with respect to the explanation, allows deriving more 

general 

constraints on the values of the relevant features. 

• The generality of the learned Horn clauses will depend on the formulation of the domain 

theoryand onthe sequence in which training examples are considered. 

• PROLOG-EBG implicitly assumes that the domain theory is correct and complete. If the 
domain theory is incorrect or incomplete, the resulting learned concept may also be 
incorrect. 

There are several related perspectives on explanation-based learning that help to 

understand itscapabilities and limitations. 

ü EBL as theory-guided generalization of examples. EBL uses its given domain theory 

to generalize rationally from examples, distinguishing the relevant ex- ample attributes 

from the irrelevant, thereby allowing it to avoid the bounds on sample complexity that apply 

to purely inductive learning. 

ü EBL as example-guided reformulation of theories. The PROLOG-EBG algorithm can 

be viewed as a 

method 

for reformulating the domain theory 

into a 

more 

operational 
 

formby creating rules that (a) follow deductively from the domain theory, and (b) 

classifythe observed training examples in a single inference step. Thus, the learned 

rules can be seen as a reformulation of the domain theory classifying instances of 

the target concept ina single inference step. 
ü EBL as "just" restating what the learner already "knows. " In one sense, the learner in 

our SafeToStack example begins with full knowledge of the Safe- ToStack concept.If its 

initial domain theory is sufficient to explain any observed training examples, then it is also 

sufficient to predict their classification in advance. 

EXPLANATION-BASED LEARNING OF SEARCH CONTROL KNOWLEDGE 

• The practical applicability of the PROLOG-EBG algorithm is restricted by its 

requirement that the domain theorybe correct and complete. 

• This EBL can be used in search programs(ex: chess game). 

• One system that employs explanationbased learning is to implement search is PRODIGY. 

• PRODIGY is domain independent planning system that accepts the problem in terms of 

state space S and operators O. 

• It then solves the problem to find sequence of operators O that lead from initial state Si to 

state that reach goal G. 
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•  PRODIGY divides thesolutions to final one.problem into sub problem and solves them 

and combines all 

• For example, one target concept is "the set of states in which subgoal A should be solved 
before subgoal B." An example of a rule learned by PRODIGY for this target concept in 
a simple block-stacking problem domain is 

 
 

The goal of block-staking problem is to stack the blocks so that they spell the word 

"universal." PRODIGY would decompose this problem into several subgoals to be 

achieved. Notice the above rule matches the subgoalsOn(U, N) and On(N, I), and 

recommends solving the subproblem On(N, I) before solving On(U, N). The justification 

for this rule (and the explanationused by PRODIGY to learn the rule) is that if we solve the 

subgoals in the reverse sequence, we will encounter a conflict in which we must undo the 

solution to the On(U, N) subgoal in order to achieve the other subgoal On(N, I). 

PRODIGY learns by first encountering such a conflict, then explaining to itself the reason 

for this conflict and creating a rule such as the one above. 

The net effect is that PRODIGY uses domain-independent knowledge about possible 

subgoal conflicts, together with domain-specific knowledge of specific operators (e.g., the 

fact that the robot can pick up only one block at a time), to learn useful domain-specific 

planning rules such as the one illustrated above. 
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USING PRIOR KNOWLEDGE TO ALTER THE SEARCH 

OBJECTIVE 

• The above approach begins the gradient descent search with a hypothesis that perfectly 

fits the domain theory, then perturbs this hypothesis as needed to maxitraining 

data. Size the fit to the 

• An alternative way of using prior knowledge is to incorporate it into the error criterion 

minimized by gradient descent, so that the network must fit a combined function of the 

training data and domain theory. 

 

EBNN Algorithm 

The EBNN (Explanation-Based Neural Network learning) algorithm (Mitchell and Thrun 

1993a;Thrun 1996) builds on the TANGENTPROP algorithm in two significant 

ways.First, instead of relying on the user to provide training derivatives, EBNN 

computes 

training derivatives itself for each observed training example. These training 

derivatives are calculated by explaining each training example in terms of a given 

domain theory, then extracting training derivatives from this explanation. (how to 

select mue). 

