PROBABILITY AND STATISTICS

B.Tech. II Year I Sem

	Course Code	Category	Hours/ Week			Credits	Maximum Marks		
	23MA302 Basic Scien	Rasia Sajancas	LI	Т	P	4	CIA	SEE	TOTAL
		Dasic ociences	3	1	0		40	60	100
	Contact Classes: 48	Tutorial Classes: 0	Practical Cla			sses: Nil	Total Classes:48		ses:48

Pre-requisites: Mathematics courses of first year of study.

Course Objectives: To learn The theory of Probability, and probability distributions of single and multiple random variables. The sampling theory and testing of hypothesis and making statistical inferences.

Course outcomes: After learning the contents of this paper the student must be able to

- 1. Apply the concepts of probability and distributions to some case studies.
- 2. Distinguish between discrete and continuous probability distributions.
- 3. Formulate and solve problems involving random variables and apply statistical methods for analyzing experimental data.
- 4. Apply the concept of estimation and testing of hypothesis to case studies.
- 5. Estimate the correlation and regression values for the given data.

UNIT - I:

Probability: Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Baye's Rule.

Random Variables and Probability Distributions: Concept of a Random Variable,

Discrete Probability Distributions, Continuous Probability Distributions

UNIT - II: Expectation and discrete distributions: Mean of a Random Variable,
Variance and Covariance of Random Variables, Means and Variances of Linear
Combinations of Random Variables.

Discrete Probability Distributions: Binomial Distribution, Poisson distribution, Geometric Distribution.

UNIT - III:

Continuous Distributions and sampling: Uniform Distribution, Normal Distribution,

Areas under the Normal Curve, Applications of the Normal Distribution, Normal

Approximation to the Binomial Distributions.

Fundamental Sampling Distributions: Random Sampling, Some Important Statistics,
Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem,
t -Distribution, F-Distribution.

UNIT - IV:

Estimation & Tests of Hypotheses: Introduction, Statistical Inference, Classical Methods of Estimation, Single Sample: Estimating the mean, standard error of a point estimate, prediction interval. Two sample: Estimating the difference between two means, Single sample: Estimating a proportion, Two samples: Estimating the difference between two proportions, Two samples: Estimating the ratio of two variances.

Statistical Hypotheses: General Concepts, Testing a Statistical Hypothesis, Single sample: Tests concerning a single mean, Two samples: tests on two means, One sample: test on a single proportion. Two samples: tests on two proportions, Two-sample tests concerning variances.

UNIT - V: Applied Statistics: Curve fitting by the method of least squares, fitting of straight lines, second degree parabolas and more general curves, Correlation and regression, Rank correlation.

TEXT BOOKS:

 Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists, 9th Ed. Pearson Publishers. 2. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications.

REFERENCE BOOKS:

- T. T. Soong, Fundamentals of Probability and Statistics for Engineers, John Wiley & Sons, Ltd, 2004.
- 2. Sheldon M Ross, Probability and statistics for Engineers and scientists, academic press.