
MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM

1
T.APARNA Asst. Professor

 UNIT-1

INTRODUCTION

Ever since computers were invented, we have wondered whether they might be made to learn.

If we could understand how to program them to learn-to improve automatically with

experience-the impact would be dramatic.

 Imagine computers learning from medical records which treatments are most effective

for new diseases

 Houses learning from experience to optimize energy costs based on the particular usage

patterns of their occupants.

 Personal software assistants learning the evolving interests of their users in order to

highlight especially relevant stories from the online morning newspaper

A successful understanding of how to make computers learn would open up many new uses

of computers and new levels of competence and customization

Some successful applications of machine learning

 Learning to recognize spoken words

 Learning to drive an autonomous vehicle

 Learning to classify new astronomical structures

 Learning to play world-class backgammon

Why is Machine Learning Important?

 Some tasks cannot be defined well, except by examples (e.g., recognizing people).

 Relationships and correlations can be hidden within large amounts of data. Machine

Learning/Data Mining may be able to find these relationships.

 Human designers often produce machines that do not work as well as desired in the

environments in which they are used.

 The amount of knowledge available about certain tasks might be too large for explicit

encoding by humans (e.g., medical diagnostic).

 Environments change over time.

 New knowledge about tasks is constantly being discovered by humans. It may be

difficult to continuously re-design systems “by hand”.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM

2
T.APARNA Asst. Professor

WELL-POSED LEARNING PROBLEMS

Definition: A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E.

To have a well-defined learning problem, three features needs to be identified:

1. The class of tasks

2. The measure of performance to be improved

3. The source of experience

Examples

1. Checkers game: A computer program that learns to play checkers might improve its

performance as measured by its ability to win at the class of tasks involving playing

checkers games, through experience obtained by playing games against itself.

Fig: Checker game board

A checkers learning problem:

 Task T: playing checkers

 Performance measure P: percent of games won against opponents

 Training experience E: playing practice games against itself

2. A handwriting recognition learning problem:

 Task T: recognizing and classifying handwritten words within images

 Performance measure P: percent of words correctly classified

 Training experience E: a database of handwritten words with given

classifications

3. A robot driving learning problem:

 Task T: driving on public four-lane highways using vision sensors

 Performance measure P: average distance travelled before an error (as judged

by human overseer)

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM

3
T.APARNA Asst. Professor

 Training experience E: a sequence of images and steering commands recorded

while observing a human driver

Choose Move is a choice for the target function in checkers example, but this function

will turn out to be very difficult to learn given the kind of indirect training experience

available to our system

1. An alternative target function is an evaluation function that assigns a numerical score

to any given board state

Let the target function V and the notation

V : B → R

Which denote that V maps any legal board state from the set B to some real value.

Intend for this target function V to assign higher scores to better board states. If the

system can successfully learn such a target function V, then it can easily use it to select

the best move from any current board position.

Let us define the target value V (b) for an arbitrary board state b in B, as follows:

 If b is a final board state that is won, then V(b) = 100

 If b is a final board state that is lost, then V(b) = -100

 If b is a final board state that is drawn, then V(b) = 0

 If b is a not a final state in the game, then V(b) = V(b'),

Where b' is the best final board state that can be achieved starting from b and playing optimally

until the end of the game

2. Choosing a Representation for the Target Function

Let’s choose a simple representation - for any given board state, the function c will be

calculated as a linear combination of the following board features:

 xl: the number of black pieces on the board

 x2: the number of red pieces on the board

 x3: the number of black kings on the board

 x4: the number of red kings on the board

 x5: the number of black pieces threatened by red (i.e., which can be captured on red's
next turn)

 x6: the number of red pieces threatened by black

Thus, learning program will represent as a linear function of the form

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM

4
T.APARNA Asst. Professor

Where,

 W0 through w6 are numerical coefficients, or weights, to be chosen by the
learning algorithm.

 Learned values for the weights w1 through w6 will determine the relative importance

of the various board features in determining the value of the board

 The weight w0 will provide an additive constant to the board value

3. Choosing a Function Approximation Algorithm

In order to learn the target function f we require a set of training examples, each describing a

specific board state b and the training value Vtrain(b) for b.

Each training example is an ordered pair of the form (b, Vtrain(b)).

For instance, the following training example describes a board state b in which black has won

the game (note x2 = 0 indicates that red has no remaining pieces) and for which the target

function value Vtrain(b) is therefore +100.

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100)

Function Approximation Procedure

1. Derive training examples from the indirect training experience available to the learner

2. Adjusts the weights wi to best fit these training examples

1. Estimating training values

A simple approach for estimating training values for intermediate board states is to

assign the training value of Vtrain(b) for any intermediate board state b to be

V̂ (Successor (b))

Where,

 V̂ is the learner's current approximation to V

 Successor(b) denotes the next board state following b for which it is again the

program's turn to move

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM

5
T.APARNA Asst. Professor

Rule for estimating training values

2. Adjusting the weights

Vtrain(b)←V̂ (Successor(b))

Specify the learning algorithm for choosing the weights wi to best fit the set of training

examples {(b, Vtrain(b))}

A first step is to define what we mean by the best fit to the training data.

One common approach is to define the best hypothesis, or set of weights, as that which

minimizes the squared error E between the training values and the values predicted by

the hypothesis.

Several algorithms are known for finding weights of a linear function that minimize E.

One such algorithm is called the least mean squares, or LMS training rule. For each

observed training example it adjusts the weights a small amount in the direction that

reduces the error on this training example

LMS weight update rule: - For each training example (b, Vtrain(b))

Use the current weights to calculate V̂ (b)

For each weight wi, update it as

wi ← wi + ƞ (Vtrain (b) - V̂ (b)) xi

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update.

Working of weight update rule

 When the error (Vtrain(b)- V̂ (b)) is zero, no weights are changed.

 When (Vtrain(b) - V̂ (b)) is positive (i.e., when V̂ (b) is too low), then each weightis

increased in proportion to the value of its corresponding feature. This will raise the

value of V̂ (b), reducing the error.

 If the value of some feature xi is zero, then its weight is not altered regardless of

the error, so that the only weights updated are those whose features actually occur on

the training example board.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM

6
T.APARNA Asst. Professor

 4.The Final Design

The final design of checkers learning system can be described by four distinct program modules

that represent the central components in many learning systems

3. The Performance System is the module that must solve the given performance task by

using the learned target function(s). It takes an instance of a new problem (new game)

as input and produces a trace of its solution (game history) as output.

4. The Critic takes as input the history or trace of the game and produces as output a set

of training examples of the target function

5. The Generalizer takes as input the training examples and produces an output hypothesis

that is its estimate of the target function. It generalizes from the specific training

examples, hypothesizing a general function that covers these examples and other cases

beyond the training examples.

6. The Experiment Generator takes as input the current hypothesis and outputs a new

problem (i.e., initial board state) for the Performance System to explore. Its role is to

pick new practice problems that will maximize the learning rate of the overall system.

The sequence of design choices made for the checkers program is summarized in below figure

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM

7
T.APARNA Asst. Professor

PERSPECTIVES AND ISSUES IN MACHINE LEARNING

 Issues in Machine Learning
The field of machine learning, and much of this book, is concerned with answering questions

such as the following

 What algorithms exist for learning general target functions from specific training

examples? In what settings will particular algorithms converge to the desired function,

given sufficient training data? Which algorithms perform best for which types of

problems and representations?

 How much training data is sufficient? What general bounds can be found to relate the

confidence in learned hypotheses to the amount of training experience and the character

of the learner's hypothesis space? When and how can prior knowledge held by the learner

guide the process of generalizing from examples? Can prior knowledge be helpful even

when it is only approximately correct?

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 8 T.Aparna Asst. Prof

 What is the best strategy for choosing a useful next training experience, and how does

the choice of this strategy alter the complexity of the learning problem?

 What is the best way to reduce the learning task to one or more function approximation

problems? Put another way, what specific functions should the system attempt to learn?

Can this process itself be automated?

 How can the learner automatically alter its representation to improve its ability to

represent and learn the target function?

CONCEPT LEARNING

 Learning involves acquiring general concepts from specific training examples. Example:

People continually learn general concepts or categories such as "bird," "car," "situations in

which I should study more in order to pass the exam," etc.

 Each such concept can be viewed as describing some subset of objects or events defined

over a larger set

 Alternatively, each concept can be thought of as a Boolean-valued function defined over this

larger set. (Example: A function defined over all animals, whose value is true for birds and

false for other animals).

Definition: Concept learning - Inferring a Boolean-valued function from training examples of

its input and output

A CONCEPT LEARNING TASK

Consider the example task of learning the target concept "Days on which Aldo enjoyshis

favorite water ǎǇƻǊǘέ

Example Sky AirTemp Humidity Wind Water Forecast Enjoy Sport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

Table: Positive and negative training examples for the target concept Enjoy Sport.

The task is to learn to predict the value of Enjoy Sport for an arbitrary day, based on the

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 9 T.Aparna Asst. Prof

Values of its other attributes?

What hypothesis representation is provided to the learner?

 Let’s consider a simple representation in which each hypothesis consists of a

conjunction of constraints on the instance attributes.

 Let each hypothesis be a vector of six constraints, specifying the values of the six

attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast.

For each attribute, the hypothesis will either

 Indicate by a "?' that any value is acceptable for this attribute,

 Specify a single required value (e.g., Warm) for the attribute, or

 Indicate by a "Φ" that no value is acceptable

If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a positive

example (h(x) = 1).

The hypothesis that PERSON enjoys his favorite sport only on cold days with high humidity

is represented by the expression

(?, Cold, High, ?, ?, ?)

The most general hypothesis-that every day is a positive example-is represented by

(?, ?, ?, ?, ?, ?)

The most specific possible hypothesis-that no day is a positive example-is represented by

(Φ, Φ, Φ, Φ, Φ, Φ)

Notation

 The set of items over which the concept is defined is called the set of instances, which is

denoted by X.

Example: X is the set of all possible days, each represented by the attributes: Sky, AirTemp,

Humidity, Wind, Water, and Forecast

 The concept or function to be learned is called the target concept, which is denoted by c.

c can be any Boolean valued function defined over the instances X

c: X→ {O, 1}

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 10 T.Aparna Asst. Prof

Example: The target concept corresponds to the value of the attribute EnjoySport

(i.e., c(x) = 1 if EnjoySport = Yes, and c(x) = 0 if EnjoySport = No).

 Instances for which c(x) = 1 are called positive examples, or members of the target concept.

 Instances for which c(x) = 0 are called negative examples, or non-members of the target

concept.

 The ordered pair (x, c(x)) to describe the training example consisting of the instance x and

its target concept value c(x).

 D to denote the set of available training examples

 The symbol H to denote the set of all possible hypotheses that the learner may consider

regarding the identity of the target concept. Each hypothesis h in H represents a Boolean-

valued function defined over X

h: X→{O, 1}

The goal of the learner is to find a hypothesis h such that h(x) = c(x) for all x in X.

 Given:

 Instances X: Possible days, each described by the attributes

 Sky (with possible values Sunny, Cloudy, and Rainy),

 AirTemp (with values Warm and Cold),

 Humidity (with values Normal and High),

 Wind (with values Strong and Weak),

 Water (with values Warm and Cool),

 Forecast (with values Same and Change).

 Hypotheses H: Each hypothesis is described by a conjunction of constraints on the

attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. The constraints may be

"?" (any value is acceptable), “Φ” (no value is acceptable), or a specific value.

 Target concept c: EnjoySport : X → {0, l}

 Training examples D: Positive and negative examples of the target function

 Determine:

 A hypothesis h in H such that h(x) = c(x) for all x in X.

Table: The Enjoy Sport concept learning task.

The inductive learning hypothesis

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 11 T.Aparna Asst. Prof

Any hypothesis found to approximate the target function well over a sufficiently large set of

training examples will also approximate the target function well over other unobserved

examples.

CONCEPT LEARNING AS SEARCH

 Concept learning can be viewed as the task of searching through a large space of

hypotheses implicitly defined by the hypothesis representation.

 The goal of this search is to find the hypothesis that best fits the training examples.

Example:

Consider the instances X and hypotheses H in the Enjoy Sport learning task. The attribute Sky

has three possible values, and AirTemp, Humidity, Wind, Water, Forecast each have two

possible values, the instance space X contains exactly

3.2.2.2.2.2 = 96 distinct instances

5.4.4.4.4.4 = 5120 syntactically distinct hypotheses within H.

Every hypothesis containing one or more "Φ" symbols represents the empty set of instances;

that is, it classifies every instance as negative.

1 + (4.3.3.3.3.3) = 973. Semantically distinct hypotheses

General-to-Specific Ordering of Hypotheses

Consider the two hypotheses

h1 = (Sunny, ?, ?, Strong, ?, ?)

h2 = (Sunny, ?, ?, ?, ?, ?)

 Consider the sets of instances that are classified positive by hl and by h2.

 h2 imposes fewer constraints on the instance, it classifies more instances as positive. So,
any instance classified positive by hl will also be classified positive by h2. Therefore, h2

is more general than hl.

Given hypotheses hj and hk, hj is more-general-than or- equal do hk if and only if any instance

that satisfies hk also satisfies hi

Definition: Let hj and hk be Boolean-valued functions defined over X. Then hj is more general-

than-or-equal-to hk (written hj ≥ hk) if and only if

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 12 T.Aparna Asst. Prof

(xX) [(hk (x) = 1) → (hj (x) = 1)]

 In the figure, the box on the left represents the set X of all instances, the box on the right

the set H of all hypotheses.

 Each hypothesis corresponds to some subset of X-the subset of instances that it classifies

positive.

 The arrows connecting hypotheses represent the more - general -than relation, with the

arrow pointing toward the less general hypothesis.

 Note the subset of instances characterized by h2 subsumes the subset characterized by
hl , hence h2 is more - general– than h1

FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS

FIND-S Algorithm

1. Initialize h to the most specific hypothesis in H

2. For each positive training instance x

For each attribute constraint ai in h

If the constraint ai is satisfied by x

Then do nothing

Else replace ai in h by the next more general constraint that is satisfied by x

3. Output hypothesis h

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 13 T.Aparna Asst. Prof

To illustrate this algorithm, assume the learner is given the sequence of training examples

from the EnjoySport task

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

 The first step of FIND-S is to initialize h to the most specific hypothesis in H

h - (Ø, Ø, Ø, Ø, Ø, Ø)

 Consider the first training example

x1 = <Sunny Warm Normal Strong Warm Same>, +

Observing the first training example, it is clear that hypothesis h is too specific. None

of the "Ø" constraints in h are satisfied by this example, so each is replaced by the next

more general constraint that fits the example
h1 = <Sunny Warm Normal Strong Warm Same>

 Consider the second training example

x2 = <Sunny, Warm, High, Strong, Warm, Same>, +

The second training example forces the algorithm to further generalize h, this time

substituting a "?" in place of any attribute value in h that is not satisfied by the new

example

h2 = <Sunny Warm ? Strong Warm Same>

 Consider the third training example

x3 = <Rainy, Cold, High, Strong, Warm, Change>, -

Upon encountering the third training the algorithm makes no change to h. The FIND-S

algorithm simply ignores every negative example.
h3 = < Sunny Warm ? Strong Warm Same>

 Consider the fourth training example

x4 = <Sunny Warm High Strong Cool Change>, +

The fourth example leads to a further generalization of h

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 14 T.Aparna Asst. Prof

h4 = < Sunny Warm ? Strong ? ? >

The key property of the FIND-S algorithm

 FIND-S is guaranteed to output the most specific hypothesis within H that is consistent

with the positive training examples

 FIND-S algorithm’s final hypothesis will also be consistent with the negative examples

provided the correct target concept is contained in H, and provided the training examples are

correct.

Unanswered by FIND-S

1. Has the learner converged to the correct target concept?

2. Why prefer the most specific hypothesis?

3. Are the training examples consistent?

4. What if there are several maximally specific consistent hypotheses?

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 15 T.Aparna Asst. Prof

VERSION SPACES AND THE CANDIDATE-ELIMINATION ALGORITHM

The key idea in the CANDIDATE-ELIMINATION algorithm is to output a description of the

set of all hypotheses consistent with the training examples

Representation

Definition: consistent- A hypothesis h is consistent with a set of training examples D if and

only if h(x) = c(x) for each example (x, c(x)) in D.

Consistent (h, D) (x, c(x) D) h(x) = c(x))

Note difference between definitions of consistent and satisfies

 An example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is

a positive or negative example of the target concept.

 An example x is said to consistent with hypothesis h iff h(x) = c(x)

Definition: version space- The version space, denoted V S with respect to hypothesis space

H, D

H and training examples D, is the subset of hypotheses from H consistent with the training

examples in D

V S {h H | Consistent (h, D)}
H, D

The LIST-THEN-ELIMINATION algorithm

The LIST-THEN-ELIMINATE algorithm first initializes the version space to contain all

hypotheses in H and then eliminates any hypothesis found inconsistent with any training

example.

1. VersionSpace c a list containing every hypothesis in H

2. For each training example, (x, c(x))

remove from VersionSpace any hypothesis h for which h(x) ≠ c(x)

3. Output the list of hypotheses in VersionSpace

The LIST-THEN-ELIMINATE Algorithm

 List-Then-Eliminate works in principle, so long as version space is finite.

 However, since it requires exhaustive enumeration of all hypotheses in practice it is not

feasible.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 16 T.Aparna Asst. Prof

A More Compact Representation for Version Spaces

The version space is represented by its most general and least general members. These members

form general and specific boundary sets that delimit the version space within the partially

ordered hypothesis space.

Definition: The general boundary G, with respect to hypothesis space H and training data D,

is the set of maximally general members of H consistent with D

G {g H | Consistent (g, D)(g' H)[(g' g) Consistent(g', D)]}
g

Definition: The specific boundary S, with respect to hypothesis space H and training data D,

is the set of minimally general (i.e., maximally specific) members of H consistent with D.

S {s H | Consistent (s, D)(s' H)[(s s') Consistent(s', D)]}
g

Theorem: Version Space representation theorem

Theorem: Let X be an arbitrary set of instances and Let H be a set of Boolean-valued

hypotheses defined over X. Let c: X →{O, 1} be an arbitrary target concept defined over X,

and let D be an arbitrary set of training examples {(x, c(x))). For all X, H, c, and D such that S

and G are well defined,

VS ={ h H | (s S) (g G) (g h s)}
H,D g g

To Prove:

1. Every h satisfying the right hand side of the above expression is in VS

2. Every member of VS satisfies the right-hand side of the expression
H, D

H, D

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 17 T.Aparna Asst. Prof

Sketch of proof:

1. let g, h, s be arbitrary members of G, H, S respectively with g g h g s

 By the definition of S, s must be satisfied by all positive examples in D. Because h g s,

h must also be satisfied by all positive examples in D.