• Second, EBNN addresses the issue of how to weight the relative importance of the 

inductive and analytical components of learning 
 

Fig 4. Modified error function from tangent prop 

algorithm.value of µ is chosen independently for each training 

example. 

The inputs to EBNN include (1) a set of training examples of the form (xi, f (xi)) with no 

training 

derivatives provided, and (2) a domain theory analogous to that used in explanation- 

based 

learning and in KBANN, but represented by a set of previously trained neural networks 

rather than a set of Horn clauses. The output of EBNN is a new neural network that 

approximates the target function f. 
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To illustrate the type of domain theory used by EBNN, consider Figure . The top portion of 

this figure depicts an EBNN domain theory for the target function Cup, with each 

rectangular block representing a distinct neural network in the domain theory. Notice in this 

example there is one network for each of the Horn clauses in the symbolic domain theory of 

Table 1. For example, the network labeled Graspable takes as input the description of an 

instance and produces as output a value indicating whether the object is graspable (EBNN 

typically repre- sents true propositions by the value 0.8 and falsepropositions by the value 

0.2). This network is analogous to the Horn 

clause for Graspable given in Table 1. Some networks take the outputs of other networks 

as their inputs (e.g., the right- most network labelled Cup takes its inputs from the outputs 

of the Stable, Liftable, and OpenVessel networks). Thus, the networks that make up the 

domain theory can be chained together to infer the target function value for the input 

instance, just as Horn clauses might be chained together for this purpose. In general, these 

domain theory networks may be provided to the learner by some external source, or they 

may be the result of previous learning by the same system. EBNN makes use of these 

domain theory networks to learn the newtarget function. It does not alter the domain theory 

networks during this process. 
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The goal of EBNN is to learn a new neural network to describe the target function. We will 

refer to this new network as the target network. In the example of Figure, the target network 

Cup,,,,,, shown at the bottom of the figure takes as input the description of an arbitrary 

instance and outputs a value indicating whether the object is a Cup.EBNNalgorithm uses a 

domain theory expressed as a set of previously learned neural networks, together with a set 

of training examples, to train its output hypothesis 

 

 

 

USING PRIOR KNOWLEDGE TO AUGMENT SEARCH 

OPERATORS 

In this section we consider a third way of using prior knowledge to alter the hypothesis 

space search: using it to alter the set of operators that define legal steps in the search through 

the hypothesis space. This approach is followed by systems such as FOCL 

The FOCL Algorithm 

• FOCL is an extension of the purely inductive FOIL system.It also employees sequential 

covering algorithm (generic to specific search) 

• Both FOIL and FOCL learn a set of first-order Horn clauses to cover the observed 

training examples 

• Difference is FOCL considers Domain Theory. 
 

The solid edges in the search tree of Figure 6 show the general-to-specific search steps 

considered in a typical search by FOIL. The dashed edge in the search tree of Figure 6 

denotes an additional candidate specialization that is considered by FOCL and based on the 

domain theory. 

To describe operation FOCL operation, we must know about operational and non 

operational literals .operational literals are the 12 attributes describing the training sample 

where asnon operational are intermediate feature that occurs in domain theory. 

For example in fig 6 ,One kind adds a single new literal (solid lines.in the figure). A second 

kind of operator specializes the rule by adding a set of literals that constitute logically 

sufficient conditions for the target concept, according to the domain theory (dashed lines in 

the figure). 
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Fig 5. Cup target concept (Training examples and domain theory) 
 

Fig 6. Hypothesis space search in foil 
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FOCL expands its current hypothesis h using the following two operators: , 

1. For each operational literal that is not part of h, create a specialization of h by adding this single literal 

to the preconditions. This is also the method used by FOIL to generate candidate successors. he solid arrows 

in Figure 6 denote this type ofspecialization. 