 By the definition of G, g cannot be satisfied by any negative example in D, and because g

g h h cannot be satisfied by any negative example in D. Because h is satisfied by all

positive examples in D and by no negative examples in D, h is consistent with D, and

therefore h is a member of VSH,D.

2. It can be proven by assuming some h in VSH,D,that does not satisfy the right-hand side

of the expression, then showing that this leads to an inconsistency

CANDIDATE-ELIMINATION Learning Algorithm

The CANDIDATE-ELIMINTION algorithm computes the version space containing all

hypotheses from H that are consistent with an observed sequence of training examples.

 Initialize G to the set of maximally general hypotheses in H

Initialize S to the set of maximally specific hypotheses in H

For each training example d, do

• If d is a positive example

• Remove from G any hypothesis inconsistent with d

• For each hypothesis s in S that is not consistent with d

• Remove s from S

• Add to S all minimal generalizations h of s such that

• h is consistent with d, and some member of G is more general than h

• Remove from S any hypothesis that is more general than another hypothesis in S

• If d is a negative example

• Remove from S any hypothesis inconsistent with d

• For each hypothesis g in G that is not consistent with d

• Remove g from G

• Add to G all minimal specializations h of g such that

• h is consistent with d, and some member of S is more specific than h

• Remove from G any hypothesis that is less general than another hypothesis in G

CANDIDATE- ELIMINTION algorithm using version spaces

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 18 T.Aparna Asst. Prof

An Illustrative Example

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of

all hypotheses in H;

Initializing the G boundary set to contain the most general hypothesis in H

G0 ?, ?, ?, ?, ?, ?

Initializing the S boundary set to contain the most specific (least general) hypothesis

S0 , , , , ,

 When the first training example is presented, the CANDIDATE-ELIMINTION algorithm

checks the S boundary and finds that it is overly specific and it fails to cover the positive

example.

 The boundary is therefore revised by moving it to the least more general hypothesis that

covers this new example

 No update of the G boundary is needed in response to this training example because Go

correctly covers this example

 When the second training example is observed, it has a similar effect of generalizing S

further to S2, leaving G again unchanged i.e., G2 = G1 = G0

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 19 T.Aparna Asst. Prof

 Consider the third training example. This negative example reveals that the G boundary

of the version space is overly general, that is, the hypothesis in G incorrectly predicts

that this new example is a positive example.

 The hypothesis in the G boundary must therefore be specialized until it correctly

classifies this new negative example

Given that there are six attributes that could be specified to specialize G2, why are there only

three new hypotheses in G3?

For example, the hypothesis h = (?, ?, Normal, ?, ?, ?) is a minimal specialization of G2

that correctly labels the new example as a negative example, but it is not included in G 3. The

reason this hypothesis is excluded is that it is inconsistent with the previously

encountered positive examples

 Consider the fourth training example.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 20 T.Aparna Asst. Prof

 This positive example further generalizes the S boundary of the version space. It also

results in removing one member of the G boundary, because this member fails to

cover the new positive example

After processing these four examples, the boundary sets S4 and G4 delimit the version space

of all hypotheses consistent with the set of incrementally observed training examples.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 21 T.Aparna Asst. Prof

INDUCTIVE BIAS

The fundamental questions for inductive inference

1. What if the target concept is not contained in the hypothesis space?

2. Can we avoid this difficulty by using a hypothesis space that includes every possible

hypothesis?

3. How does the size of this hypothesis space influence the ability of the algorithm to

generalize to unobserved instances?

4. How does the size of the hypothesis space influence the number of training examples

that must be observed?

These fundamental questions are examined in the context of the CANDIDATE-

ELIMINTION algorithm

A Biased Hypothesis Space

 Suppose the target concept is not contained in the hypothesis space H, then obvious solution

is to enrich the hypothesis space to include every possible hypothesis.

 Consider the EnjoySport example in which the hypothesis space is restricted to include

only conjunctions of attribute values. Because of this restriction, the hypothesis space is

unable to represent even simple disjunctive target concepts such as

"Sky = Sunny or Sky = Cloudy."

 The following three training examples of disjunctive hypothesis, the algorithm would

find that there are zero hypotheses in the version space

Sunny Warm Normal Strong Cool Change Y

Cloudy Warm Normal Strong Cool Change Y

Rainy Warm Normal Strong Cool Change N

 If Candidate Elimination algorithm is applied, then it end up with empty Version Space.

After first two training example

S= ? Warm Normal Strong Cool Change

 This new hypothesis is overly general and it incorrectly covers the third negative training

example! So H does not include the appropriate c.

 In this case, a more expressive hypothesis space is required.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 22 T.Aparna Asst. Prof

An Unbiased Learner

 The solution to the problem of assuring that the target concept is in the hypothesis space H

is to provide a hypothesis space capable of representing every teachable concept that is

representing every possible subset of the instances X.

 The set of all subsets of a set X is called the power set of X

 In the EnjoySport learning task the size of the instance space X of days described by

the six attributes is 96 instances.

 Thus, there are 296 distinct target concepts that could be defined over this instance spaceand

learner might be called upon to learn.

 The conjunctive hypothesis space is able to represent only 973 of these - a biased

hypothesis space indeed

 Let us reformulate the EnjoySport learning task in an unbiased way by defining a new

hypothesis space H' that can represent every subset of instances

 The target concept "Sky = Sunny or Sky = Cloudy" could then be described as

(Sunny, ?, ?, ?, ?, ?) v (Cloudy, ?, ?, ?, ?, ?)

The Futility of Bias-Free Learning

Inductive learning requires some form of prior assumptions, or inductive bias

Definition:

Consider a concept learning algorithm L for the set of instances X.
 Let c be an arbitrary concept defined over X

 Let D
c = {(x , c(x))} be an arbitrary set of training examples of c.

 Let L (x , D) denote the classification assigned to the instance x by L after training on
i c i

the data D .
c

 The inductive bias of L is any minimal set of assertions B such that for any target concept
c and corresponding training examples D

c

 (xi X) [(B Dc xi) ├ L (xi, Dc)]

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 23 T.Aparna Asst. Prof

The below figure explains

 Modelling inductive systems by equivalent deductive systems.

 The input-output behavior of the CANDIDATE-ELIMINATION algorithm using a

hypothesis space H is identical to that of a deductive theorem prover utilizing the

assertion "H contains the target concept." This assertion is therefore called the inductive

bias of the CANDIDATE-ELIMINATION algorithm.

 Characterizing inductive systems by their inductive bias allows modelling them by their

equivalent deductive systems. This provides a way to compare inductive systems

according to their policies for generalizing beyond the observed training data.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 24 T.Aparna Asst. Prof

DECISION TREE LEARNING

Decision tree learning is a method for approximating discrete-valued target functions, in which the

learned function is represented by a decision tree.

DECISION TREE REPRESENTATION

 Decision trees classify instances by sorting them down the tree from the root to some

leaf node, which provides the classification of the instance.

 Each node in the tree specifies a test of some attribute of the instance, and each branch

descending from that node corresponds to one of the possible values for this attribute.

 An instance is classified by starting at the root node of the tree, testing the attribute

specified by this node, then moving down the tree branch corresponding to the value of the

attribute in the given example. This process is then repeated for the subtree rooted at the

new node.

FIGURE: A decision tree for the concept PlayTennis. An example is classified by sorting it

through the tree to the appropriate leaf node, then returning the classification associated with

this leaf

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 25 T.Aparna Asst. Prof

 Decision trees represent a disjunction of conjunctions of constraints on the attribute

values of instances.

 Each path from the tree root to a leaf corresponds to a conjunction of attribute tests,

and the tree itself to a disjunction of these conjunctions

For example, the decision tree shown in above figure corresponds to the expression

(Outlook = Sunny Humidity = Normal)

 ᷉ (Outlook = Overcast)

 ᷉ (Outlook = Rain Wind = Weak)

APPROPRIATE PROBLEMS FOR DECISION TREE

LEARNING

Decision tree learning is generally best suited to problems with the following characteristics:

1. Instances are represented by attribute-value pairs – Instances are described by a

fixed set of attributes and their values

2. The target function has discrete output values – The decision tree assigns a Boolean

classification (e.g., yes or no) to each example. Decision tree methods easily extend to

learning functions with more than two possible output values.

3. Disjunctive descriptions may be required

4. The training data may contain errors – Decision tree learning methods are robust to

errors, both errors in classifications of the training examples and errors in the attribute

values that describe these examples.

5. The training data may contain missing attribute values – Decision tree methods can

be used even when some training examples have unknown values

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 26 T.Aparna Asst. Prof

THE BASIC DECISION TREE LEARNING ALGORITHM

The basic algorithm is ID3 which learns decision trees by constructing them top-down

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be

predicted by the tree. Attributes is a list of other attributes that may be tested by the learned

decision tree. Returns a decision tree that correctly classifies the given Examples.

 Create a Root node for the tree

 If all Examples are positive, Return the single-node tree Root, with label = +

 If all Examples are negative, Return the single-node tree Root, with label = -

 If Attributes is empty, Return the single-node tree Root, with label = most common value

of Target_attribute in Examples

 Otherwise Begin

 A ← the attribute from Attributes that best* classifies Examples

 The decision attribute for Root ← A

 For each possible value, vi, of A,

 Add a new tree branch below Root, corresponding to the test A = vi

 Let Examples vi, be the subset of Examples that have value vi for A

 If Examples vi , is empty

 Then below this new branch add a leaf node with label = most common

value of Target_attribute in Examples

 Else below this new branch add the subtree

ID3(Examples vi, Targe_tattribute, Attributes – {A}))

 End

 Return Root

* The best attribute is the one with highest information gain

TABLE: Summary of the ID3 algorithm specialized to learning Boolean-valued functions. ID3

is a greedy algorithm that grows the tree top-down, at each node selecting the attribute that best

classifies the local training examples. This process continues until the tree perfectly classifies

the training examples, or until all attributes have been used

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 27 T.Aparna Asst. Prof

Which Attribute Is the Best Classifier?

 The central choice in the ID3 algorithm is selecting which attribute to test at each node

in the tree.

 A statistical property called information gain that measures how well a given attribute

separates the training examples according to their target classification.

 ID3 uses information gain measure to select among the candidate attributes at each

step while growing the tree.

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES

To define information gain, we begin by defining a measure called entropy. Entropy

measures the impurity of a collection of examples.

Given a collection S, containing positive and negative examples of some target concept, the

entropy of S relative to this Boolean classification is

Where,
p+ is the proportion of positive examples in S

p- is the proportion of negative examples in S.

Example:

Suppose S is a collection of 14 examples of some boolean concept, including 9 positive and 5

negative examples. Then the entropy of S relative to this boolean classification is

 The entropy is 0 if all members of S belong to the same class

 The entropy is 1 when the collection contains an equal number of positive and negative

examples

 If the collection contains unequal numbers of positive and negative examples, the

entropy is between 0 and 1

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 28 T.Aparna Asst. Prof

INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY

 Information gain, is the expected reduction in entropy caused by partitioning the

examples according to this attribute.

 The information gain, Gain(S, A) of an attribute A, relative to a collection of examples

S, is defined as

Example: Information gain

Let, Values(Wind) = {Weak, Strong}

S = [9+, 5−]

S = [6+, 2−]
Weak

S = [3+, 3−]
Strong

Information gain of attribute Wind:

Gain(S, Wind) = Entropy(S) − 8/14 Entropy (SWeak) − 6/14 Entropy (SStrong)

= 0.94 – (8/14)* 0.811 – (6/14) *1.00

= 0.048

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 29 T.Aparna Asst. Prof

An Illustrative Example

 To illustrate the operation of ID3, consider the learning task represented by the training

examples of below table.

 Here the target attribute PlayTennis, which can have values yes or no for different days.

 Consider the first step through the algorithm, in which the topmost node of the decision

tree is created.

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

 ID3 determines the information gain for each candidate attribute (i.e., Outlook,

Temperature, Humidity, and Wind), then selects the one with highest information gain.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 30 T.Aparna Asst. Prof

 The information gain values for all four attributes are

Gain(S, Outlook) = 0.246

Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Temperature) = 0.029

 According to the information gain measure, the Outlook attribute provides the best

prediction of the target attribute, PlayTennis, over the training examples. Therefore,

Outlook is selected as the decision attribute for the root node, and branches are created

below the root for each of its possible values i.e., Sunny, Overcast, and Rain.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 31 T.Aparna Asst. Prof

SRain = { D4, D5, D6, D10, D14}

Gain (SRain , Humidity) = 0.970 – (2/5)1.0 – (3/5)0.917 = 0.019

Gain (SRain , Temperature) =0.970 – (0/5)0.0 – (3/5)0.918 – (2/5)1.0 = 0.019

Gain (SRain , Wind) =0.970 – (3/5)0.0 – (2/5)0.0 = 0.970

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 32 T.Aparna Asst. Prof

HYPOTHESIS SPACE SEARCH IN DECISION TREE

LEARNING

 ID3 can be characterized as searching a space of hypotheses for one that fits the training

examples.

 The hypothesis space searched by ID3 is the set of possible decision trees.

 ID3 performs a simple-to complex, hill-climbing search through this hypothesis space,

beginning with the empty tree, then considering progressively more elaborate hypotheses

in search of a decision tree that correctly classifies the training data

Figure: Hypothesis space search by ID3. ID3 searches through the space of possible decision

trees from simplest to increasingly complex, guided by the information gain heuristic.

By viewing ID3 in terms of its search space and search strategy, there are some insight into its

capabilities and limitations

1. ID3's hypothesis space of all decision trees is a complete space of finite discrete-valued

functions, relative to the available attributes. Because every finite discrete-valued

function can be represented by some decision tree

ID3 avoids one of the major risks of methods that search incomplete hypothesis spaces:

that the hypothesis space might not contain the target function.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 33 T.Aparna Asst. Prof

2. ID3 maintains only a single current hypothesis as it searches through the space of

decision trees.

For example, with the earlier version space candidate elimination method, which

maintains the set of all hypotheses consistent with the available training examples.

By determining only a single hypothesis, ID3 loses the capabilities that follow from

explicitly representing all consistent hypotheses.

For example, it does not have the ability to determine how many alternative decision

trees are consistent with the available training data, or to pose new instance queries that

optimally resolve among these competing hypotheses

3. ID3 in its pure form performs no backtracking in its search. Once it selects an attribute

to test at a particular level in the tree, it never backtracks to reconsider this choice.

In the case of ID3, a locally optimal solution corresponds to the decision tree it selects

along the single search path it explores. However, this locally optimal solution may be

less desirable than trees that would have been encountered along a different branch of

the search.

4. ID3 uses all training examples at each step in the search to make statistically based

decisions regarding how to refine its current hypothesis.

One advantage of using statistical properties of all the examples is that the resulting

search is much less sensitive to errors in individual training examples.

ID3 can be easily extended to handle noisy training data by modifying its termination

criterion to accept hypotheses that imperfectly fit the training data.

INDUCTIVE BIAS IN DECISION TREE LEARNING

Inductive bias is the set of assumptions that, together with the training data, deductively justify

the classifications assigned by the learner to future instances

Given a collection of training examples, there are typically many decision trees consistent with

these examples. Which of these decision trees does ID3 choose?

ID3 search strategy

 Selects in favour of shorter trees over longer ones

 Selects trees that place the attributes with highest information gain closest to the root.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Approximate inductive bias of ID3: Shorter trees are preferred over larger trees

 Consider an algorithm that begins with the empty tree and searches breadth first through

progressively more complex trees.

 First considering all trees of depth 1, then all trees of depth 2, etc.

 Once it finds a decision tree consistent with the training data, it returns the smallest

consistent tree at that search depth (e.g., the tree with the fewest nodes).

 Let us call this breadth-first search algorithm BFS-ID3.

 BFS-ID3 finds a shortest decision tree and thus exhibits the bias "shorter trees are

preferred over longer trees.

A closer approximation to the inductive bias of ID3: Shorter trees are preferred over longer

trees. Trees that place high information gain attributes close to the root are preferred over

those that do not.

 ID3 can be viewed as an efficient approximation to BFS-ID3, using a greedy heuristic

search to attempt to find the shortest tree without conducting the entire breadth-first

search through the hypothesis space.

 Because ID3 uses the information gain heuristic and a hill climbing strategy, it exhibitsa

more complex bias than BFS-ID3.

 In particular, it does not always find the shortest consistent tree, and it is biased to favour

trees that place attributes with high information gain closest to the root.

Restriction Biases and Preference Biases

Difference between the types of inductive bias exhibited by ID3 and by the CANDIDATE-

ELIMINATION Algorithm.

ID3:

 ID3 searches a complete hypothesis space

 It searches incompletely through this space, from simple to complex hypotheses, until

its termination condition is met

 Its inductive bias is solely a consequence of the ordering of hypotheses by its search

strategy. Its hypothesis space introduces no additional bias

CANDIDATE-ELIMINATION Algorithm:

 The version space CANDIDATE-ELIMINATION Algorithm searches an incomplete

hypothesis space

 It searches this space completely, finding every hypothesis consistent with the training

data.

Dept of CSE, NRCM 34 T.Aparna Asst. Prof

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 35 T.Aparna Asst. Prof

 Its inductive bias is solely a consequence of the expressive power of its hypothesis

representation. Its search strategy introduces no additional bias

Preference bias – The inductive bias of ID3 is a preference for certain hypotheses over others

(e.g., preference for shorter hypotheses over larger hypotheses), with no hard restriction on the

hypotheses that can be eventually enumerated. This form of bias is called a preference bias or

a search bias.

Restriction bias – The bias of the CANDIDATE ELIMINATION algorithm is in the form of a

categorical restriction on the set of hypotheses considered. This form of bias is typically called

a restriction bias or a language bias.

Which type of inductive bias is preferred in order to generalize beyond the training data, a

preference bias or restriction bias?

 A preference bias is more desirable than a restriction bias, because it allows the learner

to work within a complete hypothesis space that is assured to contain the unkno wn target

function.

 In contrast, a restriction bias that strictly limits the set of potential hypotheses is

generally less desirable, because it introduces the possibility of excluding the unknown

target function altogether.

Why Prefer Short

Hypotheses?Occam's razor

 Occam's razor: is the problem-solving principle that the simplest solution tends to be

the right one. When presented with competing hypotheses to solve a problem, one

should select the solution with the fewest assumptions.

 Occam's razor: “Prefer the simplest hypothesis that fits the data”.

Argument in favour of Occam’s razor:

 Fewer short hypotheses than long ones:

 Short hypotheses fits the training data which are less likely to be coincident

 Longer hypotheses fits the training data might be coincident.

 Many complex hypotheses that fit the current training data but fail to generalize

q- correctly to subsequent data.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 36 T.Aparna Asst. Prof

 There are few small trees, and our priori chance of finding one consistent with an

arbitrary set of data is therefore small. The difficulty here is that there are very many

small sets of hypotheses that one can define but understood by fewer learner.

 The size of a hypothesis is determined by the representation used internally by the

learner. Occam's razor will produce two different hypotheses from the same training

examples when it is applied by two learners, both justifying their contradictory

conclusions by Occam's razor. On this basis we might be tempted to reject Occam's

razor altogether.

ISSUES IN DECISION TREE LEARNING

Issues in learning decision trees include

1. Avoiding Overfitting the Data

Reduced error pruning

Rule post-pruning

2. Incorporating Continuous-Valued Attributes

3. Alternative Measures for Selecting Attributes

4. Handling Training Examples with Missing Attribute Values

5. Handling Attributes with Differing Costs

1. Avoiding Overfitting the Data

 The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify the

training examples but it can lead to difficulties when there is noise in the data, or when

the number of training examples is too small to produce a representative sample of the

true target function. This algorithm can produce trees that overfit the training examples.

 Definition - Overfit: Given a hypothesis space H, a hypothesis h ᶰ H is said to overfit

the training data if there exists some alternative hypothesis h' ɴH, such that h has smaller

error than h' over the training examples, but h' has a smaller error than h over the entire

distribution of instances.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 37 T.Aparna Asst. Prof

The below figure illustrates the impact of overfitting in a typical application of decision tree

learning.

 The horizontal axis of this plot indicates the total number of nodes in the decision tree,

as the tree is being constructed. The vertical axis indicates the accuracy of predictions

made by the tree.

 The solid line shows the accuracy of the decision tree over the training examples. The

broken line shows accuracy measured over an independent set of test example

 The accuracy of the tree over the training examples increases monotonically as the tree

is grown. The accuracy measured over the independent test examples first increases,

then decreases.

How can it be possible for tree h to fit the training examples better than h', but for it to perform

more poorly over subsequent examples?

1. Overfitting can occur when the training examples contain random errors or noise

2. When small numbers of examples are associated with leaf nodes.

Noisy Training Example

 Example 15: <Sunny, Hot, Normal, Strong, ->

 Example is noisy because the correct label is +

 Previously constructed tree misclassifies it

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 38 T.Aparna Asst. Prof

Approaches to avoiding overfitting in decision tree learning

 Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point whereit

perfectly classifies the training data

 Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree

Criterion used to determine the correct final tree size

 Use a separate set of examples, distinct from the training examples, to evaluate the utility of

post-pruning nodes from the tree

 Use all the available data for training, but apply a statistical test to estimate whether

expanding (or pruning) a particular node is likely to produce an improvement beyond

the training set

 Use measure of the complexity for encoding the training examples and the decision tree,

halting growth of the tree when this encoding size is minimized. This approach is called

the Minimum Description Length

MDL – Minimize : size(tree) + size (misclassifications(tree))

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 39 T.Aparna Asst. Prof

Reduced-Error Pruning

 Reduced-error pruning, is to consider each of the decision nodes in the tree to be

candidates for pruning

 Pruning a decision node consists of removing the subtree rooted at that node, making it

a leaf node, and assigning it the most common classification of the training examples

affiliated with that node

 Nodes are removed only if the resulting pruned tree performs no worse than-the original over

the validation set.

 Reduced error pruning has the effect that any leaf node added due to coincidental

regularities in the training set is likely to be pruned because these same coincidences are

unlikely to occur in the validation set

The impact of reduced-error pruning on the accuracy of the decision tree is illustrated in below

figure

 The additional line in figure shows accuracy over the test examples as the tree is pruned.

When pruning begins, the tree is at its maximum size and lowest accuracy over the test

set. As pruning proceeds, the number of nodes is reduced and accuracy over the test set

increases.

 The available data has been split into three subsets: the training examples, the validation

examples used for pruning the tree, and a set of test examples used to provide an

unbiased estimate of accuracy over future unseen examples. The plot shows accuracy

over the training and test sets.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 40 T.Aparna Asst. Prof

Pros and Cons

Pro: Produces smallest version of most accurate T (subtree of T)

Con: Uses less data to construct T

Can afford to hold out D

(insufficient D)
train

Rule Post-

Pruning

?. If not (data is too limited), may make error worse
validation

Rule post-pruning is successful method for finding high accuracy hypotheses

 Rule post-pruning involves the following steps:

 Infer the decision tree from the training set, growing the tree until the training data is fit

as well as possible and allowing overfitting to occur.

 Convert the learned tree into an equivalent set of rules by creating one rule for each path

from the root node to a leaf node.

 Prune (generalize) each rule by removing any preconditions that result in improving its

estimated accuracy.

 Sort the pruned rules by their estimated accuracy, and consider them in this sequence

when classifying subsequent instances.

Converting a Decision Tree into Rules

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 41 T.Aparna Asst. Prof

For example, consider the decision tree. The leftmost path of the tree in below figure is

translated into the rule.

IF (Outlook = Sunny) ^ (Humidity = High)

THEN PlayTennis = No

Given the above rule, rule post-pruning would consider removing the preconditions

(Outlook = Sunny) and (Humidity = High)

 It would select whichever of these pruning steps produced the greatest improvement in

estimated rule accuracy, then consider pruning the second precondition as a further

pruning step.

 No pruning step is performed if it reduces the estimated rule accuracy.

There are three main advantages by converting the decision tree to rules before pruning

1. Converting to rules allows distinguishing among the different contexts in which a

decision node is used. Because each distinct path through the decision tree node

produces a distinct rule, the pruning decision regarding that attribute test can be made

differently for each path.

2. Converting to rules removes the distinction between attribute tests that occur near the

root of the tree and those that occur near the leaves. Thus, it avoid messy bookkeeping

issues such as how to reorganize the tree if the root node is pruned while retaining part

of the subtree below this test.

3. Converting to rules improves readability. Rules are often easier for to understand.

2. Incorporating Continuous-Valued Attributes

Continuous-valued decision attributes can be incorporated into the learned tree.

There are two methods for Handling Continuous Attributes

1. Define new discrete valued attributes that partition the continuous attribute value into a

discrete set of intervals.

E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C}

2. Using thresholds for splitting nodes

e.g., A ≤ a produces subsets A ≤ a and A > a

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 42 T.Aparna Asst. Prof

What threshold-based Boolean attribute should be defined based on Temperature?

 Pick a threshold, c, that produces the greatest information gain

 In the current example, there are two candidate thresholds, corresponding to the values

of Temperature at which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2.

 The information gain can then be computed for each of the candidate attributes,

Temperature >54, and Temperature >85 and the best can be selected (Temperature >54)

3. Alternative Measures for Selecting Attributes

 The problem is if attributes with many values, Gain will select it ?

 Example: consider the attribute Date, which has a very large number of possible values.

(e.g., March 4, 1979).

 If this attribute is added to the PlayTennis data, it would have the highest information

gain of any of the attributes. This is because Date alone perfectly predicts the target

attribute over the training data. Thus, it would be selected as the decision attribute for

the root node of the tree and lead to a tree of depth one, which perfectly classifies the

training data.

 This decision tree with root node Date is not a useful predictor because it perfectly

separates the training data, but poorly predict on subsequent examples.

One Approach: Use GainRatio instead of Gain

The gain ratio measure penalizes attributes by incorporating a split information, that is sensitive

to how broadly and uniformly the attribute splits the data

Where, Si is subset of S, for which attribute A has value vi

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 43 T.Aparna Asst. Prof

4. Handling Training Examples with Missing Attribute Values

The data which is available may contain missing values for some attributes

Example: Medical diagnosis

 <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>

 Sometimes values truly unknown, sometimes low priority (or cost too high)

Strategies for dealing with the missing attribute value

 If node n test A, assign most common value of A among other training examples sorted

to node n

 Assign most common value of A among other training examples with same target value

 Assign a probability pi to each of the possible values vi of A rather than simply assigning

the most common value to A(x)

5. Handling Attributes with Differing Costs

 In some learning tasks the instance attributes may have associated costs.

 For example: In learning to classify medical diseases, the patients described in terms of

attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults, etc.

 These attributes vary significantly in their costs, both in terms of monetary cost and cost

to patient comfort

 Decision trees use low-cost attributes where possible, depends only on high-cost

attributes only when needed to produce reliable classifications

How to Learn A Consistent Tree with Low Expected Cost?

One approach is replace Gain by Cost-Normalized-Gain

Examples of normalization functions

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 44 T.Aparna Asst. Prof

UNIT-II

ARTIFICIAL NEURAL NETWORKS

INTRODUCTION

Artificial neural networks (ANNs) provide a general, practical method for learning real-valued,

discrete-valued, and vector-valued target functions.

Biological Motivation

 The study of artificial neural networks (ANNs) has been inspired by the observation that

biological learning systems are built of very complex webs of interconnected Neurons

 Human information processing system consists of brain neuron: basic building block

cell that communicates information to and from various parts of body

Facts of Human Neurobiology

 Number of neurons ~ 1011

 Connection per neuron ~ 10 4 – 5

 Neuron switching time ~ 0.001 second or 10 -3

 Scene recognition time ~ 0.1 second

 100 inference steps doesn’t seem like enough

 Highly parallel computation based on distributed representation

Properties of Neural Networks

 Many neuron-like threshold switching units

 Many weighted interconnections among units

 Highly parallel, distributed process

 Emphasis on tuning weights automatically

 Input is a high-dimensional discrete or real-valued (e.g, sensor input)

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 45 T.Aparna Asst. Prof

NEURAL NETWORK REPRESENTATIONS

 A prototypical example of ANN learning is provided by Pomerleau's system ALVINN,

which uses a learned ANN to steer an autonomous vehicle driving at normal speeds on

public highways

 The input to the neural network is a 30x32 grid of pixel intensities obtained from a

forward-pointed camera mounted on the vehicle.

 The network output is the direction in which the vehicle is steered

Figure: Neural network learning to steer an autonomous vehicle.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 4 T.Aparna. Asst. Prof

 Figure illustrates the neural network representation.

 The network is shown on the left side of the figure, with the input camera image depicted

below it.

 Each node (i.e., circle) in the network diagram corresponds to the output of a single

network unit, and the lines entering the node from below are its inputs.

 There are four units that receive inputs directly from all of the 30 x 32 pixels in the

image. These are called "hidden" units because their output is available only within the

network and is not available as part of the global network output. Each of these four

hidden units computes a single real-valued output based on a weighted combination of

its 960 inputs

 These hidden unit outputs are then used as inputs to a second layer of 30 "output" units.

 Each output unit corresponds to a particular steering direction, and the output values of

these units determine which steering direction is recommended most strongly.

 The diagrams on the right side of the figure depict the learned weight values associated

with one of the four hidden units in this ANN.

 The large matrix of black and white boxes on the lower right depicts the weights from

the 30 x 32 pixel inputs into the hidden unit. Here, a white box indicates a positive

weight, a black box a negative weight, and the size of the box indicates the weight

magnitude.

 The smaller rectangular diagram directly above the large matrix shows the weights from this

hidden unit to each of the 30 output units.

APPROPRIATE PROBLEMS FOR NEURAL NETWORK

LEARNING

ANN learning is well-suited to problems in which the training data corresponds to noisy,

complex sensor data, such as inputs from cameras and microphones.

ANN is appropriate for problems with the following characteristics:

1. Instances are represented by many attribute-value pairs.

2. The target function output may be discrete-valued, real-valued, or a vector of several

real- or discrete-valued attributes.

3. The training examples may contain errors.

4. Long training times are acceptable.

5. Fast evaluation of the learned target function may be required

6. The ability of humans to understand the learned target function is not important

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 47 T.Aparna Asst. Prof

PERCEPTRON

 One type of ANN system is based on a unit called a perceptron. Perceptron is a single

layer neural network.

Figure: A perceptron

 A perceptron takes a vector of real-valued inputs, calculates a linear combination of

these inputs, then outputs a 1 if the result is greater than some threshold and -1 otherwise.

 Given inputs x through x, the output O(x1, . . . , xn) computed by the perceptron is

 Where, each wi is a real-valued constant, or weight, that determines the contribution of
input xi to the perceptron output.

 -w0 is a threshold that the weighted combination of inputs w1x1 + . . . + wnxn must surpass
in order for the perceptron to output a 1.

Sometimes, the perceptron function is written as,

Learning a perceptron involves choosing values for the weights w0 , . . . , wn . Therefore, the

space H of candidate hypotheses considered in perceptron learning is the set of all possible real-

valued weight vectors

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 48 T.Aparna Asst. Prof

Representational Power of Perceptrons

 The perceptron can be viewed as representing a hyperplane decision surface in the n-

dimensional space of instances (i.e., points)

 The perceptron outputs a 1 for instances lying on one side of the hyperplane and outputs

a -1 for instances lying on the other side, as illustrated in below figure

Perceptrons can represent all of the primitive Boolean functions AND, OR, NAND (~ AND),

and NOR (~OR)

Some Boolean functions cannot be represented by a single perceptron, such as the XOR

function whose value is 1 if and only if x1 ≠ x2

Example: Representation of AND functions

If A=0 & B=0 → 0*0.6 + 0*0.6 = 0.

This is not greater than the threshold of 1, so the output = 0.

If A=0 & B=1 → 0*0.6 + 1*0.6 = 0.6.

This is not greater than the threshold, so the output = 0.

If A=1 & B=0 → 1*0.6 + 0*0.6 = 0.6.

This is not greater than the threshold, so the output = 0.

If A=1 & B=1 → 1*0.6 + 1*0.6 = 1.2.

This exceeds the threshold, so the output = 1.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 49 T.Aparna Asst. Prof

Drawback of perceptron

 The perceptron rule finds a successful weight vector when the training examples are

linearly separable, it can fail to converge if the examples are not linearly separable

The Perceptron Training Rule

The learning problem is to determine a weight vector that causes the perceptron to produce the

correct + 1 or - 1 output for each of the given training examples.

To learn an acceptable weight vector

 Begin with random weights, then iteratively apply the perceptron to each training

example, modifying the perceptron weights whenever it misclassifies an example.

 This process is repeated, iterating through the training examples as many times as

needed until the perceptron classifies all training examples correctly.

 Weights are modified at each step according to the perceptron training rule, which

revises the weight wi associated with input xi according to the rule.

 The role of the learning rate is to moderate the degree to which weights are changed at

each step. It is usually set to some small value (e.g., 0.1) and is sometimes made to decay as

the number of weight-tuning iterations increases

Drawback:

The perceptron rule finds a successful weight vector when the training examples are linearly

separable, it can fail to converge if the examples are not linearly separable.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 50 T.Aparna Asst. Prof

Gradient Descent and the Delta Rule

 If the training examples are not linearly separable, the delta rule converges toward a

best-fit approximation to the target concept.

 The key idea behind the delta rule is to use gradient descent to search the hypothesis

space of possible weight vectors to find the weights that best fit the training examples.

To understand the delta training rule, consider the task of training an unthresholded perceptron.

That is, a linear unit for which the output O is given by

To derive a weight learning rule for linear units, specify a measure for the training error of a

hypothesis (weight vector), relative to the training examples.

Where,

 D is the set of training examples,

 td is the target output for training example d,

 od is the output of the linear unit for training example d

 E (ᴆ×ᴆᴆO) i s sim pl y hal f th e s quar ed di ff ere nc e be t w een the targ et o utp ut t d a nd the lin ear
unit output od, summed over all training examples.

Visualizing the Hypothesis Space

 To understand the gradient descent algorithm, it is helpful to visualize the entire

hypothesis space of possible weight vectors and their associated E values as shown in

below figure.

 Here the axes w0 and wl represent possible values for the two weights of a simple linear
unit. The w0, wl plane therefore represents the entire hypothesis space.

 The vertical axis indicates the error E relative to some fixed set of training examples.

 The arrow shows the negated gradient at one particular point, indicating the direction in the

w0, wl plane producing steepest descent along the error surface.

 The error surface shown in the figure thus summarizes the desirability of every weight

vector in the hypothesis space

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 51 T.Aparna Asst. Prof

 Given the way in which we chose to define E, for linear units this error surface must

always be parabolic with a single global minimum.

Gradient descent search determines a weight vector that minimizes E by starting with an

arbitrary initial weight vector, then repeatedly modifying it in small steps.

At each step, the weight vector is altered in the direction that produces the steepest descent

along the error surface depicted in above figure. This process continues until the global

minimum error is reached.

Derivation of the Gradient Descent Rule

How to calculate the direction of steepest descent along theerror surface?

The direction of steepest can be found by computing the derivative of E with respect to each

co m p on ent of the ve ctor ×ᴆᴆᴆO . T hi s ve ct or d eri v at ive is c alled the gr a di e nt of E with re sp ect to

ᴆ×ᴆᴆO , written as

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 52 T.Aparna Asst. Prof

The gradient specifies the direction of steepest increase of E, the training rule for

gradient descent is

 Here η is a positive constant called the learning rate, which determines the step

size in the gradient descent search.

 The negative sign is present because we want to move the weight vector in the

direction that decreases E.

This training rule can also be written in its component form

Calculate the gradient at each step. The vector of Ὁ
ύὭ

derivatives that form the

gradient can be obtained by differentiating E from Equation (2), as

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 53 T.Aparna Asst. Prof

GRADIENT DESCENT algorithm for training a linear unit

To summarize, the gradient descent algorithm for training linear units is as follows:

 Pick an initial random weight vector.

 Apply the linear unit to all training examples, then compute Δwi for each weight

according to Equation (7).

 Update each weight wi by adding Δwi, then repeat this process

Issues in Gradient Descent Algorithm

Gradient descent is an important general paradigm for learning. It is a strategy for searching

through a large or infinite hypothesis space that can be applied whenever

1. The hypothesis space contains continuously parameterized hypotheses

2. The error can be differentiated with respect to these hypothesis parameters

The key practical difficulties in applying gradient descent are

1. Converging to a local minimum can sometimes be quite slow

2. If there are multiple local minima in the error surface, then there is no guarantee that

the procedure will find the global minimum

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 54 T.Aparna Asst. Prof

Stochastic Approximation to Gradient Descent

 The gradient descent training rule presented in Equation (7) computes weight updates

after summing over all the training examples in D

 The idea behind stochastic gradient descent is to approximate this gradient descent

search by updating weights incrementally, following the calculation of the error for

each individual example

∆wi = η (t – o) xi

 where t, o, and xi are the target value, unit output, and ith input for the training example

in question

One way to view this stochastic gradient descent is to consider a distinct error function

E d(ᴆ×ᴆᴆO) f or ea ch in div id ual trainin g e x a m ple d as fo ll ow s

 Where, td and od are the target value and the unit output value for training example d.