2. Create an operational, logically sufficient condition for the target concept according to the domain 

theory. Add this set of literals to the current preconditions of h. Finally, prune the preconditions of h by 

removing any literals that are unnecessary according to the training data. The dashed arrow in Figure 6 

denotes this type of specialization. 

• FOCL first selects one domain theory clause whose post condidtion (head) matches the target 

concept. If there are more such clauses then it selects whose preconditions have highest information. 

• For example in the above figure Cup ăStable, Liftable, Openvessel 

• Now each non operational literal is replaced with its sufficient i.e. instead of Stable we replace 

BottomIsFlat similarly we do for all… this process is unfolding 

• Then it looks like BottomIsFlat , HasHandle, Light, HasConcavity , 

ConcavityPointsUp 

• As a final step in generating the candidate specialization, this sufficient condition is pruned. For 

each literal in the expression, the literal is removed unless its removal reduces classification 

accuracy over the training examples. Pruning (removing) the literal HasHandleresults in improved 

performance. 

• BottomZsFlat , Light, HasConcavity , ConcavityPointsUp 
this hypothesis is the result of the search step shown by the dashed arrow in Figure 

• Once candidate specializations of the current hypothesis have been gener- ated, using both of the 

two operations above, the candidate with highest information gain is selected. 

FOCL learns Horn clauses of the form c ă0i ^ 0b ^ 0f 

where c is the target concept, 0i is an initial conjunction of operational literals added one at a time 

by the first syntactic operator, 0b is a conjunction of operational literals added in a single step based 

on the domain theory, and 0f is a final conjunction of operational literals added one ata timeby the 

first syntactic operator. 
 

REINFORCEMENT LEARNING 

Each time the agent performs an action in its environment, a trainer may provide a reward or penalty 

to indicate the desirability of the resulting state. For example, when training an agent to play a game 

the trainer might provide a positive reward when the game is won, negative reward when it is lost, 

and zero reward in all other states. The task of the agent is to learn from this 
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Learning Techniques 
 

 

 

 
Motivation: 

Combing Inductive and Analytical Learning: 

 

 

• two paradigms for machine learning: inductive learning and analytical learning. 
 

• Purely analytical learning methods offer the advantage of generalizing more accurately 

from less data by using prior knowledge to guide learning. However, they can be misled 

when given incorrect or insufficient prior knowledge. 

Eg: PROLOG-EBG, seek general hypotheses that fit prior knowledge while 

covering theobserved data. 

• Purely inductive methods offer the advantage that they require no explicit prior knowledge 

and learn regularities based solely on the training data. However, they can failwhen given 

insufficient training data, and can be misled by the implicit inductive bias they must adopt 

in order to generalize beyond the observed data. 

Eg : decision tree induction and neural network BACKPROPAGATION, seek 

generalhypotheses that fit the observed training data. 

• Combining themoffers the possibilityof more powerful learning methods. 

 

 

Differnces between Inductive Learning and Analytical Learning 
 

Inductive Learning Analytical Learning 

These methods seek general hypotheses that fit 

the observed training data. 

These methods seek general hypotheses that 

fit prior knowledge while covering the 

observed data. 

These offer the advantage that they require no 

explicit prior knowledge and learn regularities 

based solely on the training data 

These offer the advantage of generalizing 

more accurately from less data by using prior 

knowledge to guide learning. 

The output hypothesis follows from statistical 

arguments that the training sample is 

The output hypothesis follows deductively 

from the domain theory and training 
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sufficiently large that it is probably 

representative of the underlying distribution of 

example 

examples. 

The disadvantage is they can fail when given 

insufficient training data, and can be misled by 

the implicit inductive bias they must adopt in 

order to generalize beyond the observed data 

The disadvantage is they can be misled when 

given incorrect or insufficient prior 

knowledge. 

These provide statistically justified hypotheses These provide logically justified hypotheses. 