 Stochastic gradient descent iterates over the training examples d in D, at each iteration

alte ri ng the w eigh t s a c co rd in g to t he gra di ent w ith res pect t o E d(×ᴆᴆᴆO)

 The sequence of these weight updates, when iterated over all training examples,provides

a reasonable approximation to descending the gradient with respect to our origi nal err or

f u nct i on E d(ᴆ×ᴆᴆO)

 By making the value of η sufficiently small, stochastic gradient descent can be made to

approximate true gradient descent arbitrarily closely

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 55 T.Aparna Asst. Prof

The key differences between standard gradient descent and stochastic gradient descent are

 In standard gradient descent, the error is summed over all examples before updating

weights, whereas in stochastic gradient descent weights are updated upon examining

each training example.

 Summing over multiple examples in standard gradient descent requires more

computation per weight update step. On the other hand, because it uses the true gradient,

standard gradient descent is often used with a larger step size per weight update than

stochastic gradient descent.

 In cases where there are multiple local minima with respect to stochastic gradient

descent can sometimes avoid falling into these local minima because it uses the various

 ɳE (ᴆ×ᴆᴆO) rat h er than ɳE(ᴆ×ᴆᴆO) to g ui de it s search
d

MULTILAYER NETWORKS AND THE BACKPROPAGATION

ALGORITHM

Multilayer networks learned by the BACKPROPAGATION algorithm are capable of

expressing a rich variety of nonlinear decision surfaces.

Consider the example:

 Here the speech recognition task involves distinguishing among 10 possible vowels, all

spoken in the context of "h_d" (i.e., "hid," "had," "head," "hood," etc.).

 The network input consists of two parameters, F1 and F2, obtained from a spectral

analysis of the sound. The 10 network outputs correspond to the 10 possible vowel

sounds. The network prediction is the output whose value is highest.

 The plot on the right illustrates the highly nonlinear decision surface represented by the

learned network. Points shown on the plot are test examples distinct from the examples

used to train the network.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 56 T.aparna Asst. Prof

A Differentiable Threshold Unit (Sigmoid unit)

 Sigmoid unit-a unit very much like a perceptron, but based on a smoothed, differentiable

threshold function.

 The sigmoid unit first computes a linear combination of its inputs, then applies a

threshold to the result and the threshold output is a continuous function of its input.

 More precisely, the sigmoid unit computes its output O as

σ is the sigmoid function

The BACKPROPAGATION Algorithm

 The BACKPROPAGATION Algorithm learns the weights for a multilayer network,

given a network with a fixed set of units and interconnections. It employs gradient

descent to attempt to minimize the squared error between the network output values and the

target values for these outputs.

 In BACKPROPAGATION algorithm, we consider networks with multiple output units

rather than single units as before, so we redefine E to sum the errors over all of the

network output units.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 57 T.Aparna Asst. Prof

where,

 outputs - is the set of output units in the network

 tkd and Okd - the target and output values associated with the kth output unit

 d - training example

Algorithm:

BACKPROPAGATION (training_example, Л, nin, nout, nhidden)

Each trai nin g example is a pai r of th e for m (ὼᴆ O, ὸO), where (ὼO) is the vector of network

input valu es, (ὸO) and i s the ve ctor of target n etwo rk output val u es.

Л is the learning rate (e.g., .05). ni, is the number of network inputs, nhidden the number

of units in the hidden layer, and nout the number of output units.

The input from unit i into unit j is denoted xji, and the weight from unit i to unit j is

denoted wji

 Create a feed-forward network with ni inputs, nhidden hidden units, and nout output

units.

 Initialize all network weights to small random numbers

 Until the termination condition is met, Do

 For each (ᴆὼO, ὸO), in trainin g exa m ples, Do

Propagate the input forward through the network:
1. Input the instance ᴆὼO, to the netw ork and com p ute the outp ut ou of ever y

unit u in the network.

Propagate the errors backward through the network:

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 58 T.Aparna Asst. Prof

Adding Momentum

Because BACKPROPAGATION is such a widely used algorithm, many variations have been

developed. The most common is to alter the weight-update rule the equation below

by making the weight update on the nth iteration depend partially on the update that occurred

during the (n - 1)th iteration, as follows:

Learning in arbitrary acyclic networks

 BACKPROPAGATION algorithm given there easily generalizes to feedforward

networks of arbitrary depth. The weight update rule is retained, and the only change is

to the procedure for computing δ values.

 In general, the δ, value for a unit r in layer m is computed from the δ values at the next

deeper layer m + 1 according to

 The rule for calculating δ for any internal unit

Where, Downstream(r) is the set of units immediately downstream from unit r in the network:

that is, all units whose inputs include the output of unit r

Derivation of the BACKPROPAGATION Rule

 Deriving the stochastic gradient descent rule: Stochastic gradient descent involves

iterating through the training examples one at a time, for each training example d

descending the gradient of the error Ed with respect to this single example

 For each training example d every weight wji is updated by adding to it Δwji

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 59 T.Aparna Asst. Prof

Here outputs is the set of output units in the network, tk is the target value of unit k for training

example d, and ok is the output of unit k given training example d.

The derivation of the stochastic gradient descent rule is conceptually straightforward, but

requires keeping track of a number of subscripts and variables

 xji = the ith input to unit j

 wji = the weight associated with the ith input to unit j

 netj = Σi wjixji (the weighted sum of inputs for unit j)

 oj = the output computed by unit j

 tj = the target output for unit j

 σ = the sigmoid function

 outputs = the set of units in the final layer of the network

 Downstream(j) = the set of units whose immediate inputs include the output of unit j

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 60 T.Aparna Asst. Prof

Consider two cases: The case where unit j is an output unit for the network, and the case wherej

is an internal unit (hidden unit).

Case 1: Training Rule for Output Unit Weights.

wji can influence the rest of the network only through netj , netj can influence the network only

through oj. Therefore, we can invoke the chain rule again to write

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 61 T.Aparna Asst. Prof

Case 2: Training Rule for Hidden Unit Weights.

 In the case where j is an internal, or hidden unit in the network, the derivation of the

training rule for wji must take into account the indirect ways in which wji can influence

the network outputs and hence Ed.

 For this reason, we will find it useful to refer to the set of all units immediately

downstream of unit j in the network and denoted this set of units by Downstream(j).

 netj can influence the network outputs only through the units in Downstream(j).
Therefore, we can write

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 62 T.Aparna Asst. Prof

REMARKS ON THE BACKPROPAGATION ALGORITHM

1. Convergence and Local Minima

 The BACKPROPAGATION multilayer networks is only guaranteed to converge toward

some local minimum in E and not necessarily to the global minimum error.

 Despite the lack of assured convergence to the global minimum error,

BACKPROPAGATION is a highly effective function approximation method in

practice.

 Local minima can be gained by considering the manner in which network weights

evolve as the number of training iterations increases.

Common heuristics to attempt to alleviate the problem of local minima include:

1. Add a momentum term to the weight-update rule. Momentum can sometimes carry the

gradient descent procedure through narrow local minima

2. Use stochastic gradient descent rather than true gradient descent

3. Train multiple networks using the same data, but initializing each network with different

random weights

2. Representational Power of Feedforward Networks

What set of functions can be represented by feed-forward networks?

The answer depends on the width and depth of the networks. There are three quite general

results are known about which function classes can be described by which types of

Networks

1. Boolean functions – Every boolean function can be represented exactly by somenetwork

with two layers of units, although the number of hidden units required grows

exponentially in the worst case with the number of network inputs

2. Continuous functions – Every bounded continuous function can be approximated with

arbitrarily small error by a network with two layers of units

3. Arbitrary functions – Any function can be approximated to arbitrary accuracy by a

network with three layers of units.

3. Hypothesis Space Search and Inductive Bias

 Hypothesis space is the n-dimensional Euclidean space of the n network weights and

hypothesis space is continuous.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 63 T.Aparna Asst. Prof

 As it is continuous, E is differentiable with respect to the continuous parameters of the

hypothesis, results in a well-defined error gradient that provides a very useful structure

for organizing the search for the best hypothesis.

 It is difficult to characterize precisely the inductive bias of BACKPROPAGATION

algorithm, because it depends on the interplay between the gradient descent search and

the way in which the weight space spans the space of representable functions. However,

one can roughly characterize it as smooth interpolation between data points.

4. Hidden Layer Representations

BACKPROPAGATION can define new hidden layer features that are not explicit in the input

representation, but which capture properties of the input instances that are most relevant to

learning the target function.

Consider example, the network shown in below Figure

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 64 T.Aparna Asst. Prof

 Consider training the network shown in Figure to learn the simple target function f (x)

= x, where x is a vector containing seven 0's and a single 1.

 The network must learn to reproduce the eight inputs at the corresponding eight output

units. Although this is a simple function, the network in this case is constrained to use

only three hidden units. Therefore, the essential information from all eight input units

must be captured by the three learned hidden units.

 When BACKPROPAGATION applied to this task, using each of the eight possible

vectors as training examples, it successfully learns the target function. By examining the

hidden unit values generated by the learned network for each of the eight possible input

vectors, it is easy to see that the learned encoding is similar to the familiar standardbinary

encoding of eight values using three bits (e.g., 000,001,010,. . . , 111). The exact values of

the hidden units for one typical run of shown in Figure.

 This ability of multilayer networks to automatically discover useful representations at

the hidden layers is a key feature of ANN learning

5. Generalization, Overfitting, and Stopping Criterion

What is an appropriate condition for terminating the weight update loop? One choice is to

continue training until the error E on the training examples falls below some predetermined

threshold.

To see the dangers of minimizing the error over the training data, consider how the error E

varies with the number of weight iterations

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 65 T.Aparna Asst.Prof

 Consider first the top plot in this figure. The lower of the two lines shows the

monotonically decreasing error E over the training set, as the number of gradient

descent iterations grows. The upper line shows the error E measuredover a

different validation set of examples, distinct from the training examples. This

line measures the generalization accuracy of the network-theaccuracy with

which it fits examples beyondthe training data.

 The generalization accuracy measured over the validation examples first

decreases, then increases, even as the error over the training examples

continues to decrease. How can this occur? This occurs because the weights

are being tuned to fit idiosyncrasies of the training examples that are not

representative of the general distribution of examples. The large number of

weight parameters in ANNs provides many degrees of freedom for fitting

such idiosyncrasies

 Why does overfitting tend to occur during later iterations, but not during

earlier iterations?

By giving enough weight-tuning iterations, BACKPROPAGATION will

often be able to create overly complex decision surfaces that fit noise in the

training data or unrepresentative characteristics of the particular training

sample.

A: Bayesian learning

Module-3

Bayesian learning provides a quantitative approach which updates

probability for ahypothesis upon more information being available.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 66 T.Aparna Asst.Prof

Bayesian learning uses:

 Prior hypothesis.

 New evidences or information.

Features of Bayesian learning methods include:

 Each observed training example can incrementally decrease or increase the estimated

probability that a hypothesis is correct.

 Prior knowledge can be combined with observed datato determine the final

probability of a hypothesis.

 Bayesian methods can accommodate hypotheses that make probabilistic predictions.

 New instances can be classified by the combining the predictions of multiple

hypotheses, weighed bytheir probabilities.

 In cases, where Bayesian learning seems to be difficult, they can provide a standard of

optimal decision making against which other practical methods can be measured.

The Bayesian learning is used to calculate the validity of a hypothesis for the given

data. Thekey to this estimation is the Bayes theorem.

How do we specify that the given hypothesis best suits our data?

One way to define the best hypothesis is to check if the hypothesis has the

maximumprobability for the given data D.

Bayes theorem comes up with a way to find the best hypothesis using the prior

probabilitiesgiven and the observed data. The outcome of the Bayes theorem will be

the posterior hypothesis.

Bayes Theorem:

P(h)= This is prior probability that the hypothesis holds, without observing the

trainingexamples.

P(D)=This is the probability of given data D, without the knowledge on which

hypothesisholds.

P (D| h) = This denotes the probability of data D for the given hypothesis h.

P (h| D) = This denotes the posterior hypothesis. It is an estimate that the hypothesis

h holdsfor the given observed data. (It is the probability of individual hypothesis,

given the data)

P (h| D) increases with respect to increase in P(h) and P (D| h).

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 67 T.Aparna Asst.Prof

Maximum A Posteriori (MAP) hypothesis:

The goal of Bayesian learning is finding the maximally probable hypothesis. This

is calledMaximum a posteriori (MAP) hypothesis.

(2)

(3)

While, deducing to step (3), we can ignore P(D) as it is a constant and is independent

of h. His the hypothesis space that includes all the candidate hypotheses.

In some cases, we assume that every hypothesis ‘h’ of the hypothesis space ‘H’,

has equalprobability (P(hi) = P(hj) for all hi and hj in H). Then, step (3) can be

further solved as,

So, any hypothesis that maximizes P (D| h) is called the maximum likelihood

hypothesis,hML.

Let us apply Bayes theorem to an example:

We have prior knowledge that only 0.008 have cancer over the entire population. The

lab testreturns a correct positive result in only 98% of the cases. The lab test returns a

negative resultin 97% of the cases. Suppose we now consider a new patient for whom

lab test returns a positive result, should we diagnose the patient or not?

So, the given data is P(cancer) =

0.008P(~cancer) =1-0.008=0.992

P (+| cancer) = 0.98

P(-|cancer) =1-0.98=0.02

P(-|~cancer) = 0.97

P(+|~cancer)

=1=0.97=0.03hMAP =

argmax P(D|h) P(h)

hMAP = argmax P(+|cancer) P(cancer)

(1)

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 68 T.Aparna Asst.Prof

hMAP = argmax P(+|~cancer)

P(~cancer)

P(+|cancer) P(cancer) = 0.98 * 0.008= 0.0078

P(+|~cancer) P(~cancer) = 0.03 * 0.992 =0.0298

So, hMAP = 0.0298. So, the patient needn’t be

diagnosed.Bayes Theorem and Concept learning

In concept learning, we search for hypothesis that best fits the training data from

a largespace of hypotheses.

Bayes theorem, also follows a similar approach. It calculates the posterior hypothesis

of eachhypothesis given the training data. This posterior hypothesis is used to find

out the best probable hypothesis.

Brute force Bayes concept learning

Brute force MAP learning

algorithm

This algorithm provides a standard to judge the performance of other concept

learningalgorithms.

1. For each hypothesis h in H, calculate the posterior hypothesis.

2. Output the hypothesis hMAP with the highest posterior probability

For specifying values of P(h) and P(D|h), we make few assumptions:

1. The training data D is not erroneous data.

2. The target concept c is contained in the hypothesis.

3. Any hypothesis is assumed to be most probable than any other.

So, with the above assumptions:

 (1)

 (2)

P(D|h) is the probability of data for given world of hypothesis holds h.Sice, we are

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 69 T.Aparna Asst.Prof

assuming that it is a noise free data, the probability is either 1 or 0, implying 1 if

the givenhypothesis is consistent with h, else 0 (i.e., inconsistent).

So, if we substitute the values of P(h) and P(D|h) into the Bayes theorem,

 (3)

Considering h to be an inconsistent hypothesis, substitute corresponding values of

(1) and

(2) into (3)

Considering h to be a consistent hypothesis, substitute corresponding values of (1)

and (2)into (3)

VSH,D is the subset of hypotheses from H that are consistent with D. The sum

over allhypotheses of P(h|D) is 1. The value of P(D) can be derived as,

So, we can conclude that,

Schematically, this process can be depicted as,

From the figure, we can understand that:

1. Initially fig (a), all the hypotheses have same probability.

2. As the data is being observed fig (b), the posterior probability of the inconsistent

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 70 T.Aparna Asst.Prof

hypothesis becomes zero.

3. Eventually, we are approaching a state where we have hypotheses that are consistent

with the data given.

MAP hypothesis and consistent learners

The learning algorithm is a consistent learner if it outputs hypothesis that commits

zero errors. So, a consistent learner outputs a MAP hypothesis for uniform prior

probability distribution over H and for noise- free data.

Considering, how can we use Bayesian learning in Find-S and Candidate

eliminationalgorithm which do not use any numerical approaches (like

probability)?

Find-S algorithm outputs the maximally specific consistent hypothesis. So as

Find-S algorithm outputs a consistent hypothesis, it can be implied that it outputs

MAP hypothesis under the probability distributions P(h) and P(D|h). Though

Find-S doesn’t manipulate any probabilities explicitly, these probabilities at

which MAP hypothesis canbe achieved are used for characterizing the behaviour

of Find-S.

Though Bayesian learning takes a lot of computation, it can be used to

characterize the behaviour of other algorithms. As in inductive bias of learning

algorithm where set of assumptions made; Bayesian interpretation presents a

probabilistic approach using Bayestheorem to find the assumptions to deduce a

MAP hypothesis.

For, Find-S and Candidate elimination algorithms, the set of assumptions can be “the

prior probabilities over H are given by the distribution P(h), and the strength of data in

accepting or rejecting a hypothesis is given by P(D|h).ò

Maximum Likelihood and Least- squared error hypothesis

In learning a continuous-valued target function, Bayesian learning states that under

certain assumptions any learning algorithm that minimizes the squared error between the

output hypothesis predictions and the training data will output a maximum likelihood.

Consider an example of learning a real-valued function, which has f as its target

function.The training examples <xi, di> where di=f(xi)+ei. Here f(xi) is the noise-

free value of the target function an ei is representing error. The error ei

corresponded to the variance.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 73 T.Aparna Asst. Prof

 (1)

We further assume that, x is independent of h, so (1) can be written as:

 (2)

In general, equation (2) can be depicted as:

 (3)

The equation (3) can be re-expressed as:

 (4)

The equation (4) can be substituted in equation (1), we get:

 (5)

So, the maximum likelihood can be derived as:

 (6)

By substituting, (5) in (6), we get,

 (7)

P(xi) can be discarded as it is constant,

 (8)

So, by applying logarithm to (8), the maximum likelihood will be,

Gradient search to maximize likelihood in neural net

Gradient ascent can be used to define maximum likelihood hypothesis. The partial

derivativeof G (h, D) with respect to weight wjk from input k to unit j is:

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 74 T.Aparna Asst. Prof

the neural network is constructed from a single layer of sigmoid units, we have,

 (2)

Where,

xijk is the kth input to unit j for the ith training

example. is the derivative of sigmoid

squashing function. Substituting (2) in (1),

 (3)

We are using gradient ascent to maximize P(D|h), we use weight-update rule:

where,

where is the small positive constant that determines the step size of the gradient

ascentsearch.

This weight update rule can be used to maximize the

hML.Minimum Description length principle

Minimum description length principle uses basics of information theory to

modify thedefinition of hMAP.

Consider hMAP,

 (1)

Minimizing (1) in terms to log2,

 (1)

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 75 T.Aparna Asst. Prof

Minimizing (2) to its negative,

 (3)

Equation (3) can be interpreted as a statement that short hypotheses are preferred.