Inductive methods are Decision tree 

,Backpropagation 

Analytical methods are PROLOG-EBG 

 

 

× The two approaches work well for different types of problems. By combining them we can 

hope to devise a more general learning approach that covers a more broad range of learning 

tasks. Fig1,a spectrum of learning problems that varies by the availability of prior 

knowledge and training data. At one extreme, a large volume of training data is 

available, but no prior knowledge. At the other extreme, strong prior knowledge is 

available, but little training data. Most practical learning 

problemsbetween these two extremes of the spectrum. 

lie somewhere 

 

 

 

 
 

 
 

Fig 1 : A Spectrum of learning tasks 

At the left extreme, no prior knowledge is available, and purely inductive learning methods with 

high sample complexity are therefore necessary. At the rightmost extreme, a perfect domain theory 

is available, enabling the use of purely analytical methods such as PROLOG- 

EBG. Mostpractical problems lie somewhere between these two extremes 

 

 

 

 

Some specific properties we would like from such a learning method include: 
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• Given no domain theory, it should learn at least as effectively as purely inductive 

methods. 

•  Given a perfect domain theory, it should learn at least as effectively as purely analytical 

methods. 

•  Given an imperfect domain theory and imperfect training data, it should combine the two 

to outperform either purely inductive or purely analytical methods. 

• It should accommodate an unknown level of error in the training data. 
 

• It should accommodate an unknown level of error in the domain theory. 

 
 

INDUCTIVE-ANALYTICAL APPROACHES TO LEARNING 

The Learning Problem 

Given: 

• A set oftraining examples D, possibly containing errors 

• A domain theory B, possibly containing errors 

• A space of candidate hypotheses H  

Determine: 

• A hypothesis that best fits the training examples and domain theory 

Which hypothesis to consider? 

Ą One which fits training data well 

Ą One which fits domain theory well 

errorD(h) is defined to be the proportion of examples from D that are misclassified by h. 

Let usdefine the error errorB(h) of h with respect to a domain theory B to be the 

probability that h will 

disagree with B on the classification of a randomly drawn instance. We 

characterize the desired output hypothesis in terms of these errors. 

can attempt to 

 

 

We require hypothesis that could minimize some combined measures of hypothesis such as 
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At first instance it satisfies, it is not clear what values to assign to kDand kB to specify the 

relative importance of fitting the data versus fitting the theory. 

If we have poor theory and great deal of data the error w.r.t D weight more heavily and if 

we have strong theory and noisy data the error w.r.t B weight more heavily.so the learner 

doesn’t know about training data and domain theory to unclear these components. 

So to weight these we use Bayes theorem. Bayes theorem describes how to compute the 

posterior probability P(h/D) of hypothesis h given observed training data D.Bayes theorem 

computes this posterior probability based on the observed data D, together with prior 

knowledge in the form of P(h), P(D), and P(D/h).we can think of P(h), P(D), and P(D/h) as 

a form of background knowledge or domain theory.Here we should choose hypothesis 

whose posterior probability is high. If P(h), P(D), and P(D/h) these are not perfectly known 

then Bayes theorem alone does not prescribe how to combine them with the observed data. 

Then, we have to assume prior probabilistic values for P(h), P(D), and P(D/h). 

Hypothesis space search: 

We can characterize most learning methods as search algorithms by describing the 

hypothesis space H they search, the initial hypothesis ho at which they begin their search, 

the set of search operators 0 that define individual search steps, and the goal criterion G 

that specifies the search objective. 

three different methods are: 

 Use prior knowledge to derive an initial hypothesis from which to begin the search. 

In this approach the domain theory B is used to construct an initial hypothesis ho that is 

consistent with B. A standard inductive method is then applied, starting with the initial 

hypothesis ho. 

 Use prior knowledge to alter the objective of the hypothesis space search. In this 

approach, the goal criterion G is modified to require that the out- put hypothesis fits the 

domain theory as well as the training examples. 

 Use prior knowledge to alter the available search steps. In this approach, the set of 

search operators 0 is altered bythe domain theory. 