As in information theory, we minimize the expected code length by assigning

shorter codes to messages that are more probable. We will use code C, that encodes

the message i, this isdenoted with Lc(i).

So, equation (3), can be interpreted as,

-log2 P(h): It is the size of the description of hypothesis space H. So, = -log2 P(h).CH

isthe optimal code for hypothesis space H.

-log2 P(D|h): It is the description length of training data D given the hypothesis h.

= -log2 P(D|h). CD|h is the optimal code for describing data D assuming that

bothsender and receiver know the hypothesis.

So, equation (3), can be written as,

The minimum description length (MDL) principle suggests to choose

hypothesis thatminimizes the sum of two description lengths.

So,

If we consider, C1 as the optimal coding for CH and C2 as the optimal coding for

CD|h, thenhMAP= hMDL.

Naïve Bayes Classifier

Naïve Bayes classifier is used for learning tasks that describe the instances with

conjunctionof attribute values. A set of training examples is described by the tuple of

attribute values < a1, a2, …., an>. We can use the Bayesian approach to classify the

new instance and to assign

it to the most probable target value,

 (1)

By Bayes theorem, the expression (1) can be rewritten as:

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 76 T.Aparna Asst. Prof

(2)

The naïve Bayes classifier assumes that the attribute values are conditionally

independent given the target value. That is, the probability of observing the

conjunction a1, a2, …, an isproduct of probabilities of the individual attributes.

Naïve Bayes assumption:

By substituting (3) in (2),

(3) (3)

(4) : This is the output ofthe naïve Bayes classifier.

B: Instance-based learning

Instance-based learning methods store the training examples and classify them only

when anew instance has to be classified. When a new query is given to these

methods, a set of similar instances are retrieved from memory and are used to

classify the new instance.

Instance-based learning methods can construct a different approximation for each

distinct query instance that must be classified, that is, rather than estimating the target

function as a whole for the entire instance space, instance-based learning methods

estimate target functionfor every new instance that has to be classified.

Instance-based learning methods are called “Lazy learnersò, as they do not

process thetraining data set until a new instance has to be classified.

Through instance-based learning though we have complex target function, it still

can bedescribed by a collection of less complex local approximations.

The instance-based learning approaches cost high in classifying data, this is because

the classification is only done when a new instance is observed. These also try to

consider all theattributes while retrieving the similar training examples from the

memory. This way finding the set of similar training examples from a large collection

of data, might be tedious.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 77 T.Aparna Asst. Prof

K-nearest neighbor learning algorithm (KNN)

KNN algorithm assumes that all instances correspond to points in the n-dimensional

space. Itis defined using Euclidean distance. If x is the arbitrary instance, the vector

where ar(x) denotes the value of the rth attribute of instance
x.

The distance between two instances xi and xj is defined to be d(xi,xj), where,

KNN algorithm can be used for estimating discrete values and continuous values.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 78 T.Aparna Asst. Prof

UNIT-III

Bayesian learning

Bayesian learning provides a quantitative approach which updates

probability for ahypothesis upon more information being available.

Bayesian learning uses:

 Prior hypothesis.

 New evidences or information.

Features of Bayesian learning methods include:

 Each observed training example can incrementally decrease or increase the estimated

probability that a hypothesis is correct.

 Prior knowledge can be combined with observed datato determine the final

probability of a hypothesis.

 Bayesian methods can accommodate hypotheses that make probabilistic predictions.

 New instances can be classified by the combining the predictions of multiple

hypotheses, weighed bytheir probabilities.

 In cases, where Bayesian learning seems to be difficult, they can provide a standard of

optimal decision making against which other practical methods can be measured.

The Bayesian learning is used to calculate the validity of a hypothesis for the given

data. Thekey to this estimation is the Bayes theorem.

How do we specify that the given hypothesis best suits our data?

One way to define the best hypothesis is to check if the hypothesis has the

maximumprobability for the given data D.

Bayes theorem comes up with a way to find the best hypothesis using the prior

probabilitiesgiven and the observed data. The outcome of the Bayes theorem will be

the posterior hypothesis.

Bayes Theorem:

P(h)= This is prior probability that the hypothesis holds, without observing the

trainingexamples.

P(D)=This is the probability of given data D, without the knowledge on which

hypothesisholds.

P (D| h) = This denotes the probability of data D for the given hypothesis h.

P (h| D) = This denotes the posterior hypothesis. It is an estimate that the hypothesis

h holdsfor the given observed data. (It is the probability of individual hypothesis,

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 79 T.Aparna Asst. Prof

given the data)

P (h| D) increases with respect to increase in P(h) and P (D| h).

Maximum A Posteriori (MAP) hypothesis:

The goal of Bayesian learning is finding the maximally probable hypothesis. This

is calledMaximum a posteriori (MAP) hypothesis.

(2)

(3)

While, deducing to step (3), we can ignore P(D) as it is a constant and is independent

of h. His the hypothesis space that includes all the candidate hypotheses.

In some cases, we assume that every hypothesis ‘h’ of the hypothesis space ‘H’,

has equalprobability (P(hi) = P(hj) for all hi and hj in H). Then, step (3) can be

further solved as,

So, any hypothesis that maximizes P (D| h) is called the maximum likelihood

hypothesis,hML.

Let us apply Bayes theorem to an example:

We have prior knowledge that only 0.008 have cancer over the entire population. The

lab testreturns a correct positive result in only 98% of the cases. The lab test returns a

negative resultin 97% of the cases. Suppose we now consider a new patient for whom

lab test returns a positive result, should we diagnose the patient or not?

So, the given data is P(cancer) =

0.008P(~cancer) =1-0.008=0.992

P (+| cancer) = 0.98

P(-|cancer) =1-0.98=0.02

P(-|~cancer) = 0.97

P(+|~cancer)

=1=0.97=0.03hMAP =

(1)

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 80 T.Aparna Asst. Prof

argmax P(D|h) P(h)

hMAP = argmax P(+|cancer) P(cancer)

hMAP = argmax P(+|~cancer)

P(~cancer)

P(+|cancer) P(cancer) = 0.98 * 0.008= 0.0078

P(+|~cancer) P(~cancer) = 0.03 * 0.992 =0.0298

So, hMAP = 0.0298. So, the patient needn’t be

diagnosed.Bayes Theorem and Concept learning

In concept learning, we search for hypothesis that best fits the training data from

a largespace of hypotheses.

Bayes theorem, also follows a similar approach. It calculates the posterior hypothesis

of eachhypothesis given the training data. This posterior hypothesis is used to find

out the best probable hypothesis.

Brute force Bayes concept learning

Brute force MAP learning

algorithm

This algorithm provides a standard to judge the performance of other concept

learningalgorithms.

1. For each hypothesis h in H, calculate the posterior hypothesis.

2. Output the hypothesis hMAP with the highest posterior probability

For specifying values of P(h) and P(D|h), we make few assumptions:

4. The training data D is not erroneous data.

5. The target concept c is contained in the hypothesis.

6. Any hypothesis is assumed to be most probable than anyother.

So, with the above assumptions:

 (1)

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 81 T.Aparna Asst. Prof

 (2)

P(D|h) is the probability of data for given world of hypothesis holds h.Sice, we are

assuming that it is a noise free data, the probability is either 1 or 0, implying 1 if

the givenhypothesis is consistent with h, else 0 (i.e., inconsistent).

So, if we substitute the values of P(h) and P(D|h) into the Bayes theorem,

 (3)

Considering h to be an inconsistent hypothesis, substitute corresponding values of

(1) and

(2) into (3)

Considering h to be a consistent hypothesis, substitute corresponding values of (1)

and (2)into (3)

VSH,D is the subset of hypotheses from H that are consistent with D. The sum

over allhypotheses of P(h|D) is 1. The value of P(D) can be derived as,

So, we can conclude that,

Schematically, this process can be depicted as,

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 82 T.Aparna Asst. Prof

From the figure, we can understand that:

4. Initially fig (a), all the hypotheses have same probability.

5. As the data is being observed fig (b), the posterior probability of the inconsistent

hypothesis becomes zero.

6. Eventually, we are approaching a state where we have hypotheses that are consistent

with the data given.

MAP hypothesis and consistent learners

The learning algorithm is a consistent learner if it outputs hypothesis that commits

zero errors. So, a consistent learner outputs a MAP hypothesis for uniform prior

probability distribution over H and for noise- free data.

Considering, how can we use Bayesian learning in Find-S and Candidate

eliminationalgorithm which do not use any numerical approaches (like

probability)?

Find-S algorithm outputs the maximally specific consistent hypothesis. So as

Find-S algorithm outputs a consistent hypothesis, it can be implied that it outputs

MAP hypothesis under the probability distributions P(h) and P(D|h). Though

Find-S doesn’t manipulate any probabilities explicitly, these probabilities at

which MAP hypothesis canbe achieved are used for characterizing the behaviour

of Find-S.

Though Bayesian learning takes a lot of computation, it can be used to

characterize the behaviour of other algorithms. As in inductive bias of learning

algorithm where set of assumptions made; Bayesian interpretation presents a

probabilistic approach using Bayestheorem to find the assumptions to deduce a

MAP hypothesis.

For, Find-S and Candidate elimination algorithms, the set of assumptions can be “the

prior probabilities over H are given by the distribution P(h), and the strength of data in

accepting or rejecting a hypothesis is given by P(D|h).ò

Maximum Likelihood and Least- squared error hypothesis

In learning a continuous-valued target function, Bayesian learning states that under

certain assumptions any learning algorithm that minimizes the squared error between the

output hypothesis predictions and the training data will output a maximum likelihood.

Consider an example of learning a real-valued function, which has f as its target

function.The training examples <xi, di> where di=f(xi)+ei. Here f(xi) is the noise-

free value of the target function an ei is representing error. The error ei

corresponded to the variance.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 83 T.Aparna Asst. Prof

So, we can find the least-squared error hypothesis using the maximum

likelihoodhypothesis.

 (1)

Assuming that the training examples are mutually independent given h, P(D|h)

can be written as product of p (di, h), where p is the probability densityfunction.

The mean isequal to target function or the hypothesis.

 (2)

 (3)Applying logarithm, we get,

MACHINE LEARNING (DS4102PC/ CY4101PC)

antity.

4)

pt of CSE, NRCM

 (

The first term is not dependent on the hypothesis h, so can be discarded.

 (5)

We can discard the remaining constants. In the equation (5), we are

maximizing thenegative quantity, which implies minimizing the positive

qu

 (6)

The equation (6) shows the minimum likelihood hypothesis that minimizes the

sum of thesquared errors between the observed training data di and the hypothesis

predictions h(xi).

Maximum likelihood hypothesis for predicting probabilities

Suppose that we wish to learn a target function fô: X{0,1}, such that fô(x)= P(f(x)=1).

In order to find the minimum likelihood hypothesis, we must find P(D|h) where

D is thetraining data such as D= {<x1,d1>…. <xm,dm>}, di is the observed 0 or 1

value for f(xi).

Assuming that xi and di are random variables, and assuming that each training

example isindependently drawn, we can say that,

 (1)

We further assume that, x is independent of h, so (1) can be written as:

 (2)

In general, equation (2) can be depicted as:

 (3)

The equation (3) can be re-expressed as:

(3) T.Aparna Asst. Prof De

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 85 T.Aparna Asst. Prof

 (1)

The equation (4) can be substituted in equation (1), we get:

 (5)

So, the maximum likelihood can be derived as:

 (6)

By substituting, (5) in (6), we get,

 (7)

P(xi) can be discarded as it is constant,

 (8)

So, by applying logarithm to (8), the maximum likelihood will be,

Gradient search to maximize likelihood in neural net

Gradient ascent can be used to define maximum likelihood hypothesis. The partial

derivativeof G (h, D) with respect to weight wjk from input k to unit j is:

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 86 T.Aparna Asst. Prof

If the neural network is constructed from a single layer of sigmoid units, we have,

 (2)

Where,

xijk is the kth input to unit j for the ith training

example. is the derivative of sigmoid

squashing function. Substituting (2) in (1),

 (3)

We are using gradient ascent to maximize P(D|h), we use weight-update rule:

where,

where is the small positive constant that determines the step size of the gradient

ascentsearch.

This weight update rule can be used to maximize the

hML.Minimum Description length principle

Minimum description length principle uses basics of information theory to

modify thedefinition of hMAP.

Consider hMAP,

 (1)

Minimizing (1) in terms to log2,

Minimizing (2) to its

negative,

 (2)

 (3)

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 87 T.Aparna Asst. Prof

Equation (3) can be interpreted as a statement that short hypotheses are preferred.

As in information theory, we minimize the expected code length by assigning

shorter codes to messages that are more probable. We will use code C, that encodes

the message i, this isdenoted with Lc(i).

So, equation (3), can be interpreted as,

-log2 P(h): It is the size of the description of hypothesis space H. So, = -log2 P(h).CH

isthe optimal code for hypothesis space H.

-log2 P(D|h): It is the description length of training data D given the hypothesis h.

= -log2 P(D|h). CD|h is the optimal code for describing data D assuming that

bothsender and receiver know the hypothesis.

So, equation (3), can be written as,

The minimum description length (MDL) principle suggests to choose

hypothesis thatminimizes the sum of two description lengths.

So,

If we consider, C1 as the optimal coding for CH and C2 as the optimal coding for

CD|h, thenhMAP= hMDL.

Naïve Bayes Classifier

Naïve Bayes classifier is used for learning tasks that describe the instances with

conjunctionof attribute values. A set of training examples is described by the tuple of

attribute values < a1, a2, …., an>. We can use the Bayesian approach to classify the

new instance and to assign

it to the most probable target value,

 (1)

By Bayes theorem, the expression (1) can be rewritten as:

 (2)

The naïve Bayes classifier assumes that the attribute values are conditionally

independent given the target value. That is, the probability of observing the

conjunction a1, a2, …, an isproduct of probabilities of the individual attributes.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 88 T.Aparna Asst. Prof

Naïve Bayes assumption:

By substituting (3) in

(2),

(4)

(4) (4)

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 89 T.Aparna Asst. Prof

(4)

: This is the output of the naïve Bayes classifier.

B: Instance-based learning

Instance-based learning methods store the training examples and classify them only

when anew instance has to be classified. When a new query is given to these

methods, a set of similar instances are retrieved from memory and are used to

classify the new instance.

Instance-based learning methods can construct a different approximation for each

distinct query instance that must be classified, that is, rather than estimating the

target function as a whole for the entire instance space, instance-based learning

methods estimate target functionfor every new instance that has to be classified.

Instance-based learning methods are called “Lazy learnersò, as they do not

process thetraining data set until a new instance has to be classified.

Through instance-based learning though we have complex target function, it still

can bedescribed by a collection of less complex local approximations.

The instance-based learning approaches cost high in classifying data, this is because

the classification is only done when a new instance is observed. These also try to

consider all theattributes while retrieving the similar training examples from the

memory. This way finding the set of similar training examples from a large collection

of data, might be tedious.

K-nearest neighbor learning algorithm (KNN)

KNN algorithm assumes that all instances correspond to points in the n-dimensional

space. Itis defined using Euclidean distance. If x is the arbitrary instance, the vector

where ar(x) denotes the value of the rth attribute of instance
x.

The distance between two instances xi and xj is defined to be d(xi,xj), where,

KNN algorithm can be used for estimating discrete values and continuous values.

Naïve Bayes assumption:

 (3)

By substituting (3) in

(2),

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 90 T.Aparna Asst. Prof

: This is the output of the naïve Bayes classifier.

B: Instance-based learning

Instance-based learning methods store the training examples and classify them only

when anew instance has to be classified. When a new query is given to these

methods, a set of similar instances are retrieved from memory and are used to

classify the new instance.

Instance-based learning methods can construct a different approximation for each

distinct query instance that must be classified, that is, rather than estimating the target

function as a whole for the entire instance space, instance-based learning methods

estimate target functionfor every new instance that has to be classified.

Instance-based learning methods are called “Lazy learnersò, as they do not

process thetraining data set until a new instance has to be classified.

Through instance-based learning though we have complex target function, it still

can bedescribed by a collection of less complex local approximations.

The instance-based learning approaches cost high in classifying data, this is because

the classification is only done when a new instance is observed. These also try to

consider all theattributes while retrieving the similar training examples from the

memory. This way finding the set of similar training examples from a large collection

of data, might be tedious.

K-nearest neighbor learning algorithm (KNN)

KNN algorithm assumes that all instances correspond to points in the n-dimensional

space. Itis defined using Euclidean distance. If x is the arbitrary instance, the vector

where ar(x) denotes the value of the rth attribute of instance
x.

The distance between two instances xi and xj is defined to be d(xi,xj), where,

KNN algorithm can be used for estimating discrete values and continuous values.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 91 T.Aparna Asst. Prof

- It is the class label for xq.

- It is the class label of xi.

The above algorithm can be used to find the discrete-values target function. For
continuous

value, the value returned by the algorithm is:

So, in KNN, when a new instance xq is given to classify, the algorithm finds outs the

‘k’ nearest neighbor’s for xq, and then classifies instance xq based on the class labels of

these ‘k’nearest neighbours.

Distance weighted nearest neighbour algorithm

The KNN can be further improved by adding a weight to the existing instances. The

highest weight is assigned to the instances that are near to xq. So, the value returned by

the algorithmwould be:

where,

If xq exactly matches with xi, the is assigned with .

Remarks on k- nearest neighbor algorithm

 KNN is robust to noisy training data.

 KNN effectively works on the large set of training models.

Locally weighted regression

In KNN, we have observed that the target function f(x) is at single query point x=xq.

Locallyweighted regression finds the approximation for f over a local region

surrounding xq. As its name suggests, locally weighted regression is used to

approximate real-valued functions using weight, based on the distances from the query

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 92 T.Aparna Asst. Prof

point over a locally surrounded region ofxq.

Generally, regression is of the form,

W0 – Bias.

ai(x) – Denotes the value of ith attribute of instance x.

The error function that was used for global approximation was:

And we used a training rule to adjust the weights:

 , where,

- it is the change in weight.
- Learning rate.

x: instance.

D: complete

dataset.

To find the local approximation, we can redefine the error criterion E, using the

threepossible approaches:

1. Minimize the squared errors over the k nearest neighbors:

2. Minimize the square error over entire dataset D, while weighting the error of each

training example by some decreasing function K od its distance from xq:

3.

Considering the 3 criteria might be a good option as the computation cost is

independent ofthe total number of training examples.

Radial Basis Functions (RBF)

Radial basis network is used for global approximation of the target function

which isrepresented be a linear combination of many local kernel functions.

In RBF, the learned hypothesis is the function of the form:

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 93 T.Aparna Asst. Prof

where,

xu: Instance.

Ku (d (xu, x)): Kernel function which decreases as distance d (xu, x) increases.

onstant that specifies the no. of kernel functions to be included.

 - It is the global approximation to f(x).

The kernel function is given by:

RBF networks are trained in two stage process:

1. The k value is defined to determine the no. of hidden layers, and each hidden layer u

is defined using and .

2. The weights wu are defined to maximize the fit ofthe network to the training data.

Case-Based reasoning (CBR)

CBR is an instance- based learning approach that represents its instances as

symbolicrepresentations. There are three components required for CBR:

1. Similarity function like Euclidean

function. 2.Approximation and adjustment

of instance.3.Symbolic representation

Let’s design a CADET (Case-based design model) for designing a water faucet. To

design anew model for a water faucet, CADET uses its previously stored models to

approximate thesymbolic representation for a new water faucet.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 94 T.Aparna Asst. Prof

So, to design a model for the scenario given in the above diagram, the CADET has

found a similarity with the T-junction pipe (which is from its library). In T- junction

pipe, T, Q are quantitative parameters that represent temperature and waterflow

respectively. So, if T1, Q1 ispositive, it means that there is water flow to T3, Q3 from

that end. The temperature can be considered either to be cold or warm, and it depends

on the application build. So, let’s assume T1 is cold and T2 is warm. So Q1 is +, it

means Q3 gets cold water. Similarly, if Q2 is

+, Q3 has water flow from that end with warm

water.Remarks on lazy learner and eager learner

Lazy method takes less computation during the training and more compute time

during theprediction of target value for a new query. Lazy learners upon seeing the

new instance xq decide to generalize the training data, whereas, eager learners by the

time they have a new instance, they already have an approximated target function.

The lazy methods use effectively richer hypothesis space as it follows local

approximation tothe target function for each instance. Though eager methods tend to

form local approximations too, they don’t have ability as lazy learners do.

GENETIC ALGORITHMS

Genetic algorithms provide learning methods that can be compared to biological

evolution. The hypotheses are described by set of strings or symbolic expressions or

even computer programs. Genetic Algorithms perform repeated mutation to get the

best hypothesis. The besthypothesis is the one that optimizes the fitness score. The

algorithm iteratively works on a setof hypotheses called as population, and in each

iteration the members are evaluated based on a fitness function. The members that are

mostly fit are made as new population. Some of these separated members are passed to

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 95 T.Aparna Asst. Prof

the next generation and few others are used for creating off-springs using crossover

and mutation. This process is repeated until best hypotheses is formed.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 96 T.Aparna Asst. Prof

UNIT-IV

GENETIC ALGORITHMS

Genetic algorithms provide learning methods that can be compared to biological

evolution. The hypotheses are described by set of strings or symbolic expressions or

even computer programs. Genetic Algorithms perform repeated mutation to get the

best hypothesis. The besthypothesis is the one that optimizes the fitness score. The

algorithm iteratively works on a setof hypotheses called as population, and in each

iteration the members are evaluated based on a fitness function. The members that are

mostly fit are made as new population. Some of these separated members are passed to

the next generation and few others are used for creating off-springs using crossover

and mutation. This process is repeated until best hypotheses is formed.

The inputs to this algorithm are:

1. Fitness function to rank the hypotheses.

2. Threshold, which specifies about level of fitness for termination.

3. Size of population.

4. Parameters on how the off-springs must be generated.

At every iteration, hypotheses are generated for the current population. A

probabilisticapproach is used to choose hypotheses that are to be passed to next

generation:

 (1)

These selected hypotheses are passed to next generation along with few other members that

are formed through crossover. In crossover, two hypotheses are chosen (consider them

to be parent) from current population based on (1); some properties of each them are

separated andcombined to form new hypotheses.

Genetic Algorithm operators

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 97 T.Aparna Asst. Prof

The most common operators in Genetic algorithm are mutation and crossover.

Mutations areusually performed after crossover.

The crossover operator produces two off-springs from two parents. It copies selected

bits from each parent and generates the new offspring by combining these selected

bits. How dowe choose these selected bits? For this we use an additional string called

crossover mask.

1. Single crossover: The crossover mask always begins with contiguous n number of

1’s, followed by necessary 0’s.

The first offspring is combined with bits selected from first parent and then

bits selected from second parent. The second offspring contains the bits that

are not usedin the first offspring.

2. Two-point crossover: The crossover mask begins with n0 0s and n1 1s, followed by
necessary number of zeroes. The offspring in two-point crossover is created by
substituting intermediate segments ofone parent into the middle of the second parent.

3. Uniform crossover: The crossover mask is generated in random. The off-springs are

produced from combining the uniform bits from each parent.

Mutations are performed by changing the bits from a single parent.

Fitness function and Selection

Fitness function is used to rank the hypotheses so that they can be transferred to

the nextgeneration.

Different fitness measures can be used to select the hypotheses:

1. Fitness proportionate selection or Roulette wheel selection: It proposes that the

probability of the hypotheses will be selected is given by ratio of its fitness to the

fitness of other members in the current population.

2. Tournament selection: Two hypotheses are chosen randomly, and using some

probability measure p, the more fit hypotheses is estimated.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 98 T.Aparna, Asst. Prof

3. Rank Selection: The hypotheses in the current population are sorted based on their

fitness score. Based on the fitness rank of these sorted hypotheses, the hypotheses are

selected that are to be transferred to the next generation.

Hypothesis Space Search

Genetic Algorithms use randomized beam search method to get the maximally fit

hypothesis.Genetic algorithm experiences crowding. Crowding is a phenomena where

the highly fit individuals in the population quickly reproduces and eventually, the

population is dominated with these individuals and individuals that are similar to these.

Because of crowding, there with be less diversity in the population, which effects the

process of genetic algorithm.

How can we reduce crowding?

1. Selecting a different fitness function other than Roulette wheel selection.

2. Restricting the kinds of individuals to generate off-springs.

Population Evolution and the schema theorem

The schema theorem provides a mathematical approach to characterize evolution of

the population within the genetic algorithm. It is based on the patterns that are used

to describethe set of bit strings.

A schema in any string is composed of 0s, 1s, *’s. *’s can be interpreted as “don’t care”

conditions. The schema theorem characterizes in terms of number of instances

representing each schema. Suppose m (s, t) is the number of instances of schema s in the

population at thetime t. Schema theorem describes an expected value m (s, t+1) in terms

of m (s, t).

To calculate m (s, t+1) which is also considered as E (m (s, t+1)), we use the probabilistic

distribution:

f(h)- fitness of individual bit string h.

- Average fitness of all the individuals in the population.

The probability that we will select a hypothesis from the representative schema s is:

n- number of individuals in the population.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 99 T.aparna Asst. Prof

- indicates that h belongs to schema and also the population.

- average fitness of instances of schema s at time t.

As we have n independent selection steps, we can create a new generation that is n

times theprobability.

The schema theorem considers only the single- point crossover and the negative

influence ofgenetic operators. So, the schema theorem thus provides a lower bound to

the expected frequency of schema s:

,

Where,

pc- probability of single-point

crossover. pm- probability that a bit

will be mutated.

o(s)- the number of defined bits in the schema.

d(s)- distance between left most and rightmost defined bits

in s.l- length of individual bit strings in population.

Genetic programming

Here, the individuals that are evolving are computer programs.

The programs are represented in form of trees corresponding to their parse trees. Every

function call is represented by the node in the tree, and its arguments are the

descendant nodes of the tree. Let us suppose a function sin(x) + Ѝὼ2 + ώ. The tree

representation of this

equation would be as:

In every iteration, a new generation of individuals is produced. The crossover

operations are performed by replacing a randomly chosen subtree of one parent

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 100 T.aparna Asst. Prof

program by a subtree fromanother parent program.

Remarks on Genetic programming

1. These evaluate computer programs.

2. Theyprovide intriguing results despite the huge size of hypothesis space it has to

search.

3. The performance depends on the choice of representation and on choice of fitness

function.

Models of evolution and

learningLamarckian Evolution

He proposed that the experiences inculcated by an individual during the lifetime, will be

directly affecting the genetic makeup of their offspring. Despite the current view that

states the experiences learned during the lifetime will not affect the genetic make up

of off-spring,Lamarckian proposal is believed to improve the effectiveness of

computerized genetic algorithms.

Baldwin effect

It is based on the following observations:

1. If a species is evolving in a changing environment, there will be evolutionary pressure

that favour individuals that have capability to learn in their lifetime.

2. The individuals who are able to learn many traits depend less on their genetic code.

Theysupport diverse gene pool, which results in rapid evolutionaryadaptation.

Baldwin effect suggested that by increasing survivability, the individual learning

supportsmore rapid evolutionary progress, which increases the chance for species

to evolve genetically.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 101 T.aparna Asst. Prof

Parallelizing genetic algorithms

The population is subdivided into groups called demes. Each deme has a different

computational node and a standard genetic algorithm is used on each node. The transfers

between demes is done through migration process, where individuals in one deme are

transferred to another. The cross-over is first done inside the deme, if the threshold is not

met, then the crossover is done with other demes. The communication and cross-

fertilization are less frequent. Parallelization reduces the problem of crowding that

occurred in non-parallel genetic algorithms.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 102 T.aparna Asst. Prof

Learning Sets of Rules

There are different ways to learn rules, rules can be considered as the hypothesis. We can

use decision trees, or genetic algorithms in order to derive hypothesis. But there are few

algorithms that directly learn rules unlike decision tree which first constructs tree and then

generates rules. These algorithms that directly learn rule sets uses sequential covering

algorithms which learns a single rule at a time with every iteration. The sequential covering

algorithms finally result a setof rules (hypotheses).

The rules are expressed using Horn clauses (IF-THEN representation)

The predicate Parent (x, y) implies that y is parent of x and the predicate Ancestor (x, y)

implies that y is ancestor of x. If we observe the second rule, it can be understood as, if z

is the parent ofx and y is ancestor of z, then y will be the ancestor of x.

Sequential Covering algorithm

Sequential covering algorithm uses LEARN_ONE_RULE subroutine and sequentially

learns rules which cover full set of positive examples. In every iteration a new rule is formed

and is added to the Learned_rules set, and the training examples that are correctly classified

with the new rule are removed. This is an iterative process and it happens until a desired

fraction of positive training examples are classified.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 103 T.aparna Asst. Prof

So, how do we implement LEARN_ONE_RULE?

We can implement a LEARN_ONE_RULE, by using similar approach as ID3. Initially, a

general rule is formed, which is eventually made more specific by adding new attributes.

This follows a greedy approach. LEARN_ONE_RULE though doesn’t cover the entire

dataset; it provides rules that have high accuracy.

Each hypothesis in the LEARN_ONE_RULE is the conjunction of attribute value. The

result ofthe LEARN_ONE_RULE a rule whose performance is high. As this

LEARN_ONE_RULE is called multiple times by the sequential covering algorithm;

collection of rules is formed that cover the training examples.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 104 T.aparna Asst. Prof

 Variations

There are some other approaches that can be used to find set of if-then rules:

1. Negative-as-failure: This classifies any instance as negative if it doesn’t prove to be

positive.

2. AQ Algorithm: This learns a disjunctive set of rules that together cover the target

function.

There are other evaluation functions as LEARN_ONE_RULE, which can be used to

evaluate theperformance:

1. Relative frequency: n denotes the no. of examples that rule matches and ncdenotes the no.

of examples that are correctly classified.

2. M-estimate ofaccuracy: This approach is preferred when data is scarce.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 105 T.aparna Asst. Prof

n- no. of examples.
nc- no. of examples correctly classified.

p- prior probability from entire dataset.

m- weight or equivalent no. of examples for weighing p.

3. Entropy: It measures the uniformityof the target function values.

Terminology

Learning first-order rules

There are some terminologies:

1. All expressions are composed of constants (Capital symbols), variables (lowercase

values), predicate symbols (true or false) and functions.

2. Term: It is a constant, anyvariable or any function applied on term.

3. Literal: A literal is any predicate or its negation applied to anyterm.

4. Clause: A clause is disjunction of literals.

5. Horn Clause: It is a clause containing at most one positive example.

H is a positive literal. The above expression can be

represented as,This is equivalent to:

First-Order Horn Clauses:

First order horn clauses provide generalized rules whereas prepositional

representations are more specific. Assume an example where the target value of

Daughter(x,y) is to be found.

Daughter(x,y) is true if x is daughter of y, else it is false. So the positive example of this
scenario is given as:

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 106 T.aparna Asst. Prof

So, the prepositional representation would be as,

This rule is more specific, so first-order representations are used to provide more

generalizedrules:

x, y are variables that can bound to any person.

First-order horn clauses also refer to variables that do not exist in postconditions, but occur in

preconditions.

In the above rule, z is in pre-condition but not in postcondition. Whenever a variable occurs

in only preconditions, such rules are satisfied as long as there’s binding of variable that

satisfies thecorresponding literal.

Learning sets of first-order rules: FOIL

FOIL algorithm seems to be same as Sequential covering algorithm as it uses the

LEARN_ONE_RULE routine and also it learns sets of first-order rules, one at a time. FOIL

restricts the literals that contain function symbols. FOIL is more expressive than Horn

clauses.

FOIL algorithm learns one rule at time, and removes the positive examples covered by the

rules in every iteration. The inner loop accommodates first-order rules. FOIL seeks only

rules that predict when the target literal is True. The outer loop adds a new rule to disjunctive

hypothesis, Learned_rules. With every new rule we generalize the current disjunctive

hypothesis. The inner loop of FOIL performs general_to_specific search on thesecond

hypothesis space to find preconditions that form pre-conditions of new rule.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 107 T.aparna Asst. Prof

How FOIL is different?

1. In inner loop, FOIL employs a detailed approach to generate candidate specializations of

the rule.

2. FOIL uses Foil_Gain as it’s performance unlike entropy that is used in

LEARN_ONE_RULE. FOIL covers only positive examples.

FOIL will form recursive rules when target predicate is included in the list of predicates. In

case of noise-free data, FOIL continues to ass new literals to the rule until no negative

example is covered. To handle noisy data, the search is continued until some limit of

accuracy, coverage andcomplexity.

Induction as inverted Deduction

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 108 T.aparna Asst. Prof

Induction means to derive a principle from set of observations, whereas deduction

means to generate different observations from the principle or theory. Inductive logic

programming is also based on observation that induction is just the inverse of

deduction. The learning means to discover hypothesis that satisfies both given training

data D, back ground knowledge B. Here, xidenotes the instance and f(xi) is the target

value. So, the hypothesis has to classify

f(xi)deductively from hypothesis h, background knowledge B, and the description xi.

(
1
)

So, f(xi) follows deductively from (B ^ h ^ xi) or it can also be said as “(B ^ h ^ xi) entails
f(xi) “.

(1) describes the constraint that must satisfy every training instance xiand the target value

f(xi) must follow deductively from B, h, and xi.

To understand the role of back ground knowledge, let us consider a positive

example Child (Bob, Sharon), where the instance is described by literals Male

(Bob), Female (Sharon), and Father (Sharon, Bob). The background knowledge

is provided as,

Parent (u, v) Father (u, v). So, this situation can be described using (1) as:

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 109 T.aparna Asst. Prof

So, the probable hypotheses that satisfy the constraint (B ^ h ̂ xi) ├ f(xi), could be:

h1could have been generated even if there is no background knowledge. But, h2

can only be generated with some background knowledge.

In this example, we have added a new predicate Parent which was not present in

the original description of xi. This process of augmenting predicates based on the

back ground knowledgeis called constructive induction.

An inverse entailment operator produces the hypothesis that satisfies equation (1)

by taking training data and background knowledge as input. It is represented as O

(B, D).

To choose hypotheses that follow the constraint, the inductive logical

programming uses Minimum description length principle.

Few observations while formulating the inverse entailment operator:

1. This formulation subsumes the common definition of finding the learning task as

finding some general concept that matches a given set oftraining examples.

2. By using background knowledge B, we can provide a rich definition of when the

hypothesis might fit the data and also provide learning methods which search for

hypotheses using B, rather than just searching the space of syntactically legal

hypotheses.

There are also some difficulties faced by the inductive logical programming

upon following this formulation:

1. They need noise-free data.

2. The search through the space of hypotheses is difficult in general case, as there are

manyhypotheses that satisfy (B ^ h ^ xi) ├ f(xi).

3. The complexityof hypothesis space increases with increase in background knowledge.

Inverting Resolution

The resolution rule is a sound and complete rule for deductive inference in first-

order

logic.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 110 T.aparna Asst. Prof

How can we invert the resolution rule to form an inverse entailment operator?

Let L be an arbitrary propositional literal, and P and R be arbitrary prepositional

clauses. Theresolution rule is:

The rule has two assertions, P ˅ L and ¬L ˅ R, it is obvious that L and ¬L are false.

So, either Por R must be true.

Assume that there are two clauses C1 and C2, the resolution operators identify the literal,

suppose M, that exists as positive literal in C1 and negative literal in C2. The propositional

resolution operator then comes to a conclusion based on the resolution rule. For

example,

M= ¬KnowMaterial, which is in C1 and C2 has ¬(¬KnowMaterial). The conclusion

from the clause is union of literals C1-{L}=PassExam and C2-{¬L} = ¬Study. This

conclusion is based onthe resolution rule.

The inductive entailment operator must derive one initial operator, suppose C2,

with given a resolvent C and the other initial operator C1.

For example, consider C= A ˅ B and the initial clause C1= B ˅ D. We must derive

C2. If we observe the definition of resolution rule, any literal that occurs inC but

not in C1 must be present in C2 and the literal that is in C1 but not in C,

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 111 T.aparna Asst. Prof

must have been removed from the resolution rule, and its negation is in C2. So,

C2= A ˅ ¬D. There may be some other possibilities of C2 such that C2 and C1

produce a resolvent C.

First-Order Resolution

The resolution rule can be extended to first-order expressions using unifying

substitutions. Substitution is mapping of variables to terms. Suppose, θ = {x/Bob,

y/z}, this indicates x can be replaced with Bob and y can be replaced with z. Wθ

indicates the result of applying to substitution θ to expression W. Suppose,

L=Father(x, Bill), the substitution Lθ= Father (Bob

,Bill).

Unifying substitution: θ is a unifying substitution when L1 θ=L2 θ. The significance

of unifying substitution is the resolvent of the clauses C1 and C2 is found by

identifying a literal M, that appears in C1 such that it is ¬M in C2. The resolution

rule to find resolvent C:

Inverting Resolution: First-order Case

In this θ is factored as θ1 and θ2 . θ1 has substitutions that relate to C1 and θ2 has

substitutionsof C2. So,

This is factorized as

(1)

(2)

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 112 T.aparna Asst. Prof

(2) Can be expressed as:

(3)

C2 can be found by substituting L2 = ¬L1 θ1 θ2
-1. So the inverse resolution rule for

the first-orderlogic is:

(4)

Progol

Progol system employs an apprach where,the inverse entailment can also be used to

generate a most specific hypothesis, that satisfies both background knowledge and

observed data. This most specific hypothesis along with an additional constraint(that

is, the hypotheses considered are

more general than this specific hypothesis) is used to bound a general-to-specific

search through hypothesis space.