 

USING PRIOR KNOWLEDGE TO INITIALIZE THE 

HYPOTHESIS 

One approach to using prior knowledge is to initialize the hypothesis to perfectly fit the 

domain theory, then inductively refine this initial hypothesis as needed to fit the training 

data. This approach is used by the KBANN (Knowledge-Based Artificial Neural 
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Network) algorithm to learn artificial neural networks. 

In KBANN, initial network is first constructed for every instance, the classification 

assigned by the network is identical to that assigned by the domain theory.Backpropagation 

algorithm is employed to adjust the weights of initial network as neededto fit training 

examples. 

If the initial hypothesis is found to imperfectly classify the training examples, then it will 

be refined inductively to improve its fit to the training examples (Backpropagation 

algorithm). If thedomain theory is correct, the initial hypothesis will correctly classify all 

the training examples. 

The intuition behind KBANN is that even if the domain theory is only approximately 

correct, initializing the network to fit this domain theory will give a better starting 

approximation to the target function than initializing the network to random initial weights. 

The KBANN Algorithm 

It first initializes the hypothesis approach to using domain theories.It assumes a domain 

theory represented by a set of propositional, nonrecursive Horn clauses. 

The two stages of the KBANN algorithm are first to create an artificial neural network that 

perfectly fits the domain theory and second to use the BACKPROPAGATION algorithm 

torefine this initial network to fit the training examples 
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EXAMPLE: 

Here each instance describes a physical object in terms of the material from which it 

is made,whether it is light, etc. The task is to learn the target concept Cup defined 

over such physical 

objects. The domain theory defines a Cup as an object that is Stable, Liftable, and an 

OpenVessel. The domain theory also defines each of these three attributes in terms of 

moreprimitive attributes and all those attributes describe the instances. 

 
Table 1. describes a set of training examples and a do- main theory for the Cup target concept 

 

Table 1. The Cup Learning Task 

Here the domain theory is inconsistent because the domain theory fails to classify two and 

three training examples. KBANN uses the domain theory and training examples together 

to learn the target concept more accurately than it could from either alone. 

1. In First stage, Initial network is constructed consistent with domain theory 

2. KBANN follows the convention that a sigmoid output value greater than 0.5 is 
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interpreted as True and a value below 0.5 as False. 

3. Each unit is therefore constructed so that its output will be greater than 0.5 just in those 

cases where the corresponding Horn clause applies. 

4. for each input corresponding to a non-negated antecedent,the weight is set to some positive 

constant W. For each input corresponding to a negated antecedent, the weight is set to - W. 

5. The threshold weight of the unit, wo is then set to -(n- .5) W, where n is the number of non- 

negated antecedents. 

When i/p values are 1 or 0 then weightedsum+ w0 will be +ve , if all antecedents 

are satisfied. 

6. Each sigmoid unit input is connected to the appropriate network input or to the output of 

another sigmoid unit, to mirror the graph of dependencies among the corresponding 

attributes in the domain theory. As a final step many additional inputs are added 

to eachthreshold unit, with their weights set approximately to zero. 

Fig 2. A Neural network equivalent to domain 
theory 

The solid lines in the network of Figure 2 indicate unit inputs with weights of W, 

whereas thelightly shaded lines indicate connections with initial weights near zero. 

7. The second stage 

BACKPROPAGATION 

of KBANN uses the training examples and 

thealgorithm to refine the initial network weights, if 

the intial 
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network is not consistent with theory. If cosistent no need of backpropagation. 

8. But our example is not consistent so we perform backpropagation 

 

 

Figure 3, with dark solid lines indicating the largest positive weights, dashed lines 

indicating thelargest negative weights, and light linesindicating negligible weights. 
 

 

 

Fig 3. Result of inductively refined neural network. 
 

REMARKS: 

 The chief benefit of KBANN over purely inductive BACKPROPAGATION is that it 

typically generalizes more accurately than BACKPROPAGATION when given an 

approximately correct domain theory, especially when training data is scarce. 

 Limitations of KBANN include the fact that it can accommodate only propositional 
 

 

 

 

 

 
 