The algorithm of such system would be as:

1. The user specifies a restricted language of first-order expressions to be used as
hypothesisspace H.

2. Progol uses sequential covering slgorithm to learn a set of expressions from H that

cover the data.

3. Progol then performs a general-to-specific search of hypothesis space bounded by the

most general possible hypothesis and by the specific bound hi. Within this set of

hypotheses, it seeks the hypothesis having minimum description length.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 113 T.aparna Asst. Prof

REINFORCEMENT LEARNING

Each time the agent performs an action in its environment, a trainer may provide a reward

or penalty to indicate the desirability of the resulting state. For example, when training an

agent to play a game the trainer might provide a positive reward when the game is won,

negative reward when it is lost, and zero reward in all other states. Thetask of the

agent is to learn from this

indirect, delayed reward, to choose sequences of actions that produce the greatest

cumulativereward.

• These algorithms are

optimization problems.

dynamic programming algorithms

frequently

used to solve

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 114 T.aparna Asst. Prof

• For example, a mobile robot may have sensors such as a camera and sonars, and actions

such as "move forward" and "turn." Its task is to learn a control strategy, or policy, for

choosing actions that achieve its goals.

Fig 7. Reinforcement learning

Figure 7 tells, An agent interacting with its environment. The agent exists in an

environment described by some set of possible states S. It can perform any of a set of

possible actions A. Eachtime it performs an action at in some state st the agent receives a

real-valued reward rt, that indicates the immediate value of this state-action transition.

This produces a sequence of states

si, actions ai, and immediate rewards ri as shown in the figure. The agent's task is to learn

a control policy, π : SĄA, that maximizes the expected sum of these rewards, with future

rewards discounted exponentially by their delay.

• One of best application of reinforcement learning is:

Tesauro (1995) describes the TD-GAMMON program, which has used

reinforcement learning to become a world-class backgammon player. This program,

after training on 1.5 million self-generated games, is now considered nearly equal to

the best human players in the world and has played competitively against top-ranked

players in international backgammon tournaments.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 115 T.aparna Asst. Prof

Reinforcement learning problem differs from other function approximation

tasks

• Delayed reward: The trainer provides only a sequence of immediate reward values as the

agent executes its sequence of actions. The agent, therefore, faces the problem of temporal

credit assignment: determining which of the actions in its sequence are to be credited with

producing the eventual rewards.

• Exploration: The learner faces a tradeoff in choosing whether to favor exploration of

unknown states and actions (to gather new information), or exploitation of states and

actions that it has already learned will yield high reward (to maximize its cumulative

reward).

• Partially observable states. Although it is convenient to assume that the agent's sensors

can perceive the entire state of the environment at each time step, in many practical

situations sensors provide onlypartial information.

For example, a robot with a forward-pointing camera cannot see what isbehind it.

In such cases, it may be necessary for the agent to consider its previous observations

together with its current sensor data when choosing actions, and the best policy may

be one that chooses actions specifically to improve the observability of the

environment

• Life-long learning. Unlike isolated function approximation tasks, robot learning often

requires that the robot learn several related tasks within the same environment, using the

same sensors.

For example, a mobile robot may need to learn how to dock on its battery charger,

how tonavigate through nar- row corridors, and how to pick up output from laser

printers. This setting raises the possibility of using previously obtained experience

or knowledge to reduce sample complexity when learning new tasks.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 116 T.aparna Asst. Prof

Learning Task

• In a Markov decision process (MDP) the agent can perceive a set S of distinct states of its

environment and has a set A ofactions that it can perform.

• At each discrete time step t, the agent senses the current state st, chooses a current action

‘a’ and performs it.

• The environment responds by giving the agent a reward r = r (st, a,) and by producing the

succeeding state st+1 = f(st,at).

• Here the functions f and r are part of the environment and are not necessarily known to

the agent.

• In MDP, f(st,at) and r(st,at) depend on current state or action ,not on earlier state or

action.

• The task of the agent is to learn a policy, π : SĄA, for selecting its next action at, based

on the current observed statest.

• The policy which maximizes the above value is optimal policy i.e. which produces the

greatest possible cumulative reward

Here we illustrate above with an example:

1. The six grid squares in this diagramrepresent six possible statesfor the agent.

2. Each arrow in the diagram represents a possible action the agent can take to move from

one state to another.

3. The immediate reward in this particular environment is defined to be zero for all state-

action transitions except for those leading into the state labeled G.

4. The state G is goal state , if the agent enters into this state remains in this state and can

receive the reward and we also call G as absorbing state.

5. Once all states, actions, immediate rewards are defined then we choose value for discount

factorγ

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 117 T.aparna Asst. Prof

6. Here we assume γ=0.9. The value of V* for this state is 100 because the optimal policy in

this state selects the "move up" action that receives immediate reward 100. Thereafter, the

agent will remain in the absorbing state and receive no further rewards.

7. Similarly, the value of V* for the bottom center state is 90. This is because the optimal

policy will move the agent from this state to the rightthen upward (generating an immediate

reward of 100). Thus, the discounted future reward from the bottom center state is 0+ γ

(100) + γ2(0) + γ3(0) + =90 (policy that direct along shortest path to

G)

Fig 8. A simple deterministic world to explain basic of Q-

Learning

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 118 T.aparna Asst. Prof

Q LEARNING:

It is difficult to learn the function π* : SĄA directly, because the available training data

does notprovide training examples of the form (s, a). Intsead the training information is

the sequence of

immediate rewards r(si, ai) for i = 0, 1,2, This kind of information is easier to

learn

evaluation function defined over states or actions that implement optimal policy.

The agent can acquire the optimal policy by learning V*, provided it has perfect knowledge

of the immediate reward function r and the state transition function δ. When the agent knows

the functions r and δ used by the environment to respond to its actions, itcan then use

Equation to calculate the optimal action for any state s.

(1)

Only when we have the perfect knowledge on δ and r then by using the equation we can

lear optimal policy. But incase if we donnot know the values we cant evaluate equation. So

we go forQ Equation.

Q Equation:

Let us define the evaluation function Q(s, a) so that its value is the maximum dis- counted

cumulative reward that can be achieved starting from state s and applying action a as the

first action.

(2)

Q(s, a) is exactly the quantity that is maximized in Equation (stated in Q Learning) in order

to choose the optimal action a in state s. Therefore, we can rewrite that Equation in terms

of Q(s, a)as

(3)

Now if the agent learns Q function even if he is not having knowledge of δ and r we can

MACHINE LEARNING (DS4102PC/ CY4101PC)

find the optimal policy.

Algorithm for Q-Learning:

relationship between Q and V*,V*(S) = max

Q(s, a')

a'

(4)

now rewriting the equation (2)

To describe the algorithm,

we

(5)

will use the symbol Q^, of the actual Q function. The

agent

repeatedly observes its current state s, chooses some action a, executes this action, then

observes the resulting reward r’ = r(s, a) and the new state s' =δ (s, a). It then updates the

table entry for Q^(s, a) following each such transition, according to the rule:

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 119 T.Aparna, Asst. Prof

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 120 T.Aparna Asst.Prof

Example:

To illustrate the operation of the Q learning algorithm, consider a single action taken by an

agent, and the corresponding refinement to Q^ shown in Figure. In this example, the agent

moves one cell to the right in its grid world and receives an immediate reward of zero for

this transition. It then applies the training rule of Equation (5) to refine its estimate Q^ for

the state-action transition it just executed. According to the training rule, the new Q^

estimate for this transition is the sum of the received reward (zero) and the highest Q^ value

associated with the resulting state (100), discounted by y (0.9). Each time the agent moves

forward from an old state to a new one, Q learning propagates Q^ estimates backward from

the new state to the old. At the same time, the immediate reward received by the agent for

the transition is used to augment these propagated values of Q^.

Consider applying this algorithm to above mentioned example in Learning and then

training consists series of episodes. when thisepisodes reach end the agent is transported

to a new, randomly chosen, initial state for the next episode.

NONDETERMINISTIC REWARDS AND ACTIONS

• Above we considered Q-Learning as deterministic, now we take as nondeterministic in

which the reward function r(s, a) and state transition function f(s, a) may have probabilistic

outcomes.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 121 T.Aparna Asst.Prof

• In such cases, the functions delta(s, a) and r(s, a) can be viewed as first producing a

probability distribution over outcomes based on s and a, and then drawing an outcome at

randomaccording to this distribution

• When these probabilistic outcomes doesnot depend on previous state or action then we call

that as nondeterministic Markov decision process.

• Now we extend the Q-Learning deterministic case to handle nondeterministic MDPs.

• In the nondeterministic case we must first restate the objective of the learner to take that

outcomes are no longer deterministic.

• The generalization is to redefine the value of policy to bethe expected value (over these

nondeterministic outcomes) of the discounted cumulative reward received by applying this

policy

Next we generalize our earlier definition of Q from Equation, again by taking its

expectedvalue.

• To summarize, we have simply redefined Q(s, a) in the nondeterministic case to be the

expected value of its previouslydefined quantity for the deterministic case.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 122 T.Aparna Asst.Prof

TEMPORAL DIFFERENCE LEARNING

• Q learning is a special case of a general class oftemporal difference algorithms that learn

byreducing discrepancies between estimates made bythe agent at different times.

• Temporal difference (TD) learning refers to a class of model-free reinforcement learning

methods which learn by bootstrapping from the current estimate ofthe value function.

GENERALIZING FROM EXAMPLES

The algorithms we discussed perform a kind of rote learning and make no attempt to

estimate theQ value for unseen state-action pairs by generalizing from those that have

been seen.

It is easy to incorporate function approximation algorithms such as BACK-

PROPAGATION into the Q learning algorithm, by substituting a neural network for the

lookup table and usingeach Q^(s, a) update as a training example.

In practice, a number of successful reinforcement learning systems have been

developed by incorporating such function approximation algorithms in place of the

lookup table. Tesauro'ssuccessful TD-GAMMON program for playing backgammon

used a neural network and theBACKPROPAGATION algorithm together with a

TD(λ) training rule.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 123 T.Aparna Asst.Prof

UNIT-V

Analytical Learning

Introduction

• Inductive learning methods, i.e. methods that generalize from observed training
examples.

• The key practical limit on these inductive learners is that they perform poorly when
insufficient data is available.

• One way is to develop learning algorithms that accept explicit prior knowledge as an

input, in addition to the input training data.

• Explanation-based learning is one such approach.

• It uses prior knowledge to analyze, or explain, each training example in order to infer
which example features are relevant to the target function and which are irrelevant.

• These explanation helps in generalizing more accuratelythan inductive learning

• Explanation- based learning uses prior knowledge to reduce the complexity of the

hypothesis space to be searched, thereby reducing space complexity and improving

generalization accuracy of the learner.

Example 1:

Let us consider the task of learning to play chess. Here we are making our program to

recognize the game position i.e. target concept as "chessboard positions in which black will

lose its queen within two moves." Figure 1 shows the positive samples of training concept.

Now if we take inductive learning method to perform this task, it would be difficult because

the chess board is fairly complex (32 pieces can be on any 64 square) andparticular patterns

i.e. to place the pieces in the relative positions (placing them exactly following game

rules).So for all these we need to provide thousand of training examples similar to figure 1

to expect an inductively learned hypothesis to generalize correctly to new situations.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 124 T.Aparna Asst.Prof

Even after considering only the single example shown in Figure 1 , most would be willing

to suggest a general hypothesis for the target concept, such as "board positions in which the

black king and queen are simultaneously attacked," and would not even consider the

(equally

consistent) hypothesis "board positions in which four white pawns are still

locations."So we can’t generalize successfully with that one example.

in their original

Now why to consider training example as positive target concept? “Because white's

knight is attacking both the king and queen, black must move out of check, thereby al-

lowing the knightto capture the queen." They provide the information needed to rationally

generalize from the details of the training example to a correct general hypothesis.

What knowledge is needed to learn chess? It is simply knowledge of which moves are

legal for the knight and other pieces, the fact that players must alternate moves in the game,

and the fact that to win the game one player must capture his opponent's king.

However, in practice this calculation can be frustratingly complex and despite the fact that

we humans ourselves possess this complete, perfect knowledge of chess, we remainunable

to play the game optimally.

Inductive and Analytical Learning Problems

ü In inductive learning, the learner is given a hypothesis space H from which it must select

an output hypothesis, and a set of training examples D = {(xl, f (x~)), . . . (x,, f (x,))} where

f (xi) is the target value for the instance xi. The desired output of the learner is a hypothesis

h from H that is consistent with these training examples.

ü In analytical learning, the input to the learner includes the same hypothesis space H and

training examples D as for inductive learning. In addition, the learner is

provided an

additional input: A domain theory B consisting of background knowledge that

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 125 T.Aparna Asst.Prof

can be used to explain observed training examples. The desired output of,the learner

is a hypothesis h from H that is consistent with both the training examples D and

the domain theory B.

To illustrate, in our chess example each instance xi would describe a particular chess

position,and f (xi) would be True when xi is a position for which black will lose its queen

within two

moves, and False otherwise. Now we define hypothesis space H to consist of sets of Horn

clauses (if-then rules) where predicates used rules refer to the positions or relative positions

of specific pieces on the board. The domain theory B would consist of a formalization of

the rulesof chess.

Note in analytical learning, the learner must output a hypothesis that is consistent with both

the training data and the domain theory.

Example2:

Table 1.

SafeToStack

The example 2 is about Analytical Learning problem SafeToStack

(x, y).

Here we chosen

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 126 T.Aparna Asst.Prof

hypothesis space H which is set of hypothesisfrom first order if- then rules (i e. Horn Clause).

The example Horn clause hypothesis shown in the table asserts that it is SafeToStack any

objectx on any object y, if the Volume of x is Lessthan the Volume of y. The Horn clause

hypothesis can refer to any of the predicates used to describe the instances, as well as several

additional predicates and functions. One such example is SafeToStack(obj1, obj2) shown in

table.

Here domain theory considered will explain certain pairs of objects can be safely stacked

on one another (same as chess example it takes all the rules of the game). The domain theory

shown in

the table includes assertions such as "it is safe to stack x on y if y is not Fragile. Here the

domaintheory also uses subsequent theories i.e. pedicators such as Lighter has more

primitive attributes

like weight,vol,etc which

helpsclassify.

to generalize more accurately and the

given

is sufficient to

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 127 T.Aparna Asst.Prof

LEARNING WITH PERFECT DOMAIN THEORIES:

PROLOG-EBG

• we consider explanation-based learning from domain theories that are perfect, that is,

domain theories that are correct and complete.

• A domain theory is said to be correct if each of its assertions is a truthful statement about
the world.

• A domain theory is said to be complete with respect to a given target concept and

instance space, if the domain theorycovers everypositive example in the instance space.
• But our definition of completeness does not require that the domain theory be able to

prove that negative examples do not satisfy the target concept.

• So we now with help of PROLOG-EBG explain definition of completeness includes full
coverage of both positive and negative examples by the domain theory.

PROLOG-EBG Algorithm:

PROLOG-EBG is a sequential covering algorithmthat considers the training data

incrementally.

For each new positive training example that is not yet covered by a learned Horn clause, it

formsa new Horn clause by:

(1) explaining the new positive training example,

(2) analyzing this explanation to determine an appropriate generalization, and

(3) refining the current hypothesis by adding a new Horn clause rule to cover this positive

example, as well as other similar instances.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 128 T.Aparna Asst.Prof

The bottom of this figure depicts in graphical form of +ve training example Sa eToStack(

Objl , 0bj2) from Table 1. The top of the figure depicts the explanation constructed for this

training example. Notice the explanation, or proof, states that it is SafeToStackObjl on0bj2

because Objl is Lighter than Obj2. Furthermore, Objl is known to be Lighter, becauseits

Weight can be inferred from its Density and Volume, and because the Weight of 0bj2 can

be inferred from the default weight of an Endtable. The specific Horn clauses that underlie

this explanation are shown in the domain theory of Table 1 . Notice that the explanation

mentions only a small fraction ofthe known attributes of Objl and 0bj2 (i.e., those attributes

corresponding to the shaded region in

the figure). While only a single explanation is possible for the training exa ple and domain

theory shown here, in general there may be multiple possible explanations. In such cases,

any or all of the explanations may be used. In the case of PROLOG-EBG, the explanation

is generated using a backward chaining search as performed by PROLOG. PROLOG, halts

once it finds the first valid proof.

For example, the explanation of Figure 2 refers to the Density of Objl, but not to its Owner.

Therefore, the hypothesis for SafeToStack(x,y) should include Density(x, 0.3), but not

Owner(x,

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 129 T.Aparna Asst.Prof

Fred). By collecting just the features mentioned in the leaf nodes of the explanation in Figure

2 and substituting variables x and y for Objl and Obj2, we can form a general rule that is

justified by the domain theory:

SafeToStack(x, y) ă Volume(x, 2) ̂ Density(x, 0.3) ̂ Type(y, Endtable)

The body of the above rule includes each leaf node in the proof tree, except for the leaf

nodes

"Equal(0.6, times(2,0.3)" and "LessThan(0.6,5)." We omit these two because they

are by

definition always satisfied, independent of x and y.

The above rule constitutes a significant generalization of the training example, because it

omits many properties of the example (e.g., the Color of the two objects) that are irrelevant

to the targetconcept. PROLOG- EBG computes the most general rule that can be justified

by the explanation, by computing the weakest preimage of the explanation, defined as

follows:

For example, the weakest preimage of the target concept SafeToStack(x,y), with respect to

the explanation from Table 1, is given by the body of the following rule. This is the most

generalrule that can be justified by the explanation of Figure 2:

Notice this more general rule does not require the specific values for Volume and Density

that were required by the first rule. Instead, it states a more general constraint on the values

of these attributes. The below figure depicts weakest preimage of SafeToStack.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 130 T.Aparna Asst.Prof

The Weakest Preimage of target concept w.r.t explanation is produced by regression. It

works

iteratively through explanation first computing weakest preimage then weakest

preimage of

resulting expression and so on. It terminates when it has completed iterating all over

steps inexplanation and yields weakest condition of target concept.

REMARKS ON EXPLANATION-BASED LEARNING

• Unlike inductive methods, PROLOG-EBG produces justified general hypotheses by
using prior knowledge to analyze individual examples.

• The explanation of how the example satisfies the target concept determines which

example attributes are relevant: those mentioned by the explanation.

• The further analysis of the explanation, regressing the target

concept

to determine its

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 131 T.Aparna Asst.Prof

weakest preimage with respect to the explanation, allows deriving more

general

constraints on the values of the relevant features.

• The generality of the learned Horn clauses will depend on the formulation of the domain

theoryand onthe sequence in which training examples are considered.

• PROLOG-EBG implicitly assumes that the domain theory is correct and complete. If the
domain theory is incorrect or incomplete, the resulting learned concept may also be
incorrect.

There are several related perspectives on explanation-based learning that help to

understand itscapabilities and limitations.

ü EBL as theory-guided generalization of examples. EBL uses its given domain theory

to generalize rationally from examples, distinguishing the relevant ex- ample attributes

from the irrelevant, thereby allowing it to avoid the bounds on sample complexity that apply

to purely inductive learning.

ü EBL as example-guided reformulation of theories. The PROLOG-EBG algorithm can

be viewed as a

method

for reformulating the domain theory

into a

more

operational

formby creating rules that (a) follow deductively from the domain theory, and (b)

classifythe observed training examples in a single inference step. Thus, the learned

rules can be seen as a reformulation of the domain theory classifying instances of

the target concept ina single inference step.
ü EBL as "just" restating what the learner already "knows. " In one sense, the learner in

our SafeToStack example begins with full knowledge of the Safe- ToStack concept.If its

initial domain theory is sufficient to explain any observed training examples, then it is also

sufficient to predict their classification in advance.

EXPLANATION-BASED LEARNING OF SEARCH CONTROL KNOWLEDGE

• The practical applicability of the PROLOG-EBG algorithm is restricted by its

requirement that the domain theorybe correct and complete.

• This EBL can be used in search programs(ex: chess game).

• One system that employs explanationbased learning is to implement search is PRODIGY.

• PRODIGY is domain independent planning system that accepts the problem in terms of

state space S and operators O.

• It then solves the problem to find sequence of operators O that lead from initial state Si to

state that reach goal G.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 132 T.Aparna Asst.Prof

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 133 T.Aparna Asst.Prof

• PRODIGY divides thesolutions to final one.problem into sub problem and solves them

and combines all

• For example, one target concept is "the set of states in which subgoal A should be solved
before subgoal B." An example of a rule learned by PRODIGY for this target concept in
a simple block-stacking problem domain is

The goal of block-staking problem is to stack the blocks so that they spell the word

"universal." PRODIGY would decompose this problem into several subgoals to be

achieved. Notice the above rule matches the subgoalsOn(U, N) and On(N, I), and

recommends solving the subproblem On(N, I) before solving On(U, N). The justification

for this rule (and the explanationused by PRODIGY to learn the rule) is that if we solve the

subgoals in the reverse sequence, we will encounter a conflict in which we must undo the

solution to the On(U, N) subgoal in order to achieve the other subgoal On(N, I).

PRODIGY learns by first encountering such a conflict, then explaining to itself the reason

for this conflict and creating a rule such as the one above.

The net effect is that PRODIGY uses domain-independent knowledge about possible

subgoal conflicts, together with domain-specific knowledge of specific operators (e.g., the

fact that the robot can pick up only one block at a time), to learn useful domain-specific

planning rules such as the one illustrated above.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 134 T.Aparna Asst.Prof

USING PRIOR KNOWLEDGE TO ALTER THE SEARCH

OBJECTIVE

• The above approach begins the gradient descent search with a hypothesis that perfectly

fits the domain theory, then perturbs this hypothesis as needed to maxitraining

data. Size the fit to the

• An alternative way of using prior knowledge is to incorporate it into the error criterion

minimized by gradient descent, so that the network must fit a combined function of the

training data and domain theory.

EBNN Algorithm

The EBNN (Explanation-Based Neural Network learning) algorithm (Mitchell and Thrun

1993a;Thrun 1996) builds on the TANGENTPROP algorithm in two significant

ways.First, instead of relying on the user to provide training derivatives, EBNN

computes

training derivatives itself for each observed training example. These training

derivatives are calculated by explaining each training example in terms of a given

domain theory, then extracting training derivatives from this explanation. (how to

select mue).

• Second, EBNN addresses the issue of how to weight the relative importance of the

inductive and analytical components of learning

Fig 4. Modified error function from tangent prop

algorithm.value of µ is chosen independently for each training

example.

The inputs to EBNN include (1) a set of training examples of the form (xi, f (xi)) with no

training

derivatives provided, and (2) a domain theory analogous to that used in explanation-

based

learning and in KBANN, but represented by a set of previously trained neural networks

rather than a set of Horn clauses. The output of EBNN is a new neural network that

approximates the target function f.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 135 T.Aparna Asst.Prof

To illustrate the type of domain theory used by EBNN, consider Figure . The top portion of

this figure depicts an EBNN domain theory for the target function Cup, with each

rectangular block representing a distinct neural network in the domain theory. Notice in this

example there is one network for each of the Horn clauses in the symbolic domain theory of

Table 1. For example, the network labeled Graspable takes as input the description of an

instance and produces as output a value indicating whether the object is graspable (EBNN

typically repre- sents true propositions by the value 0.8 and falsepropositions by the value

0.2). This network is analogous to the Horn

clause for Graspable given in Table 1. Some networks take the outputs of other networks

as their inputs (e.g., the right- most network labelled Cup takes its inputs from the outputs

of the Stable, Liftable, and OpenVessel networks). Thus, the networks that make up the

domain theory can be chained together to infer the target function value for the input

instance, just as Horn clauses might be chained together for this purpose. In general, these

domain theory networks may be provided to the learner by some external source, or they

may be the result of previous learning by the same system. EBNN makes use of these

domain theory networks to learn the newtarget function. It does not alter the domain theory

networks during this process.

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 136 T.Aparna Asst.Prof

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 137 T.Aparna Asst.Prof

The goal of EBNN is to learn a new neural network to describe the target function. We will

refer to this new network as the target network. In the example of Figure, the target network

Cup,,,,,, shown at the bottom of the figure takes as input the description of an arbitrary

instance and outputs a value indicating whether the object is a Cup.EBNNalgorithm uses a

domain theory expressed as a set of previously learned neural networks, together with a set

of training examples, to train its output hypothesis

USING PRIOR KNOWLEDGE TO AUGMENT SEARCH

OPERATORS

In this section we consider a third way of using prior knowledge to alter the hypothesis

space search: using it to alter the set of operators that define legal steps in the search through

the hypothesis space. This approach is followed by systems such as FOCL

The FOCL Algorithm

• FOCL is an extension of the purely inductive FOIL system.It also employees sequential

covering algorithm (generic to specific search)

• Both FOIL and FOCL learn a set of first-order Horn clauses to cover the observed

training examples

• Difference is FOCL considers Domain Theory.

The solid edges in the search tree of Figure 6 show the general-to-specific search steps

considered in a typical search by FOIL. The dashed edge in the search tree of Figure 6

denotes an additional candidate specialization that is considered by FOCL and based on the

domain theory.

To describe operation FOCL operation, we must know about operational and non

operational literals .operational literals are the 12 attributes describing the training sample

where asnon operational are intermediate feature that occurs in domain theory.

For example in fig 6 ,One kind adds a single new literal (solid lines.in the figure). A second

kind of operator specializes the rule by adding a set of literals that constitute logically

sufficient conditions for the target concept, according to the domain theory (dashed lines in

the figure).

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 138 T.Aparna Asst.Prof

Fig 5. Cup target concept (Training examples and domain theory)

Fig 6. Hypothesis space search in foil

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 139 T.Aparna Asst.Prof

FOCL expands its current hypothesis h using the following two operators: ,

1. For each operational literal that is not part of h, create a specialization of h by adding this single literal

to the preconditions. This is also the method used by FOIL to generate candidate successors. he solid arrows

in Figure 6 denote this type ofspecialization.

2. Create an operational, logically sufficient condition for the target concept according to the domain

theory. Add this set of literals to the current preconditions of h. Finally, prune the preconditions of h by

removing any literals that are unnecessary according to the training data. The dashed arrow in Figure 6

denotes this type of specialization.

• FOCL first selects one domain theory clause whose post condidtion (head) matches the target

concept. If there are more such clauses then it selects whose preconditions have highest information.

• For example in the above figure Cup ăStable, Liftable, Openvessel

• Now each non operational literal is replaced with its sufficient i.e. instead of Stable we replace

BottomIsFlat similarly we do for all… this process is unfolding

• Then it looks like BottomIsFlat , HasHandle, Light, HasConcavity ,

ConcavityPointsUp

• As a final step in generating the candidate specialization, this sufficient condition is pruned. For

each literal in the expression, the literal is removed unless its removal reduces classification

accuracy over the training examples. Pruning (removing) the literal HasHandleresults in improved

performance.

• BottomZsFlat , Light, HasConcavity , ConcavityPointsUp
this hypothesis is the result of the search step shown by the dashed arrow in Figure

• Once candidate specializations of the current hypothesis have been gener- ated, using both of the

two operations above, the candidate with highest information gain is selected.

FOCL learns Horn clauses of the form c ă0i ^ 0b ^ 0f

where c is the target concept, 0i is an initial conjunction of operational literals added one at a time

by the first syntactic operator, 0b is a conjunction of operational literals added in a single step based

on the domain theory, and 0f is a final conjunction of operational literals added one ata timeby the

first syntactic operator.

REINFORCEMENT LEARNING

Each time the agent performs an action in its environment, a trainer may provide a reward or penalty

to indicate the desirability of the resulting state. For example, when training an agent to play a game

the trainer might provide a positive reward when the game is won, negative reward when it is lost,

and zero reward in all other states. The task of the agent is to learn from this

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 140 T.Aparna Asst.Prof

Learning Techniques

Motivation:

Combing Inductive and Analytical Learning:

• two paradigms for machine learning: inductive learning and analytical learning.

• Purely analytical learning methods offer the advantage of generalizing more accurately

from less data by using prior knowledge to guide learning. However, they can be misled

when given incorrect or insufficient prior knowledge.

Eg: PROLOG-EBG, seek general hypotheses that fit prior knowledge while

covering theobserved data.

• Purely inductive methods offer the advantage that they require no explicit prior knowledge

and learn regularities based solely on the training data. However, they can failwhen given

insufficient training data, and can be misled by the implicit inductive bias they must adopt

in order to generalize beyond the observed data.

Eg : decision tree induction and neural network BACKPROPAGATION, seek

generalhypotheses that fit the observed training data.

• Combining themoffers the possibilityof more powerful learning methods.

Differnces between Inductive Learning and Analytical Learning

Inductive Learning Analytical Learning

These methods seek general hypotheses that fit

the observed training data.

These methods seek general hypotheses that

fit prior knowledge while covering the

observed data.

These offer the advantage that they require no

explicit prior knowledge and learn regularities

based solely on the training data

These offer the advantage of generalizing

more accurately from less data by using prior

knowledge to guide learning.

The output hypothesis follows from statistical

arguments that the training sample is

The output hypothesis follows deductively

from the domain theory and training

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 141 T.Aparna Asst.Prof

sufficiently large that it is probably

representative of the underlying distribution of

example

examples.

The disadvantage is they can fail when given

insufficient training data, and can be misled by

the implicit inductive bias they must adopt in

order to generalize beyond the observed data

The disadvantage is they can be misled when

given incorrect or insufficient prior

knowledge.

These provide statistically justified hypotheses These provide logically justified hypotheses.

Inductive methods are Decision tree

,Backpropagation

Analytical methods are PROLOG-EBG

× The two approaches work well for different types of problems. By combining them we can

hope to devise a more general learning approach that covers a more broad range of learning

tasks. Fig1,a spectrum of learning problems that varies by the availability of prior

knowledge and training data. At one extreme, a large volume of training data is

available, but no prior knowledge. At the other extreme, strong prior knowledge is

available, but little training data. Most practical learning

problemsbetween these two extremes of the spectrum.

lie somewhere

Fig 1 : A Spectrum of learning tasks

At the left extreme, no prior knowledge is available, and purely inductive learning methods with

high sample complexity are therefore necessary. At the rightmost extreme, a perfect domain theory

is available, enabling the use of purely analytical methods such as PROLOG-

EBG. Mostpractical problems lie somewhere between these two extremes

Some specific properties we would like from such a learning method include:

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 142 T.Aparna Asst.Prof

• Given no domain theory, it should learn at least as effectively as purely inductive

methods.

• Given a perfect domain theory, it should learn at least as effectively as purely analytical

methods.

• Given an imperfect domain theory and imperfect training data, it should combine the two

to outperform either purely inductive or purely analytical methods.

• It should accommodate an unknown level of error in the training data.

• It should accommodate an unknown level of error in the domain theory.

INDUCTIVE-ANALYTICAL APPROACHES TO LEARNING

The Learning Problem

Given:

• A set oftraining examples D, possibly containing errors

• A domain theory B, possibly containing errors

• A space of candidate hypotheses H

Determine:

• A hypothesis that best fits the training examples and domain theory

Which hypothesis to consider?

Ą One which fits training data well

Ą One which fits domain theory well

errorD(h) is defined to be the proportion of examples from D that are misclassified by h.

Let usdefine the error errorB(h) of h with respect to a domain theory B to be the

probability that h will

disagree with B on the classification of a randomly drawn instance. We

characterize the desired output hypothesis in terms of these errors.

can attempt to

We require hypothesis that could minimize some combined measures of hypothesis such as

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 143 T.Aparna Asst.Prof

At first instance it satisfies, it is not clear what values to assign to kDand kB to specify the

relative importance of fitting the data versus fitting the theory.

If we have poor theory and great deal of data the error w.r.t D weight more heavily and if

we have strong theory and noisy data the error w.r.t B weight more heavily.so the learner

doesn’t know about training data and domain theory to unclear these components.

So to weight these we use Bayes theorem. Bayes theorem describes how to compute the

posterior probability P(h/D) of hypothesis h given observed training data D.Bayes theorem

computes this posterior probability based on the observed data D, together with prior

knowledge in the form of P(h), P(D), and P(D/h).we can think of P(h), P(D), and P(D/h) as

a form of background knowledge or domain theory.Here we should choose hypothesis

whose posterior probability is high. If P(h), P(D), and P(D/h) these are not perfectly known

then Bayes theorem alone does not prescribe how to combine them with the observed data.

Then, we have to assume prior probabilistic values for P(h), P(D), and P(D/h).

Hypothesis space search:

We can characterize most learning methods as search algorithms by describing the

hypothesis space H they search, the initial hypothesis ho at which they begin their search,

the set of search operators 0 that define individual search steps, and the goal criterion G

that specifies the search objective.

three different methods are:

 Use prior knowledge to derive an initial hypothesis from which to begin the search.

In this approach the domain theory B is used to construct an initial hypothesis ho that is

consistent with B. A standard inductive method is then applied, starting with the initial

hypothesis ho.

 Use prior knowledge to alter the objective of the hypothesis space search. In this

approach, the goal criterion G is modified to require that the out- put hypothesis fits the

domain theory as well as the training examples.

 Use prior knowledge to alter the available search steps. In this approach, the set of

search operators 0 is altered bythe domain theory.

USING PRIOR KNOWLEDGE TO INITIALIZE THE

HYPOTHESIS

One approach to using prior knowledge is to initialize the hypothesis to perfectly fit the

domain theory, then inductively refine this initial hypothesis as needed to fit the training

data. This approach is used by the KBANN (Knowledge-Based Artificial Neural

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 144 T.Aparna Asst.Prof

Network) algorithm to learn artificial neural networks.

In KBANN, initial network is first constructed for every instance, the classification

assigned by the network is identical to that assigned by the domain theory.Backpropagation

algorithm is employed to adjust the weights of initial network as neededto fit training

examples.

If the initial hypothesis is found to imperfectly classify the training examples, then it will

be refined inductively to improve its fit to the training examples (Backpropagation

algorithm). If thedomain theory is correct, the initial hypothesis will correctly classify all

the training examples.

The intuition behind KBANN is that even if the domain theory is only approximately

correct, initializing the network to fit this domain theory will give a better starting

approximation to the target function than initializing the network to random initial weights.

The KBANN Algorithm

It first initializes the hypothesis approach to using domain theories.It assumes a domain

theory represented by a set of propositional, nonrecursive Horn clauses.

The two stages of the KBANN algorithm are first to create an artificial neural network that

perfectly fits the domain theory and second to use the BACKPROPAGATION algorithm

torefine this initial network to fit the training examples

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 145 T.Aparna Asst.Prof

EXAMPLE:

Here each instance describes a physical object in terms of the material from which it

is made,whether it is light, etc. The task is to learn the target concept Cup defined

over such physical

objects. The domain theory defines a Cup as an object that is Stable, Liftable, and an

OpenVessel. The domain theory also defines each of these three attributes in terms of

moreprimitive attributes and all those attributes describe the instances.

Table 1. describes a set of training examples and a do- main theory for the Cup target concept

Table 1. The Cup Learning Task

Here the domain theory is inconsistent because the domain theory fails to classify two and

three training examples. KBANN uses the domain theory and training examples together

to learn the target concept more accurately than it could from either alone.

1. In First stage, Initial network is constructed consistent with domain theory

2. KBANN follows the convention that a sigmoid output value greater than 0.5 is

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 146 T.Aparna Asst.Prof

interpreted as True and a value below 0.5 as False.

3. Each unit is therefore constructed so that its output will be greater than 0.5 just in those

cases where the corresponding Horn clause applies.

4. for each input corresponding to a non-negated antecedent,the weight is set to some positive

constant W. For each input corresponding to a negated antecedent, the weight is set to - W.

5. The threshold weight of the unit, wo is then set to -(n- .5) W, where n is the number of non-

negated antecedents.

When i/p values are 1 or 0 then weightedsum+ w0 will be +ve , if all antecedents

are satisfied.

6. Each sigmoid unit input is connected to the appropriate network input or to the output of

another sigmoid unit, to mirror the graph of dependencies among the corresponding

attributes in the domain theory. As a final step many additional inputs are added

to eachthreshold unit, with their weights set approximately to zero.

Fig 2. A Neural network equivalent to domain
theory

The solid lines in the network of Figure 2 indicate unit inputs with weights of W,

whereas thelightly shaded lines indicate connections with initial weights near zero.

7. The second stage

BACKPROPAGATION

of KBANN uses the training examples and

thealgorithm to refine the initial network weights, if

the intial

MACHINE LEARNING (DS4102PC/ CY4101PC)

Dept of CSE, NRCM 147 T.Aparna Asst.Prof

network is not consistent with theory. If cosistent no need of backpropagation.

8. But our example is not consistent so we perform backpropagation

Figure 3, with dark solid lines indicating the largest positive weights, dashed lines

indicating thelargest negative weights, and light linesindicating negligible weights.

Fig 3. Result of inductively refined neural network.

REMARKS:

 The chief benefit of KBANN over purely inductive BACKPROPAGATION is that it

typically generalizes more accurately than BACKPROPAGATION when given an

approximately correct domain theory, especially when training data is scarce.

 Limitations of KBANN include the fact that it can accommodate only propositional

